«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2022. Vol 41

Exact Traveling Wave Solutions of the Loaded Modified Korteweg-de Vries Equation

Author(s)
Iroda I. Baltaeva1, Ilkham D. Rakhimov1, Muzaffar M. Khasanov1

1Urgench State University, Urgench, Uzbekistan

Abstract
This paper is dedicated to finding the traveling wave solutions of the loaded modified Korteweg-de Vries equation. It is shown to find the solutions via (G’/G) — expansion method which is one of the most effective ways of finding solutions. When the parameters are taken as special values the solitary waves are also derived from the traveling waves. The traveling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. This method is easy to implement using well-known software packages, which allows you to solve complex nonlinear evolution equations of mathematical physics.
About the Authors

Iroda I. Baltaeva, Cand. Sc. (Phys.–Math.), Urgench State University, Urgench, 220100, Uzbekistan, iroda-b@mail.ru

Ilkham D. Rakhimov, Postgraduate, Urgench State University, Urgench, 220100, Uzbekistan, ilham.rahimov.87@mail.ru

Muzaffar M. Khasanov, Cand. Sci. (Phys.–Math.), Urgench State University, Urgench, 220100, Uzbekistan, mxasanov@mail.ru

For citation
Baltaeva I. I., Rakhimov I. D., Khasanov M. M. Exact Traveling Wave Solutions of the Loaded Modified Korteweg-de Vries Equation. The Bulletin of Irkutsk State University. Series Mathematics, 2022, vol. 41, pp. 85–95. https://doi.org/10.26516/1997-7670.2022.41.85
Keywords
soliton solution, loaded mKdV, nonlinear equations, expansion method
UDC
517.95
MSC
35Q51, 35Q53
DOI
https://doi.org/10.26516/1997-7670.2022.41.85
References
  1. Baltaeva I.I, Feckan M., Urazboev G. Integration of the loaded KdV equation in the class of ”rapidly decreasing” functions. Conf. Modern methods of mathematical physics and their applications, 2020, vol. 1, p. 116.
  2. Baltaeva U., Torres P.J. Analog of the Gellerstedt problem for a loaded equation of the third order. Math. Meth. Appl. Sci., 2019, vol. 42, p. 3865.
  3. Bekir A. Application of the (G’/G)-expansion method for nonlinear evolution equations. Phys. Lett. A, 2008, vol. 372, p. 3400. http://dx.doi.org/10.1016/j.physleta.2008.01.057
  4. Bekir A., Guner O. Exact solutions of nonlinear fractional differential equations by (G’/G)-expansion method. Chin. Phys. B, 2013, vol. 22, p. 110202. https://doi.org/10.1088/1674-1056/22/11/110202
  5. Cannon J.R., Yin H.M. On a class of nonlinear nonclassical parabolic problems. J. Different. Equat., 1989, vol. 79, pp. 266–288. https://doi.org/10.1080/00036810500277876
  6. Chadam J.M., Peirce A., Yin H.M. The blowup property of solutions to some diffusion equations with localized nonlinear reactions. J. Math. Analys. and Appl., 1992, vol. 169, p. 313.
  7. Demiray H. Variable coefficient modified KdV equation in fluid-filled elastic tubes with stenosis: Solitary waves. Chaos Soliton Fractals, 2009, vol. 42, p. 1. https://doi.org/10.1016/j.chaos.2008.12.014
  8. Gardner C., Green J., Kruskal M., Miura R. A method for solving the Korteweg-de Vries equation. Phys. Rev. Letters., 1967, vol. 19, p. 1095.
  9. Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett., 1971, vol. 27, p. 1192.
  10. Kadomtsev B.B., Karpman V.I. Nonlinear waves. Sov. Phys. Usp., 1971, vol. 14, p. 40.
  11. Khasanov M. Integration of the loaded modified Korteweg-de Vries equation in the class of periodic functions. Uzbek Mathematical Journal, 2016, vol. 4, p. 139.
  12. Kudryashov N.A., Chernyavskii I.L. Nonlinear waves in fluid flow through a viscoelastic tube. Fluid Dynamics, 2006, vol. 41, p. 1. https://doi.org/10.1007/s10697-006-0021-3
  13. Li Z.L. Constructing of new exact solutions to the GKdV-mKdV equation with any-order nonlinear terms by (G’/G)-expansion method. Appl. Math. Comput., 2010, vol. 217, p. 1398. https://doi.org/10.1016/j.amc.2009.05.034
  14. Nakhushev A.M. On nonlocal problems with shift and their connection with loaded equations. Differents. Uravn., 1985, vol. 21, p. 92.
  15. Reyimberganov A.A., Rakhimov I.D. The soliton solutions for the nonlinear Schrodinger equation with self-consistent sources. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 36, p. 84. https://doi.org/10.26516/1997-7670.2021.36.84
  16. Rogers C., Shadwick W.F. Backlund Transformations. New York, Academic Press,1982.
  17. Shang N., Zheng B. Exact Solutions for Three Fractional Partial Differential Equations by the (G’/G) Method. Int. J. Appl. Math., 2013, vol. 43, p. 114.
  18. Urazboev G.U., Baltaeva I.I., Rakhimov I.D. A generalized (G’/G)-expansion method for the loaded Korteweg-de Vries equation. Sibirskii Zhurnal Industrial’noi Matematiki, 2021, vol. 24, p. 139. https://doi.org/10.33048/SIBJIM.2021.24.410(in Russian)
  19. Wadati M. The exact solution of the modified Korteweg-de Vries equation. J. Phys. Soc., 1972, vol. 32, p. 1681.
  20. Wadati M., Shanuki H., Konno K. Prog. Theor. Phys., 1975, vol. 53, p. 419.
  21. Wang M., Li X., Zhang J. The (G’/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys Lett. A., 2008, vol. 372, p. 417. https://doi.org/10.1016/j.physleta.2007.07.051
  22. Zayed E.M. The (G’/G)-expansion method and its applications to some nonlinear evolution equations in the mathematical physics. J. Appl. Math. Comput., 2009, vol. 30, p. 89. https://doi.org/10.1007/s12190-008-0159-8
  23. Zayed E.M. The (G’/G)-expansion method combined with the Riccati equation for finding exact solutions of nonlinear PDEs. J. Appl. Math. Inform., 2011, vol. 29, p. 351.
  24. Zayed E.M., Alurr K.A. Extended generalized (G’/G)-expansion method for solving the nonlinear quantum Zakharov Kuznetsov equation. Ricerche Mat., 2016, vol. 65, p. 235.
  25. Zayed E.M.E. The (G’/G) expansion method and its applications to some nonlinear evolution equations in the mathematical physics. Journal of Applied Mathematics and Computing, 2009, vol. 30, p. 89.
  26. Zayed E.M.E., Gepreel K.A. The (G’/G) expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. Journal of Mathematical Physics, 2009, vol. 50, p. 013502. https://doi.org/10.1063/1.3033750
  27. Zhang S., Tong J.L., Wang W. A generalized (G’/G)-expansion method for the mKdV equation with variable coefcients. Phys. Lett. A, 2008, vol. 372, p. 2254. https://doi.org/10.1016/j.physleta.2007.11.026

Full text (english)