«ИЗВЕСТИЯ ИРКУТСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА». СЕРИЯ «МАТЕМАТИКА»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

Список выпусков > Серия «Математика». 2014. Том 7

Классификация и перечисление базисов клона всех гиперфункций ранга 2

Автор(ы)
А. С. Казимиров, В. И. Пантелеев, Л. В. Токарева
Аннотация

В теории дискретных функций одним из объектов исследования являются гиперфункции — функции, заданные на конечном множестве A и принимающие в качестве своих значений все непустые подмножества множества A. Для гиперфункций специальным образом определяется суперпозиция.
Множества, содержащие все функции-проекции и замкнутые относительно суперпозиции, называются клонами. Клон называется максимальным, если единственным клоном, его содержащим и не совпадающим с ним, является клон всех гиперфункций. Множество гиперфункций называется полным, если оно содержится только в клоне всех гиперфункций. Множество гиперфункций называется базисом, если оно является полным множеством, но при удалении хотя бы одной гиперфункции это свойство нарушается.
В работе рассматриваются гиперфункции на двухэлементном множестве. Известно (В. В. Тарасов), что для такого множества число максимальных клонов равно 9. Для рассматриваемых гиперфункций приведена классификация по принадлежности к максимальным клонам. По этой классификации множество всех гиперфункций разбивается на 119 классов эквивалентности. С использованием данного разбиения оцениваются мощности всех возможных базисов и подсчитывается число различных типов базисов одинаковой мощности. При этом два базиса считаются разными по типу, если хотя бы для одной гиперфункции некоторого базиса не найдется эквивалентной в другом базисе. Показано, что базисы имеют мощности от 1 до 7, для мощности 1 существует только один тип базиса, для мощности 2 существует 581 тип базиса, для мощности 3 — 19 299, для мощности 4 — 58 974, для мощности 5 — 27 857, для мощности 6 — 2316, и для мощности 7 — 35 различных типов базиса.

Ключевые слова
гиперклон, базис, гиперфункция, полное множество, суперпозиция, замкнутое множество, мультифункция
УДК
519.716
Литература

1. Тарасов В. В. Критерий полноты для не всюду определенных функций алгебры логики / В. В. Тарасов // Проблемы кибернетики. - М. : Наука, 1975. - Вып. 30. - С. 319-325.

2. Яблонский С. В. О суперпозициях функций алгебры логики / С. В. Яблонский // Мат. сб. - 1952. - Т. 30,№ 2(72), С. 329-348.

3. Krnic L. Types of bases in the algebra of logic / L. Krnic // Glasnik matematicko-fizicki i astronomski. Ser 2. - 1965. - Vol. 20. - P. 23-32.

4. Classification and basis enumerations in many-valued logics / M. Miyakawa, I. Stojmenovic, D. Lau, I. Rosenberg // Proc. 17th International Symposium on Multi-Valued logic. - Boston, 1987. - P. 151-160.

5. Classification and basis enumerations of the algebras for partial functions / M. Miyakawa, I. Stojmenovic, D. Lau, I. Rosenberg // Proc. 19th International Symposium on Multi-Valued logic. - Rostock, 1989. - P. 8-13.

6. Lau D. Classification and enumerations of bases in Pk (2)/ D.Lau,M. Miyakawa// Asian-European Journal of Mathematics. - 2008. - Vol. 01, N 02. - P. 255-282.

7. Stojmenovic I. Classification of Рэ and the enumeration of base of Рэ /I. Stojmenovic // Rev. of Res. 14, Fat. of Sci., Math. Ser., Novi Sad. - 1984. - P. 73-80.

8. Miyakawa M., Rosenberg I., Stojmenovic I. Classification of three-valued logical functions preserving 0 / Miyakawa M., Rosenberg I., StojmenovicI. //Discrete Applied Mathematics, 28 (1990) P. 231-249.


Полная версия (русская)