«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2010. Vol. 4

A new spectrum of computable models

Author(s)
A. Gavryushkin
Abstract

In the paper we prove that there exist models A and B of an Ehrenfeucht theory such that A is elementary embeddable into B, B is elementary embeddable into A, model A has a computable presentation, model B has no computable presentation. This theorem together with the work [6] is the key result for the theorem describing computable models spectra of Ehrenfeucht theories.

Keywords
Ehrenfeucht theory, computable model, decidable model, prime model, homogeneous model
UDC
510.53+510.67
References

1. AshC. Computable structures and the hyperarithmetical hierarchy / C. Ash, J. Knight. – Elsevier, 2000. – 270 p.

2. ChangC.C. Model Theory / C. C. Chang, H. J. Keisler. – North Holland, 1990. – 350 p.

3. Gavryushkin A. Complexity of Ehrenfeucht models / A. Gavryushkin // Algebra and Logic. – 2006. – V. 45, No. 5. – P.289–295.

4. Gavryushkin A. Spectra of computable models for Ehrenfeucht theories / A. Gavryushkin // Algebra and Logic. – 2007. – V. 46, No. 3. – P. 149–157.

5. Gavryushkin A. On constructive models of theories with linear Rudin-Keisler ordering / A. Gavryushkin // Journal of Logic and Computation. – doi: 10.1093/logcom/exq043. – 2010.

6. Gavryushkin A. Computable limit models / A. Gavryushkin // Изв. Иркут. гос. ун-та. Сер.: Математика. – 2009. – Т. 2, №. 2. – С. 56–61.

7. Gavryushkin A. Computable models of Ehrenfeucht theories / A. Gavryushkin // submitted.

8. Goncharov S. S. Strong constructivizability of homogeneous models / S. S. Goncharov // Algebra and Logic. – 1973. – V.17, No.4. – P. 247–263.

9. Goncharov S. S. A totally transcendental decidable theory without constructivizable homogeneous models / S. S. Goncharov // Algebra and Logic– 1980. – V. 19, No. 2. – P. 85–93.

10. Harrington L. Recursively presented prime models / L. Harrington // Journal of Symbolic Logic. – 1974. – V. 39, No. 2. – P. 305–309.

11. Khisamiev N.G. Criterion for Constructivizability of a Direct Sum of Cyclic p-groups / N. G. Khisamiev // Izvestiya Akademii Nauk Kazakhskoi SSR. Seriya Fiziko-Matematicheskaya. – 1981. – V. 86, No. 1. – P. 51–55.

12. Khoussainov B. A computable @1-categorical structure whose theory computes true arithmetic / B. Khoussainov, A. Montalban// Journal of Symbolic Logic. – 2010. – V. 75, No. 2. – P. 728–740.

13. Khoussainov B. Computable Models of Theories with Few Models / B. Khoussainov, A. Nies, R. Shore// Notre Dame Journal of Formal Logic. – 1997. – V. 38, No. 2.– P. 165–178.

14. Millar,T. Homogeneous models and decidability / T. Millar // Pacific Journal of Mathematics. – 1980. – V. 91.– No. 2.

15. Morley M. Decidable Models / M. Morley // Israel Journal of Mathematics.– 1976. – No. 25. – P. 233–240.

16. Peretyat’kinM.G. On complete theories with a finite number of denumerable models / M.G. Peretyat’kin // Algebra and Logic. – 1973. – V.12, No.5. – P. 310–326.

17. SoareR. I. Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets / R. I. Soare. – Springer Verlag : Berlin-New York, 1987.

18. Sudoplatov S.V. Complete theories with finitely many countable models / S.V. Sudoplatov// Algebra and Logic. – 2004. – V. 43, No. 1. – P. 62–69.


Full text (russian)