«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2009. Vol. 2

Inessential combinations of small theories

Author(s)
S. V. Sudoplatov
Abstract

Characteristics of number of pairwise non-isomorphic countable models for inessential combinations of small theories are investigated. Estimations of that characteristics for coordinated inessential combinations, as well as exact values for their interpretations as disjunctive unions, are found. Characteristic representations are described for Ehrenfeucht theories being close to o-minimal.

Keywords
small theory, inessential combination, Rudin — Keisler preorder, limit model
UDC
510.67
References

1. Судоплатов С. В., Овчинникова Е. В. Дискретная математика: Учебник. — М.: ИНФРА-М, Новосибирск: НГТУ, 2007. — 256 с.

2. Судоплатов С. В., Овчинникова Е. В. Математическая логика и теория алгоритмов: Учебник. — М.: ИНФРА-М, Новосибирск: НГТУ, 2008. — 224 с.

3. Судоплатов С. В. Проблема Лахлана. — Новосибирск: НГТУ, 2009. — 336 с.

4. Fuchs L. Partially ordered algebraic systems. — Oxford: Pergamon Press, 1963. — 229 p.

5. Macpherson H. D., Steinhorn C. On variants of o-minimality // Ann. Pure and Appl. Logic. 1996. V. 79, No. 2. P. 165–209.

6. Mayer L. Vaught’s conjecture for o-minimaltheories// J.SymbolicLogic. 1988. V.53, No. 1. P. 146–159.

7. Pillay A., Steinhorn C. Definable sets in ordered structures, I // Trans. Amer. Math. Soc. 1986. V. 295. P.565–592.

8. Tanovi´c P. Theories with constants and three countable models // Archive for Math. Logic. 2007. V. 46, No. 5–6. P. 517–527.

9. Woodrow R. E. Theories with a finite number of countable models and a small language. Ph. D. Thesis. — Simon Fraser University, 1976.


Full text (russian)