«ИЗВЕСТИЯ ИРКУТСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА». СЕРИЯ «МАТЕМАТИКА»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

Список выпусков > Серия «Математика». 2014. Том 8

Тождественность условий оптимальности управления упругими колебаниями для различных вспомогательных интерпретаций волновой задачи

Автор(ы)
Н. В. Курганова, Е. А. Лутковская, В. А. Терлецкий
Аннотация

Рассматривается задача оптимального управления, в которой управляемый процесс подчинен нелинейному волновому уравнению. Состояние процесса описывается решением волнового уравнения и его первыми частными производными по независимым переменным. Набор управляющих воздействий включает распределенное и граничные управления. Постановка задачи допускает произвольную комбинацию условий первого, второго и третьего рода на левой и правой границе области определения. Для исходной задачи оптимального управления строятся две эквивалентные ей вспомогательные задачи оптимального управления, отличающиеся друг от друга и от исходной задачи различными способами описания управляемого процесса. Первая эквивалентная задача фиксирует управляемый процесс с помощью гиперболической системы из четырех уравнений первого порядка. Вторая эквивалентная задача для описания управляемого процесса использует одно дифференциальное уравнение второго порядка и два дифференциальных уравнения первого порядка того же вида, что и в первой эквивалентной задаче. Необходимость перехода от исходного волнового уравнения к соответствующим эквивалентным системам требуется как для получения удобного понятия обобщенного решения, так и для построения необходимых условий оптимальности. Доказывается, что не смотря на различные с формальной точки зрения функции Понтрягина в соответствующих эквивалентных задачах оптимального управления, специфика решений сопряженных задач позволяет установить совпадение значений функций Понтрягина в области независимых переменных для одних и тех же управлений. Данное свойство обосновывает тождественность как вариационного, так и конечномерного принципов максимума, полученных на основе каждой из эквивалентных задач оптимального управления.

Ключевые слова
оптимальное управление, вариационный и конечномерный принцип максимума, волновое уравнение, сопряженная задача
УДК
517.977.56 MSC 49K20
Литература

1. Петровский И. Г. Лекции об уравнениях с частными производными / И. Г. Петровский – М. : Наука, 1961. – 401 с.

2. Рождественский Б. Л. Системы квазилинейных уравнений и их приложения к газовой динамике / Б. Л. Рождественский, Н. А. Яненко. – М. : Наука, 1978. – 689 с.

3. Терлецкий В. А. Вариационный принцип максимума в задаче оптимального управления нелинейными волновыми процессами / В. А. Терлецкий, Е. А. Лутковская // Изв. Иркут. гос. ун-та. Сер. Математика. – 2010. – Т. 3, № 3. – С. 105–117.

4. Терлецкий В. А. Обобщенное решение нелинейного волнового уравнения с нелинейными граничными условиями первого, второго и третьего родов / В. А. Терлецкий, Е. А. Лутковская // Дифференц. уравнения. – 2009. – Т. 45, № 3. – C. 403-415.

5. Тихонов А. Н. Уравнения математической физики / А. Н. Тихонов, А. А. Самарский. – М. : Наука, 1977. – 742 с.


Полная версия (русская)