«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2018. Vol. 25

Impulsive Control of Systems with Network Structure Describing Spread of Political Influence

Author(s)
M. V. Staritsyn, N. S. Maltugueva, N. I. Pogodaev, S. P. Sorokin
Abstract

We study a particular class of singular optimal control problems and corresponding impulsive control problems, which can be interpreted in terms of spread of a certain information impact (political influence) in a certain “social network” represented by a weighted directed graph. First, we give a statement of the “prototypic” extremal problem with unbounded input signals. Next, we discuss an impulsive trajectory extension of the prototypic model in an appropriate coarse topology of the space of right continuous functions with bounded variation. For an equivalent classical problem (obtained by a discontinuous time reparameterization of the extended system) we present a detalization of the Maximum Principle. As an illustration, we exhibit some results of numeric implementation of a toy model case and perform their practical interpretation. Finally, for the case of complete graph with equal weights we study the limit structure of the model as the power of the network tends to infinity: we show that the limit system is described by a nonlocal continuity equation with “unbounded” velocity field. This equation can be transformed by a discontinuous reparameterization to an equivalent equation with a regular vector field, which gives (as well as in the finite-dimensional case) a correct impulsive trajectory extension of the original continuity equation. The derived optimal control problem for the distributed system is, thus, a relaxation of the original extremal problem for “large” networks.

About the Authors

Maxim V. Staritsyn, Cand. Sci. (Phys.–Math.), Research Scientist, Matrosov Institute for System Dynamics and Control Theory SB RAS, 134, Lermontov st., Irkutsk, 664033, Russian Federation, tel.: (3952) 45-30-95, e-mail: starmaxmath@gmail.com

Nadezhda S. Maltugueva, Programmer, Matrosov Institute for System Dynamics and Control Theory SB RAS, 134, Lermontov st., Irkutsk, 664033, Russian Federation, tel.: (3952) 45-30-37, e-mail: malt@icc.ru

Nikolay I. Pogodaev, Cand. Sci. (Phys.–Math.), Senior Research Scientist, Matrosov Institute for System Dynamics and Control Theory SB RAS, 134, Lermontov st., Irkutsk, 664033, Russian Federation, tel.: (3952) 45-30-52, e-mail: n.pogodaev@icc.ru

Stepan P. Sorokin, Cand. Sci. (Phys.–Math.), Research Scientist, Matrosov Institute for System Dynamics and Control Theory SB RAS, 134, Lermontov st., Irkutsk, 664033, Russian Federation, tel.: (3952) 45-30-52, e-mail: sorsp@mail.ru

For citation
Staritsyn M. V., Maltugueva N. S., Pogodaev N. I., Sorokin S. P. Impulsive Control of Systems with Network Structure Describing Spread of Political Influence. The Bulletin of Irkutsk State University. Series Mathematics, 2018, vol. 25, pp. 126-143. (in Russian) https://doi.org/10.26516/1997-7670.2018.25.126
Keywords
trajectory relaxations of control systems, impulsive control, optimal control, control of multi-agent systems
UDC
517.977.5
MSC
93C10, 93C23
DOI
https://doi.org/10.26516/1997-7670.2018.25.126
References

1. Gurman V.I. Vyrozhdennye zadachi optimal’nogo upravleniya [Degenerate Problems of Optimal Control]. Moscow, Nauka Publ., 1977, 304 p. (in Russian)

2. Dykhta V.A., Samsonyuk O.N. Optimal’noe impul’snoe upravlenie s prilozheniyami [Optimal Impulsive Control with Applications]. Moscow, Fizmatlit, 2000, 256 p. (in Russian)

3. Zavalishchin S.T., Sesekin A.N. Impul’snye processy: modeli i prilozhenija [Impulse Processes: Models and Applications]. Moscow, Nauka Publ., 1991, 256 p. (in Russian)

4. Miller B.M., Rubinovich E.Ya. Optimizatsiya dinamicheskikh sistem s impul’snymi upravleniyami [Optimization of Dynamic Systems with Impulsive Controls]. Moscow, Nauka Publ., 2005, 430 p. (in Russian)

5. Ambrosio L., Savar´e G. Gradient flows of probability measures. Handbook of  Differential Equations:  Evolutionary  Equations, 2007, vol. III, Amsterdam, Elsevier/North-Holland, pp. 1–136.

6. Arutyunov A.V., Karamzin D.Yu., Pereira F.L. On constrained impulsive control problems. J. Math. Sci., 2010, vol. 165, pp. 654–688. https://doi.org/10.1007/s10958-010-9834-z

7. Bressan A., Rampazzo F. Impulsive control systems without commutativity assumptions. Optim. Theory Appl., 1994, vol. 81, no. 3, pp. 435–457. https://doi.org/10.1007/BF02193094

8. Clarke F. Functional Analysis, Calculus of Variations and Optimal Control. London, Springer-Verlag, 2013, 591 p.

9. Fornasier M., Solombrino F. Mean field optimal control. ESAIM Control Optim. Calc. Var., 2014 http://dx.doi.org/10.1051/cocv/2014009.

10. Knuth D.E. The Stanford GraphBase: A Platform for Combinatorial Computing. Boston, Addison-Wesley Professional, 1993, 592 p.

11. Marigonda A., Quincampoix M. Mayer control problem with probabilistic uncertainty on initial positions. J. Differential Equ., 2018, vol. 264, no. 5, pp. 3212– 3252. https://doi.org/10.1016/j.jde.2017.11.014

12. Newman M. Networks: An Introduction. Oxford, Oxford University Press, 2010, 720 p.

13. Pogodaev N. Optimal control of continuity equations. NoDEA Nonlinear Differential Equations Appl., 2016, vol. 23, no. 2, pp. 21–24. https://doi.org/10.1007/s00030-016-0357-2

14. Staritsyn M.V. On “discontinuous” continuity equation and impulsive ensemble control. Syst. Control Lett., 2018, vol. 118, pp. 77–83. https://doi.org/10.1016/j.sysconle.2018.06.001


Full text (russian)