«ИЗВЕСТИЯ ИРКУТСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА». СЕРИЯ «МАТЕМАТИКА»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

Список выпусков > Серия «Математика». 2014. Том 7

Некоторые применения языка логики второго порядка в универсальной алгебре

Автор(ы)
А. Г. Пинус
Аннотация

При рассмотрении проблематики универсальной алгебры как вопросов, связанных с заданным набором функций (сигнатурных), определенных на некотором множестве (основном множестве алгебры), естественен интерес к различным функциям, определенным на этом множестве и в том или ином смысле определимым через сигнатурные. Единственным ограничением при этом выступает естественное для универсальной алгебры (изучающей алгебры с точностью до изоморфизма) требование, чтобы подобные так или иначе определимые функции коммутировали с автоморфизмами исходной алгебры. К таковым заведомо относятся функции, в том или ином смысле определимые с помощью какого-либо логического языка: языка логики первого порядка либо языков логик с бесконечно длинными формулами, языка логики второго порядка и т. д. В работе рассмотрены вопросы, связанные с функциями и элементами определимыми на счетных универсальных алгебрах конечных сигнатур в языке логики второго порядка. На основе теоремы Марека о категоричности теорий счетных универсальных алгебр конечных сигнатур в языке логики второго порядка доказано, что в предположении теоретико-множественной аксиомы конструктивности для счетных универсальных алгебр конечной сигнатуры функции на основных их множествах, коммутирующие с их автоморфизмами. cуть функции точечно определимые на этих алгебрах в некотором естественном расширении языка логики второго порядка. Как следствие этого получаем некоторое описание эндоморфизмов (автоморфизмов) счетных универсальных алгебр конечных сигнатур, коммутирующих со всеми автоморфизмами этих алгебр. В качестве иного следствия получено описание элементов из Галуа-замыканий подалгебр счетных универсальных алгебр конечных сигнатур.

Ключевые слова
язык логики второго порядка, автоморфизмы универсальных алгебр
УДК
519.48
Литература

1. Пинус А. Г. Условные термы и их приложения в алгебре и теории вычислений / А. Г. Пинус // Успехи мат. наук. - 2001. - Т. 56, № 4. - С. 35-72.

2. Пинус А. Г. Рациональная эквивалентность алгебр, ее «клоновые» обобщения и «клоновая» категоричность / А. Г. Пинус // Сиб. мат. журн. - 2013. - Т. 54, № 3. - С. 673-688.

3. Пинус А. Г. Определимые функции универсальных алгебр и определимые эквивалентности алгебр / А. Г. Пинус//Алгебра и логика. - 2014. - Т.53, № 1.

4. Baldwin J. Definable second-order quantifiers / J. Baldwin // Model-Theoretic Logics. - New York-Berlin-Heidelberg-Tokio : Springer-Verlag, 1985. - P. 445-478.

5. Пинус А. Г. О классическом Галуа-замыкании на универсальных алгебрах / А. Г. Пинус // Изв. вузов. Математик. - 2014, № 2. - С.47-53.

6. Пинус А. Г. Точечно термально полные клоны функций и решетки решеток всех подалгебр алгебр с фиксированным основным множеством / А. Г. Пинус // Изв. Иркут. гос. ун-та. Сер. Математика. — 2012. - Т. 5, № 3. - С. 94-103.

7. Scott D. Logic with denumerable long formulas and finite strings of quantifiers / D. Scott // Theory of Models. - Amsterdam : North Holland P. Comp., 1965. - P. 329-341.

8. Marek W. Sur la constance d'une hypothese de Fraisse sur definesability dans un language du second order / W. Marek // C. R. Acad. Sci. Paris. Ser. A-B. - 1973. - Vol. 276. - P. 1147-1150, 1169-1172.


Полная версия (русская)