«ИЗВЕСТИЯ ИРКУТСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА». СЕРИЯ «МАТЕМАТИКА»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

Список выпусков > Серия «Математика». 2022. Том 41

Существование и устойчивость решений одного класса стохастических дифференциальных уравнений в частных производных дробного порядка с шумом

Автор(ы)
Н. Бутераа1,2

1Университет Орана Ахмед Бен Белла, Оран, Алжир

2Высшая школа экономики, Оран, Алжир

Аннотация
В работе вводится дробный принцип Дюамеля и используется для установления ограниченности и устойчивости слабого решения исходного стохастического уравнения с дробными производными с начальными данными
Об авторах
Бутераа Н. Университет Орана Ахмед Бен Белла, Алжир, Оран, bouteraa-27@hotmail.fr
Ссылка для цитирования
Bouteraa N. Existence and Stability of Solutions for a Class of Stochastic Fractional Partial Differential Equation with a Noise // Известия Иркутского государственного университета. Серия Математика. 2022. Т. 41. C. 107– 120. https://doi.org/10.26516/1997-7670.2022.41.107
Ключевые слова
стохастическое дробное дифференциальное уравнение в частных производных, дробная производная, слабое решение, устойчивость
УДК
518.517
MSC
34A08, 34B10, 34B15
DOI
https://doi.org/10.26516/1997-7670.2022.41.107
Литература
  1. Bensoussan A., Temam R. Equations stochastiques du type Navier-Stokes. J. Functional Analysis, 1973, vol. 13, pp. 195–222.
  2. Biagini F., Hu Y., Oksendal B., Zhang T. Stochastic calculus for fractional Brownian motion and applications. Springer, 2008.
  3. Bouteraa N., Inc M., Akgul A. Stability analysis of time-fractional differential equations with initial data. Math. Meth. Appl. Sci., 2021, pp. 1–9.
  4. Bouteraa N., Inc M., Akinlar M.A., Almohsen B. Mild solutions of fractional PDE with noise. Math. Meth. Appl. Sci., 2021, pp. 1–15.
  5. Caraballo T., Liu K. Exponential stability of mild solutions of stochastic partial differential equations with delays. Stoch. Anal. Appl., 1993, vol. 17, pp. 743–763.
  6. Djourdem H., Bouteraa N. Mild solution for a stochastic partial differential equation with noise. WSEAS Transactions on Systems, 2020, vol. 19, pp. 246–256.
  7. De Carvalho-Neto P.M., Gabriela P. Mild solutions to the time fractional NavierStokes equations in R𝑛. J. Differential Equations, 2015, vol. 259, pp. 2948–2980.
  8. Govindan T.E. Stability of mild solutions of stochastic evolutions with variable decay. Stoch. Anal. Appl., 2003, vol. 21, pp. 1059–1077.
  9. Hormander L. The Analysis of Linear Partial Differential Operators. Berlin, Springer, 2005.
  10. Inc M., Bouteraa N., Akinlar M.A., Chu Y.M., Weber G. W., Almohsen B. New positive solutions of nonlinear elliptic PDEs. Applied Sciences, 2020, vol. 10, 4863.https://doi.org/10.3390/app10144863
  11. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam, Elsevier, 2006.
  12. Liu K. Stability of Infnite Dimensional Stochastic Differential Equations with Applications. London, Chapman Hall, CRC, 2006.
  13. Luo J. Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays. J. Math. Anal. Appl, 2008, vol. 342, no. 2, pp. 753–760.
  14. Mao X. Stochastic Differential Equations and Applications. Chichester, UK, Horwood Publishing Limited, 1997.
  15. Magin R.L. Fractional Calculus in Bioengineering. Begell House Publishers, 2006.
  16. Meerschaert M.M., Sikorskii A. Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics, Walter de Gruyter, Berlin/Boston, 2012, vol. 43.
  17. Metler R., Klafter J. The restaurant at the end of random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen., 2004, vol. 37, pp. 161–208.
  18. Rihan F.A., Alsakaji H.J., Rajivganthi C. Stochastic SIRC epidemic model with time delay for COVID-19. Adv. Differ. Equ., 2020, vol. 502.https://doi.org/10.1186/s13662-020-02964-8
  19. Podlubny I. Fractional Differential Equations. New York, Academic Press, 1993.
  20. Sakthivel R., Ren Y. Exponential stability of second-order stochastic evolution equations with Poisson jumps. Commun. Nonlinear Sci. Numer. Simul., 2012, vol. 17, pp. 4517–4523.
  21. Seemab A., Rehman M. A note on fractional Duhamel’s principle and its application to a class of fractional partial differential equations. Applied Mathematics Letters,2017, vol. 64, pp. 8–14.
  22. Vashik M.J., Fursikov A.V. Mathematical problems of statistical hydromechanics. Kluver Dordreech, 1980.
  23. Umarov S., Saydamatov E. A Fractional Analog of the Duhamel Principle. Fract. Calc. Appl. Anal, 2006, vol. 9, pp. 57–70.
  24. Umarov S. On fractional Duhamel’s principle and its applications. J. Differential Equations, 2012, vol. 252, pp. 5217–5234.
  25. Wen Y., Zhou X.F., Wang J. Stability and boundedness of solutions of the initial value problem for a class of time-fractional diffusion equations. Advances in Difference Equations, 2017, vol. 230. https://doi.org/10.1186/s13662-017-1271-6
  26. Yang D. m-Dissipativity for Kolmogorov operator of fractional Burgers equation with space-time white noise. Potential anal, 2016, vol. 44, pp. 215–227.
  27. Zou G., Wang B. Stochastic Burgers equation with fractional derivative driven by multiplicative noise. Comput. Math. Appl, 2017, vol. 74, iss. 12, pp. 3195–3208. https://doi.org/10.1016/j.camwa.2017.08.023

Полная версия (english)