«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2017. Vol. 19

Dynamical Systems with Discontinuous Solutions and Problems with Unbounded Derivatives

Author(s)
B. M. Miller, E. Ya. Rubinovich
Abstract

V. I. Gurman suggested a description of discontinuous solutions in terms of systems with unbounded derivatives. The idea was in the usage of an auxiliary system of ordinary differential equations including the recession cone of the velocities set. It was useful for inclusion discontinuous functions into the set of admissible solutions, however, it became clear later that such a description is not only correct, but it gives also the unique in some sense representation of solutions which guaranties the existence of a solution for corresponding variational problems.

In this article, we describe the subsequent development of this methodology for variational problems where the solutions discontinuities appear naturally as a result of the impacts against the rigid surfaces. We give an illustration of the singular spatiotemporal transformation technique for problems of impact with friction. As an example, we consider a system with the Painlev´e paradox, namely, a mathematical formalization of oblique impact, where the contact law is described by a viscous-elastic Kelvin–Voigt model, and the contact termination is defined as a moment when the supporting force vanishes.

Keywords
expansion of the solutions set, unbounded derivatives, singular spatiotemporal transformations, mechanical impacts
UDC
517.977.5

MSC

93C10, 93C23, 49J30

DOI

https://doi.org/10.26516/1997-7670.2017.19.136

References

1. Warga J. Optimal Control of Differential and Functional Equations. Academic Press, N. Y., London, 1972.

2. Gurman V.I. Optimal Processes with Unbounded Derivatives. Autom. Remote Control, 1972, vol. 33, no 12, pp. 1924-1930.

3. Dykhta V. A., Samsonyuk O. N. Optimal’noe impul’snoe upravlenie s prilozheniyami [Optimal Impulsive Control with Applications]. Moscow, Fizmatlit, 2000. 256 p. (in Russian)

4. Zavalishchin S. T., Sesekin A. N. Impul’snye processy: modeli i prilozhenija [Impulse Processes: Models and Applications]. Moscow, Nauka, 1991. (in Russian)

5. Miller B. M. Method of Discontinuous Time Change in Problems of Control of Impulse and Discrete-Continuous Systems. Autom. Remote Control, 1993, vol. 54, no 12, part 1, pp. 1727-1750.

6. Miller B. M. Controlled Systems with Impact Interactions. J. Math. Sci. (N. Y.), 2014, vol. 199, no 5, pp. 571-582.

7. Miller B. M., Rubinovich E. Ya. Discontinuous Solutions in the Optimal Control Problems and Their Representation by Singular Space-time Transformations. Autom. Remote Control, 2013, vol. 74, no 12, pp. 1969-2006.

8. Miller B. M., Rubinovich E. Ya. Optimizatsiya dinamicheskikh sistem s impul’snymi upravleniyami [Optimization of Dynamic Systems with Impulsive Controls]. Moscow, Nauka, 2005. 429p. (in Russian)

9. Miller B. M., Rubinovich E. Ya., Bentsman J. Singular Space-time Transformation. Toward One Method for Solving Painleve Problem. Journal of Mathematical Sciences, 2016, vol. 219, no 2, pp. 208-219.

10. Painlev´e P. Le¸cons sur le Frottement. Hermann, Paris, 1895.

11. Bentsman J., Miller B. Dynamical Systems with Active Singularities of Elastic Type: A Modeling and Controller Synthesis Framework. IEEE Trans. Autom. Control, 2007, vol. 52, no 1, pp. 39-55.

12. G´enot F., Brogliato B. New Results on Painlev´e Paradoxes. Eur. J. Mech. A/Solids, 1999, vol. 18, no 18, pp. 653-678.

13. Paoli L., Schatzman M. Mouvement `a un nombre fini de degr´es de libert´e avec contraintes unilat´erales: cas avec perte d’´energie. Mathematical Modelling and Numerical Analysis, 1993, vol. 27, pp. 673-717.

14. Pfeifer F., Glocker C. Multi-Body Dynamics with Unilateral Constraints. Wiley. New-York, 1996.

15. Schatzman M. Penalty Approximation of Painlev´e Problem. In: Nonsmooth Mechanics and Analysis. Adv. Mech. Math., 2006, vol. 12. Springer, New York, pp. 129-143.

16. Stewart D. E. Convergence of a Time-Stepping Scheme for Rigid-Body Dynamics and Resolution of Painleve’s Problem. Arch. Rational Mech. Anal., 1998, vol. 145, pp. 215-260.

17. Stewart D. E. Rigid-Body Dynamics with Friction and Impact. SIAM Review, 2000, vol. 42, no 1, pp. 3-39.

18. Stronge W. J. Rigid Body Collisions with Friction. Proc. Roy. Soc. London, 1990, ser. A, vol. 431, pp. 168–181.

19. Warga, J. Variational Problems with Unbounded Controls. J. Soc. Indust. Appl. Math. Ser. A Control, 1965, vol. 3, pp. 424-438.

20. Zavalishchin, S. T., Sesekin, A. N. Dynamic Impulse Systems. Theory and Applications. Kluwer Academic Publishers Group, Dordrecht, 1997.

21. Z. Zhao ea., The Painlev´e Paradox Studied at a 3D Slender Rod. Multibody Syst. Dyn., 2008, vol. 19, pp. 323-343.


Full text (russian)