«ИЗВЕСТИЯ ИРКУТСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА». СЕРИЯ «МАТЕМАТИКА»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

Список выпусков > Серия «Математика». 2019. Том 30

Контроль точности метода коллокаций Тейлора для задачи выравнивания нагрузки

Автор(ы)
С. Нойягдам, Д. Н. Сидоров, И. Р. Муфтахов, А. В. Жуков
Аннотация

Высокая степень проникновения возобновляемых источников энергии в сочетании с децентрализацией транспортных и тепловых нагрузок в будущих энергосистемах приведет к еще более сложному решению проблемы энергозатрат с учетом планирования аккумулирования энергии для эффективного выравнивания нагрузки. В статье рассматривается адаптивный подход к задаче выравнивания нагрузки с использованием интегральных динамических моделей Вольтерра. Задача формулируется как решение интегрального уравнения Вольтерра первого рода, которое решается с помощью численного метода коллокаций Тейлора, имеющего точность второго порядка и обладающего свойствами саморегуляции, что связано с доверительными уровнями системного спроса. Также применяется метод CESTAC для нахождения оптимальной аппроксимации, оптимальной погрешности и оптимального шага метода коллокаций. Данный адаптивный подход подходит для оптимизации накопления энергии в режиме реального времени. Эффективность предлагаемой методики продемонстрирована на едином рынке электроэнергии острова Ирландия.

Об авторах

Нойягдам Самад, PhD, доц., Иркутский национальный исследовательский технический университет, Российская Федерация, 664074, г. Иркутск, ул. Лермонтова, 83; Южно-Уральский Государственный Университет, Российская Федерация, 454080, г. Челябинск, Проспект Ленина, 76, e-mail: samadnoeiaghdam@gmail.com

Сидоров Денис Николаевич, д-р физ.-мат. наук, проф. РАН, Институт систем энергетики им. Л.А.Мелентьева СО РАН, Российская Федерация, 664033, г. Иркутск, ул. Лермонтова, д. 130, тел.: (3952)500-646 (код 258); Иркутский национальный исследовательский технический университет, Российская Федерация, 664074, г. Иркутск, ул. Лермонтова, 83; Иркутский государственный университет, Российская Федерация, 664003, г. Иркутск, ул. К. Маркса, 1, e-mail: contact.dns@gmail.com

Муфтахов Ильдар Ринатович, программист, Иркутский информационно-вычислительный центр ОАО РЖД, Российская Федерация, 664005, г. Иркутск, ул. Маяковского, 25; Институт систем энергетики им. Л. А. Мелентьева СО РАН, Российская Федерация, 664033, г. Иркутск, ул. Лермонтова, 130, e-mail: ildar_sm@mail.ru

Жуков Алексей Витальевич, младший научный сотрудник, Институт солнечно-земной физики СО РАН, Российская Федерация, 664033, Иркутская область, г. Иркутск, ул. Лермонтова, д. 126a; Институт систем энергетики им. Л. А. Мелентьева СО РАН, Российская Федерация, 664033, г. Иркутск, ул. Лермонтова, 130, e-mail: zhukovalex13@gmail.com

Ссылка для цитирования

Noeiaghdam S., Sidorov D.N., Muftahov I.R., Zhukov A.V. Control of Accuracy on Taylor-Collocation Method for Load Leveling Problem // Известия Иркутского государственного университета. Серия Математика. 2019. Т. 30. С. 59-72. https://doi.org/10.26516/1997-7670.2019.30.59

Ключевые слова
задача выравнивания нагрузки, метод коллокаций Тейлора, стохастическая арифметика, метод CESTAC
УДК
51-74
MSC
45D05, 65D30
DOI
https://doi.org/10.26516/1997-7670.2019.30.59
Литература
  1. Abbasbandy S., Fariborzi Araghi M.A. The use of the stochastic arithmetic to estimate the value of interpolation polynomial with optimal degree. Appl. Numer. Math., 2004, vol. 50, pp.279-290.
  2. Abbasbandy S., Fariborzi Araghi M.A. A stochastic scheme for solving definite integrals. Appl. Numer. Math., 2005, vol. 55, pp. 125-136.
  3. Chesneaux J.M. Study of the computing accuracy by using probabilistic approach. In: C. Ullrich (ed.) Contribution to Computer Arithmetic and Self-Validating Numerical Methods. IMACS, 1990, New Brunswick, NJ.
  4. Dag I., Canivar A., Sahin A. Taylor – Galerkin and Taylor-collocation methods for the numerical solutions of Burgers’ equation using B-splines. Communications in Nonlinear Science and Numerical Simulation, 2011, vol. 16 (7), pp. 2696-2708.
  5. Davies Penny J., Duncan Dugald B. Numerical approximation of first kind Volterra convolution integral equations with discontinuous kernels. Journal of Integral Equations and Applications, 2017, vol. 29 (1), pp. 41-73.
  6. Enesiz Y., Keskin Y., Kurnaz A. The solution of the Bagley–Torvik equation with the generalized Taylor collocation method. Journal of the Franklin Institute, 2010, vol. 347 (2), pp. 452-466.
  7. Fariborzi Araghi M.A., Noeiaghdam S. A novel technique based on the homotopy analysis method to solve the first kind Cauchy integral equations arising in the theory of airfoils. Journal of Interpolation and Approximation in Scientific Computing, 2016, vol. 1, pp. 1-13.
  8. Fariborzi Araghi M.A., Noeiaghdam S. Fibonacci-regularization method for solving Cauchy integral equations of the first kind. Ain Shams Eng J., 2017, vol. 8, pp. 363-369. https://doi.org/10.1016/j.asej.2015.08.018
    Jordan Journal of Mathematics and Statistics (JJMS), 2018, vol. 11(1), pp. 1-12.
  9. Fariborzi Araghi M.A., Noeiaghdam S. Dynamical control of computations using the Gauss-Laguerre integration rule by applying the CADNA library. Advances and Applications in Mathematical Sciences, 2016, vol. 16, pp. 1-18.
  10. Fariborzi Araghi M.A., Noeiaghdam S. A valid scheme to evaluate fuzzy definite integrals by applying the CADNA library. International Journal of Fuzzy System Applications, 2017, vol. 6, no. 4, pp. 1-20.
  11. Gokmen E., Isik O. Rasit, Sezer M. Taylor collocation approach for delayed Lotka–Volterra predator-prey system. Applied Mathematics and Computation, 2015, vol. 268, pp. 671-684.
  12. Gu Y., Xu J., Chen D.,Wang Z., Li Q. Overall review of peak shaving for coal-fired power units in China. Renewable and Sustainable Energy Reviews, 2016, vol. 54, pp. 723-731.
  13. Muftahov I., Tynda A., Sidorov D. Numeric Solution of Volterra Integral Equations of the First Kind with Discontinuous Kernels. Journal of Computational and Applied Mathematics, 2017, vol. 313, pp. 119-128.
  14. Muftahov I.R., Sidorov D.N. Solvability and numerical solutions of systems of nonlinear Volterra integral equations of the first kind with piecewise continuous kernels. Vestnik YuUrGU. Ser. Mat. Model. Progr., 2016, vol. 9, no. 1, pp. 130-136.
  15. Noeiaghdam S., Fariborzi Araghi M.A. Finding optimal step of fuzzy Newton-Cotes integration rules by using the CESTAC method. Journal of Fuzzy Set Valued Analysis, 2017, vol. 2, pp. 62-85.
  16. Noeiaghdam S., Fariborzi Araghi M.A., Abbasbandy S. Finding optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic. Numer Algor, 2019, vol. 81, no.1, pp. 237-267. https://doi.org/10.1007/s11075-018-0546-7
  17. Noeiaghdam S., Sidorov D., Sizikov V. Control of accuracy on Taylor-collocation method to solve the weakly regular Volterra integral equations of the first kind by using the CESTAC method. arXiv:1811.09802.
  18. Noeiaghdam S., Zarei E., Kelishami H. Barzegar. Homotopy analysis transform method for solving Abel’s integral equations of the first kind. Ain Shams Eng J., 2016, vol. 7, pp. 483-495.
  19. Pazouki S., Haghifam M.-R. Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty. International Journal of Electrical Power & Energy Systems, 2016, vol. 80, pp. 219-239.
  20. Sezer M., G¨ulsu M. Polynomial solution of the most general linear Fredholm–Volterra integrodifferential-difference equations by means of Taylor collocation method. Applied Mathematics and Computation, 2007, vol. 185, no. 1, pp. 646-657.
  21. Sidorov D.N. On Parametric Families of Solutions of Volterra Integral Equations of the First Kind with Piecewise Smooth Kernel. Differential Equations, 2013, vol. 49, no. 2, pp. 210–216.
  22. Sidorov D., Muftahov I., Tomin N., Karamov D., Panasetsky D., Dreglea A., Liu F. A dynamic analysis of energy storage with renewable and diesel generation using Volterra equations. IEEE Transactions on Industrial Informatics, 2019. https://doi.org/10.1109/TII.2019.2932453
  23. Sidorov N.A., Sidorov D.N. On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels. Mathematical Notes, 2014, vol. 96, no. 5, pp. 811-826.
  24. Sidorov D.N., Tynda A.N., Muftahov I.R. Numerical solution of Volterra integral equations of the first kind with piecewise continuous kernel. Vestnik YuUrGU. Ser. Mat. Model. Progr., 2014, vol. 7, no. 3, pp. 107-115.
  25. Sidorov D., Zhukov A., Foley A., Tynda A., Muftahov I., Panasetsky D., Li Y. Volterra models in load levelling problem. E3S Web of Conference, 2018, vol. 69, 01015, pp. 1-6. https://doi.org/10.1051/e3sconf/20186901015
  26. Sizikov V., Sidorov D. Generalized quadrature for solving singular integral equations of Abel type in application to infrared tomography. Appl. Numer. Math., 2016, vol. 106, pp. 69-78.
  27. Sizikov V.S., Smirnov A.V., Fedorov B.A. Numerical solution of the Abelian singular integral equation by the generalized quadrature method. Rus. Math. (Iz. VUZ), 2004, vol. 48, no. 8, pp. 59-66.
  28. Soares L., Medeiros M. Modeling and forecasting short-term electricity load: a comparison of methods with an application to Brazilian data. Int. J. Forecast, 2008, vol. 24, pp. 630-644.
  29. System Operator of Northern Ireland. Available at: http://www.soni.ltd.uk/Operations/sg/DS3 (date of access: 01.07.2016).
  30. Verlan A.F., Sizikov V.S. Integral Equations: Methods, Algorithms, Programs. Nauk. Dumka Publ., 1986.
  31. Vignes J. A stochastic arithmetic for reliable scientific computation. Math. Comput. Simulation, 1993, vol. 35, pp. 233-261.
  32. Zakeri B., Syri S. Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 2015, vol. 42, pp. 569-596.

Полная версия (english)