«ИЗВЕСТИЯ ИРКУТСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА». СЕРИЯ «МАТЕМАТИКА»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

Список выпусков > Серия «Математика». 2014. Том 8

Достаточные условия оптимальности в задачах управления на основе формул приращения функционала

Автор(ы)
В. А. Срочко, В. Г. Антоник, Е. В. Аксенюшкина
Аннотация

В работе рассматривается типичная задача оптимального управления для функционала с выпуклой терминальной функцией. Достаточные условия оптимальности получены на основе нестандартных формул приращения функционала, которые до сих пор использовались для построения численных методов последовательного улучшения допустимых управлений. Для каждой формулы вводится понятие сильно экстремального управления, которое доставляет максимум функции Понтрягина относительно некоторого множества траекторий. В линейных и квадратичных задачах сильно экстремальные управления являются оптимальными. В общем случае оптимальность обеспечивается дополнительным условием вогнутости функции Понтрягина по фазовым переменным. Приведены примеры эффективной реализации полученных соотношений.

Ключевые слова
задача оптимального управления принцип максимума достаточные условия оптимальности
УДК
517.97
Литература

1. Антипина Н. В. Линейные функции Ляпунова-Кротова и достаточные условия оптимальности в форме принципа максимума / Н. В. Антипина, В. А. Дыхта // Известия вузов. Математика. — 2002. — №12. — С. 11–22.

2. Габасов Р. Принцип максимума в теории оптимального управления / Р. Габасов, Ф. М. Кириллова. — М. : Книжный дом «Либроком», 2011. — 272 с.

3. Кларк Ф. Оптимизация и негладкий анализ / Ф. Кларк. — М. : Наука, 1988. — 280 с.

4. Кротов В. Ф. Методы и задачи оптимального управления / В. Ф. Кротов, В. И. Гурман. — М. : Наука, 1973. — 446 с.

5. Никольский М. С. О достаточности принципа максимума Понтрягина в некоторых оптимизационных задачах / М. С. Никольский // Вестник Моск. ун-та. Сер. 15. Вычислит. матем. и киберн. — 2005. — №1. — С. 35–43.

6. Понтрягин Л. С. Математическая теория оптимальных процессов / Л.С. Понтрягин, В. Г. Болтянский, Р. В. Гамкрелидзе, Е. Ф.Мищенко. — М. : Физматлит, 1961. — 388 с.

7. Срочко В. А. Итерационные методы решения задач оптимального управления / В. А. Срочко. — М. : Физматлит, 2000. — 160 с.

8. Срочко В. А., Ахмеджанова Н. С. Исследование и решение одного класса билинейных задач оптимального управления / В. А. Срочко, Н. С. Ахмеджанова // Вестник Бурят. ун-та. Сер. 13. Математика и информатика. — 2005. — Вып. 2. — С. 143–148.

9. Хайлов Е. Н. Об экстремальных управлениях однородной билинейной системы, управляемой в положительном октанте / Е. Н. Хайлов // ТрудыМИАН. — 1998. — Т. 220. — С. 217–235.

10. Mangasarian O. L. Sufficient conditions for the optimal control of nonlinear systems / O. L. Mangasarian // SIAM J. Control Optim. — 1966. — №4. — P. 139–152.11. Swierniak A. Cell cycle as an object of control / A. Swierniak // Journal of Biological Systems. — 1995. — Vol. 3. — №1. — P. 41–54.


Полная версия (русская)