«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2017. Vol. 19

Nonlocal Improvement of Controls in Nonlinear Discrete Systems

Author(s)
O. V. Morzhin
Abstract

A nonlinear optimal control problem for discrete system with both control function and control parameters (parameters are at the system’s right side and at the initial condition) is considered. For the given optimization problem, the problem of control’s improvement is studied. It’s developed a known approach for non-local improvement of control based on construction of the exact (without residual terms w.r.t. state and control variables) formula for the cost functional’s increment under some special conjugate system.

For the given optimization problem, it’s considered the generalized Lagrangian following to the theory by V. F. Krotov. The function ϕ(t, x) which plays an important role in the generalized Lagrangian is considered in this article in the linear w.r.t. x form
ϕ(t, x) = <p(t), x>
where the function p(t) is the solution of the mentioned conjugate system. Thus, first of all, the exact formula of the cost functional’s increment is considered under the assumption on the solution p(t) existence and, secondly, the linear function ϕ(t, x) is used here in connection with creation of the mentioned increment formula, and not for linear approximation of the generalized Lagrangian’s increment. The corresponding condition of control’s improvement is formulated in terms of the boundary value problem composed due to binding of the system given in the optimization problem together with the conjugate system. The obtained increment condition is similar to the increment conditions which were suggested before in the papers of the author for discrete problems without control parameters.

There is an example of control’s improvement in some problem where the control to be improved gives the maximum of the Pontryagin’s function for all values of t. The boundary value improvement problem is solved with help of the shooting method, and the calculations are made analytically.

Keywords
discrete systems optimal control control functions and parameters nonlocal improvement
UDC
References

1. Antipina N.V., Dykhta V.A. Linear Lyapunov-Krotov functions and sufficient conditions for optimality in the form of the maximum principle. Russ. Math., 2002, vol. 46, no 12, pp. 9-20.

2. Arguchintsev A.V., Dykhta V.A., Srochko V.A. Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum. Russ. Math., 2009, vol. 53, issue 1, pp. 1-35.

3. Arguchintsev A.V., Poplevko V.P. Optimal control of the initial conditions of a first-order canonical hyperbolic system on the basis of nonstandard increment formulas. Russ. Math., 2008, no 1, pp. 3–10.

4. Baturin V.A., Urbanovich D.E. Priblizhennye metody optimal’nogo upravleniya, osnovannye na principe rasshireniya [Approximate optimal control methods based on the extension principle]. Novosibirsk, Nauka, 1997. 175 p. (In Russian).

5. Buldaev A.S. Metody vozmushchenij v zadachah uluchsheniya i optimizacii upravlyaemyh sistem [Perturbation methods in improvement and optimization problems for control systems]. Ulan-Ude, Buryat State Univ. Publ., 2008. 256 p. (In Russian).

6. Buldaev A.S. A boundary improvement problem for linearly controlled processes. Autom. Remote Control, 2011, vol. 72, issue 6, pp. 1221-1228.

7. Buldaev A.S., Morzhin O.V. Modifikaciya metoda proekcij dlya uluchsheniya nelinejnyh upravlenij [Modification of the projecting method for nonlinear controls improvement]. Vestnik Buryatskogo gosudarstvennogo universiteta. Matematika iinformatika, 2010, pp. 10-17. (In Russian).

8. Buldaev A.S., Morzhin O.V. Improvement of controls in nonlinear systems based on boundary value problems. Izvestiya Irk. Gos. Univ., Ser. Matematika, 2009, vol. 2, no. 1, pp. 94-106. (In Russian).

9. Buldaev A.S., Khishektueva I.-Kh.D. The fixed point method in parametric optimization problems for systems. Autom. Remote Control, 2013, vol. 74, issue 12, pp. 1927-1934.

10. Butkovsky A.G. Teoriya optimal’nogo upravleniya sistemami s raspredelennymi parametrami [The theory of optimal control for systems with distributed parameters]. Moscow, Nauka, 1965. 476 p. (In Russian).

11. Gabasov R., Kirillova F.M. Kachestvennaya teoriya optimal’nyh processov [Qualitative Theory of Optimal Processes]. Moscow, Nauka, 1971. 508 p. (In Russian).

12. Gurman Vladimir Iosifovich. Wikipedia. URL: https://ru.wikipedia.org/wiki/Гурман,_Владимир_Иосифович (in Russian).

13. Gurman V.I. Princip rasshireniya v zadachah upravleniya [The Extension Principle in Control Problems]. 2nd ed. Moscow, Fizmatlit, 1997. 288 p. (In Russian).

14. Gurman V.I., Baturin V.A., Danilina E.V., et al. Novye metody uluchsheniya upravlyaemyh processov [New methods for improvement of control processes]. Novosibirsk, Nauka, 1987. 184 p. (In Russian).

15. Gurman V.I., Baturin V.A., Moskalenko A.I., et al. Metody uluchsheniya v vychislitel’nom ehksperimente [Methods for improvement in computational experiments]. Novosibirsk, Nauka, 1988. 184 p. (In Russian).

16. Gurman V.I., Baturin V.A., Rasina I.V., et al. Priblizhennye metody optimal’nogo upravleniya [Approximate methods of optimal control]. Irkutsk, Irkutsk Univ. Publ., 1983. 180 p. (In Russian).

17. Dykhta V.A. Positional strengthenings of a maximum principle and sufficient conditions for optimality. Proc. Steklov Inst. Math., 2016, vol. 293, suppl. 1, pp. S43–S57.

18. Krotov Vadim Fedorovich. Wikipedia. URL: https://ru.wikipedia.org/wiki/Кротов,_Вадим_Фёдорович (in Russian).

19. Krotov V.F., Bukreev V.Z., Gurman V.I. Novye metody variacionnogo ischisleniya v dinamike poleta [New Variational Methods in Flight Dynamics]. Moscow, Mashinostroenie, 1969. 288 p. (In Russian).

20. Krotov V.F., Gurman V.I. Metody i zadachi optimal’nogo upravleniya [Optimal Control: Methods and Problems]. Moscow, Nauka, 1973. 448 p. (In Russian).

21. Morzhin O.V. Nonlocal improvement of nonlinear controlled processes on the basis of sufficient optimality conditions. Autom. Remote Control, 2010, vol. 71, no 8, pp. 1526–1539.

22. Morzhin O.V. Nonlocal improvement of controlling functions and parameters in nonlinear dynamical systems. Autom. Remote Control, 2012, vol. 73, issue 11, pp. 1822–1837.

23. Morzhin O.V. Nelokal’nye uluchsheniya upravlenij v nelinejnyh diskretnyh zadachah optimal’nogo upravleniya [Nonlocal improvements of controls in nonlinear discrete optimal control problems]. 12th All-Russian Meetingon Control Problems. Moscow, ICS RAS, 2014. Pp. 650–658. URL: http://vspu2014.ipu.ru/prcdngs. (In Russian).

24. Panteleev A.V., Bortakovsky A.S. Teoriya upravleniya v primerah i zadachah [Control theory in examples and tasks]. Moscow, Vyshaya shkola, 2003. 583 p. (In Russian).

25. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The Mathematical Theory of Optimal Processes. Oxford, Pergamon Press, 1964.

26. Propoi A.I. Elementy teorii optimal’nyh diskretnyh processov [Elements of the theory of optimal discrete processes]. Moscow, Nauka, 1973. 256 p. (In Russian).

27. Rozonoer L.I. L.S. Pontryagin maximum principle in the theory of optimum systems. I, II, III. Autom. Remote Control, 1959, vol. 20, pp. 1288-1302, 1405–1421, 1517-1532.

28. Srochko V.А. Iteracionnye metody resheniya zadach optimal’nogo upravleniya [Iterative methods for solving optimal control problems]. Moscow, Fizmatlit, 2000. 160 p. (In Russian).

29. Srochko V.A., Antonik V.G. Optimality conditions for extremal controls in bilinear and quadratic problems. Russ. Math., 2016, vol. 60, issue 5, pp. 75-80.

30. Krotov V.F. Global methods in optimal control theory. New York, Marcel Dekker, 1996. 408 p.


Full text (russian)