«ИЗВЕСТИЯ ИРКУТСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА». СЕРИЯ «МАТЕМАТИКА»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

Список выпусков > Серия «Математика». 2011. Том 2

Метод модифицированной функции Лагранжа для задач оптимального управления со свободным правым концом

Автор(ы)
А. С. Антипин
Аннотация

В статье рассмотрен метод для решения задач оптимального управления со свободным правым концом и линейной дифференциальной системой. Предлагаемый подход имеет аналог в выпуклом программировании, известный как метод модифицированный функции Лагранжа. Доказана сходимость метода в бесконечномерном функциональном пространстве. Эта сходимость обладает дополнительным свойством монотонности по норме пространства относительно управлений, траекторий и сопряженных функций.

Ключевые слова
оптимальное управление, функция Лагранжа, модифицированная функция Лагранжа, метод, сходимость
УДК
518.517
Литература

1. Антипин А. С. Равновесное программирование: проксимальные методы / А. С. Антипин // Журн. вычисл. математики и мат. физики. – 1997. – T. 37, № 11. – С. 1327–1339.

2. Антипин А. С. Равновесное программирование: методы градиентного типа / А. С. Антипин // Автоматика и телемеханика. – 1997. – № 8. – С. 1337–1347.

3. Антипин А. С. Экстрапроксимальный метод решения равновесных и игровых задач (со связанными переменными) / А. С. Антипин // Журн. вычисл. математики и мат. физики. – 2005. – T. 45, № 11. – С. 1974–1995.

4. Васильев О. В. Методы оптимизации в задачах и упражнениях / О. В. Васильев, А. В. Аргучинцев. – М. : ФИЗМАТЛИТ, 1999. – 208 с.

5. Васильев Ф. П. Методы оптимизации / Ф. П. Васильев. – М. : Факториал Пресс, 2002. – 824 с.

6. Гольштейн Е. Г. Модифицированные функции Лагранжа / Е. Г. Гольштейн, Н. В. Третьяков. – М. : Наука, 1989. – 400 с.

7. Колмогоров А. Н. Элементы теории функций и функционального анализа / А. Н. Колмогоров, С. В. Фомин. – М. : ФИЗМАТЛИТ, 2009. – 572 с.

8. Поляк Б. Т. Введение в оптимизацию / Б. Т. Поляк. – М. : Наука, 1983. – 384 с.

9. Срочко В. А. Итерационные методы решения задач оптимального управления / В. А. Срочко. – М. : ФИЗМАТЛИТ, 2000. – 160 с.


Полная версия (русская)