«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2021. Vol. 36

The Soliton Solutions for the Nonlinear Schrödinger Equation with Self-consistent Source

Author(s)
A.A. Reyimberganov, I. D. Rakhimov
Abstract

In this paper by using Hirota’s method, the one and two soliton solutions of nonlinear Schr¨odinger equation with self-consistent source are studied. We have shown the evolution of the one and two soliton solutions in detail by using graphics.

About the Authors

Anvar Reyimberganov, Cand. Sci. (Phys.–Math.), Assoc. Prof., Urgench State University, 14, Kh. Alimdjan str., Urgench, 220100, Republic of Uzbekistan, tel.:+9(9862)224-67-00, email: anvar@urdu.uz

Ilkham Rakhimov, PhD Student, Department of ”Applied mathematics and mathematic physics”, Urgench State University, 14, Kh. Alimdjan str., Urgench, 220100, Republic of Uzbekistan, tel.:+9(9862)224-67-00, email: ilham.rahimov.87@mail.ru

For citation

Reyimberganov A.A., Rakhimov I.D. The Soliton Solutions for the Nonlinear Schrodinger Equation with Self-consistent Sources. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 35, pp. 84-94. https://doi.org/10.26516/1997-7670.2021.36.84

Keywords

soliton solution, Schrödinger equation, nonlinear equations, Hirota’s method.

UDC
517.95
MSC
35Q51
DOI
https://doi.org/10.26516/1997-7670.2021.36.84
References
  1. Claude C., Latifi A., Leon J. Nonlinear resonant scattering and plasma instability: an integrable model. J. Math. Phys., 1991, vol. 32, pp. 3321-3330.
  2. Deng S.F., Chen D.Y., Zhang D.J. The Multisoliton solutions of the KP equation with self-consistent sources. J. Phys. Soc., 2003, vol. 72, pp. 2184-2192.
  3. Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett., 1971, vol. 27, pp. 1192-1194.
  4. Khasanov A.B., Reyimberganov A.A. About the finite density solution of the higher nonlinear Schrodinger equation with self-consistent source. Ufimsk. Mat. Zh., 2009, vol. 1, pp. 133-143.
  5. Leon J., Latifi A. Solution of an initial–boundary value problem for coupled nonlinear waves. J. Phys. A: Math. Gen., 1990, vol. 23, pp. 1385-1403.
  6. Lin R.L., Zeng Y.B., Ma W.X. Solving the KdV hierarchy with self-consistent sources by inverse scattering method. Physica A, 2001, vol. 291, pp. 287-298.
  7. Mel’nikov V.K. Capture and confinement of solitons in nonlinear integrable systems. Commun. Math. Phys., 1989, vol. 120, pp. 451-468.
  8. Mel’nikov V.K. Integration method of the Korteweg-de Vries equation with a selfconsistent source. Phys. Lett. A, 1988, vol. 133, pp. 493-496.
  9. Mel’nikov V.K. Integration of the nonlinear Schroedinger equation with a selfconsistent source.Commun. Math. Phys., 1991, vol. 137, pp. 359-381.
  10. Mel’nikov V. K. Integration of the nonlinear Schrodinger equation with a source. Inverse Problems, 1992, vol. 8, pp. 133-147.
  11. Urazboev G.U., Khasanov A.B. Integrating the Korteweg-de Vriese equation with a self-consistent source and ”steplike” initial data. Theor. Math. Phys., 2001, vol.129, pp. 1341-1356.
  12. Zeng Y.B, Ma W.X., Lin R. Integration of the soliton hierarchy with self-consistent sources. J. Math. Phys., 2000, vol. 41, pp. 5453-5489.
  13. Zeng Y.B., Ma W.X., Shao Y.J. Two binary Darboux transformations for the KdV hierarchy with self-consistent sources. J. Math. Phys., 2001, vol. 42, 2113-2128.
  14. Zhang D. J. The N-soliton solutions for the modified KdV equation with selfconsistent sources. J. Phys. Soc. Japan, 2002, vol. 71, pp. 2649-2656.
  15. Zhang D. J. The N-soliton solutions of some soliton equations with self-consistent sources. Chaos Solitons Fractals, 2003, vol. 18, pp. 31-43.
  16. Zhang D. J., Chen D. Y. The N-soliton solutions of the sine-Gordon equation with self-consistent sources. Physica A, 2003, vol. 321, pp. 467-481.

Full text (english)