«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2011. Vol. 3

I. Kazakov

Author(s)
A formalization of the Codd algebra operations in logic
Abstract

In this paper the problem of the interpretation of data bases as ontologies is investigated, in particular, a modeling of the Codd algebra operations via object theories. The problem of modeling the DB’s closed world within the open world of description logics is solved. It is shown that within object theories the Codd’s algebra can be defined. The results of the paper are also practically significant, because they offer a homogeneous and coherent method for manipulations with data bases as ontologies in logical knowledge bases.

Keywords
ontology, database, object theory, description logic, Libretto
UDC
518.517
References

1. Казаков И. А. Базы данных как онтологии / И. А. Казаков, А. В. Манцивода // Изв. Иркут. гос. ун-та. Сер. Математика. – 2011. – Т. 4, № 1. – С. 20–30.

2. Малых А. А. Объектно-ориентированная дескриптивная логика / А. А. Малых, А. В. Манцивода // Изв. Иркут. гос. ун-та. Сер. Математика. – 2011. – Т. 4, № 1. – С. 57–72.

3. Abiteboul S. Foundations of Databases / S. Abiteboul, R. B. Hull, V. Vianu. – Addison-Wesley, 1995. – 685 p.

4. Malykh A. A Query Language for Logic Architectures / A. Malykh, A. Mantsivoda // Proceedings of 7th International Conference «Perspectives of System Informatics». – Springer-Verlag Berlin Heidelberg, Lecture Notes in Computer Science 5947. – 2010. – P. 294–305.

5. Libretto: объектно-итерационный язык и система управления объектными базами знаний [Электронный ресурс]. – URL: http://ontobox.org.

6. Rosati R. On Combining Description Logic Ontologies and Nonrecursive Datalog Rules / R. Rosati // Lecture Notes in Computer Science. – 2008. – Vol. 341. Web Reasoning and Rule Systems. – P. 13–27.


Full text (russian)