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Closures and generating sets
related to combinations of structures *

S. V. Sudoplatov

Sobolev Institute of Mathematics, Novosibirsk State Technical University, Novosibirsk
State University, Institute of Mathematics and Mathematical Modeling

Abstract. We investigate closure operators and describe their properties for E-com-
binations and P-combinations of structures and their theories including the negation
of finite character and the exchange property. It is shown that closure operators for
FE-combinations correspond to the closures with respect to the ultraproduct operator
forming Hausdorff topological spaces. It is also shown that closure operators for disjoint
P-combinations form topological Ty-spaces, which can be not Hausdorff. Thus topologies
for E-combinations and P-combinations are rather different. We prove, for E-combi-
nations, that the existence of a minimal generating set of theories is equivalent to the
existence of the least generating set, and characterize syntactically and semantically the
property of the existence of the least generating set: it is shown that elements of the least
generating set are isolated and dense in its E-closure.

Related properties for P-combinations are considered: it is proved that again the
existence of a minimal generating set of theories is equivalent to the existence of the least
generating set but it is not equivalent to the isolation of elements in the generating set.
It is shown that P-closures with the least generating sets are connected with families
which are not w-reconstructible, as well as with families having finite e-spectra.

Two questions on the least generating sets for E-combinations and P-combinations
are formulated and partial answers are suggested.

Keywords: E-combination, P-combination, closure operator, generating set.

1. Introduction and preliminaries

Topological aspects related to model theoretic problems are investigated
in a series of papers [1; 7; 8; 9; 10; 13; 14]. At present paper we study

* The research is partially supported by the Grants Council (under RF President) for
State Aid of Leading Scientific Schools (Grant NSh-6848.2016.1) and by Committee of
Science in Education and Science Ministry of the Republic of Kazakhstan (Grant No.
0830/GF4).
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structural properties of E-combinations and P-combinations of structures
and their theories [15] from the topological viewpoint.

In Section 2, using the E-operators and P-operators we introduce topolo-
gies (related to topologies in [1]) and investigate their properties.

In Section 3, we prove, for E-combinations, that the existence of a
minimal generating set of theories is equivalent to the existence of the
least generating set, and characterize syntactically and semantically the
property of the existence of the least generating set. Related properties for
P-combinations are considered.

Throughout the paper we use the following terminology in [15].

Definition 1. Let P = (P;);c1, be a family of nonempty unary predicates,
(A;)ier be a family of structures such that P; is the universe of A;, i € I,
and the symbols P; are disjoint with languages for the structures A;, j € I.
The structure Ap = |J A; expanded by the predicates P; is the P-union
el

of the structures 4;, and the operator mapping (A;);e;r to Ap is the P-
operator. The structure Ap is called the P-combination of the structures
A; and denoted by Combp(A;)icr if A = (Ap | A;) | X(A4;), i € 1.
Structures A’, which are elementary equivalent to Combp(A;);cr, will be
also considered as P-combinations.

Clearly, all structures A’ = Combp(A;);ecr are represented as unions of
their restrictions A; = (A" | B;) | X(A;) if and only if the set poo(z) =
{=Pi(x) | i € I} is inconsistent. If A" # Combp(A})icr, we write A" =
Combp(Aj)ierufoc}, where AL = A" | [ P;, maybe applying Morleyza-

el
tion. Moreover, we write Combp(A;)iciufooy for Combp(A;)ies with the
empty structure Ax.

Note that if all predicates P; are disjoint, a structure Ap is a P-combi-
nation and a disjoint union of structures 4;. In this case the P-combination
Ap is called disjoint. Clearly, for any disjoint P-combination Ap, Th(Ap) =
Th(A%), where A’ is obtained from Ap replacing A; by pairwise disjoint
Al = A;, i € I. Thus, in this case, similar to structures the P-operator
works for the theories T; = Th(A;) producing the theory Tp = Th(Ap),
which is denoted by Combp(T;)icr.

Definition 2. For an equivalence relation E replacing disjoint predicates
P; by E-classes we get the structure Ag being the E-union of the structures
A;. In this case the operator mapping (A;);cs to Ag is the E-operator. The
structure Ag is also called the E-combination of the structures A; and
denoted by Combpg(A;)icr; here A; = (Ag | A4;) | 2(A;), i € I. Similar
above, structures A’, which are elementary equivalent to Ag, are denoted
by Combp(A’);jes, where A} are restrictions of A’ to its E-classes.

Clearly, A" = Ap realizing p(r) is not elementary embeddable into
Ap and can not be represented as a disjoint P-combination of A, = A;,
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i € I. At the same time, there are F-combinations such that all A" =
Ap can be represented as E-combinations of some .A; = A;. We call this
representability of A’ to be the E-representability.

Definition 3. If there is A’ = Ag which is not E-representable, we have
the E’-representability replacing E by E’ such that E’ is obtained from
FE adding equivalence classes with models for all theories T', where T is a
theory of a restriction B of a structure A’ = Ag to some E-class and B is
not elementary equivalent to the structures .A;. The resulting structure Apg/
(with the E’-representability) is a e-completion, or a e-saturation, of Ag.
The structure Ag itself is called e-complete, or e-saturated, or e-universal,
or e-largest.

Definition 4. For a structure Ag the number of new structures with
respect to the structures A;, i. e., of the structures B which are pairwise
elementary non-equivalent and elementary non-equivalent to the structures
A;, is called the e-spectrum of Agr and denoted by e-Sp(Ag). The value
sup{e-Sp(A’)) | A" = Ag} is called the e-spectrum of the theory Th(Ag)
and denoted by e-Sp(Th(Ag)).

Definition 5. If Ag does not have E-classes A;, which can be removed,
with all E-classes A; = A;, preserving the theory Th(Ag), then Ag is
called e-prime, or e-minimal.

For a structure A" = Ap we denote by TH(A’) the set of all theories
Th(A;) of E-classes A; in A'.

By the definition, an e-minimal structure A’ consists of E-classes with
a minimal set TH(A’). If TH(A’) is the least for models of Th(A’) then A’
is called e-least.

2. Closure operators

Definition 6. Let 7 be the class of all complete elementary theories of
relational languages. For a set 7 C T we denote by Clg(T) the set of
all theories Th(A), where A is a structure of some FE-class in A" = Ag,
Ap = Combg(A;)icr, Th(A;) € T. As usual, if T = Clg(T) then T is said
to be E-closed.

By the definition,
Clp(T) = TH(AR), (2.1)

where A%, is an e-largest model of Th(Ag), Ag consists of E-classes
representing models of all theories in 7.
Note that the equality (2.1) does not depend on the choice of e-largest

model of Th(Ag).
The following proposition is obvious.
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Proposition 1. (1) If To, T1 are sets of theories, To € Ti C T, then
To € Clg(To) € Clg(Th).

(2) For any set T C T, T C Clg(T) if and only if the structure composed
by E-classes of models of theories in T is not e-largest.

(3) Every finite set T C T is E-closed.

(4) (Negation of finite character) For any T € Clg(T)\ T there are no
finite To C T such that T € Clg(Ty).

(5) Any intersection of E-closed sets is E-closed.

For a set 7 C T of theories in a language ¥ and for a sentence ¢ with
Y(p) € X we denote by T, the set {T' € T | ¢ € T}. Denote by Tr the
family of all sets 7.

Clearly, the partially ordered set (7r; C) forms a Boolean algebra with
the least element & = T_(;~,), the greatest element T = T(;~s), and
operations A, V, = satisfying the following equalities: T, A Ty = T(ony),
ToV T = Tigwir To = Tog.

By the definition, 7, C 7y, if and only if for any model M of a theory
in T satisfying ¢ we have M |= 1.

Proposition 2. If T C T is an infinite set and T € T\T then T € Clg(T)
(i.e., T is an accumulation point for T with respect to E-closure Clg) if
and only if for any formula ¢ € T the set T, is infinite.

Proof. Assume that there is a formula ¢ € T such that only finitely many
theories in T, say 11, . . ., Ty, satisfy ¢. Since T ¢ T then there is ¢ € T such
that ¢ ¢ ThU...UT,. Then (pAv) € T does not belong to all theories in 7.
Since (¢ A1) does not satisfy E-classes in models of Ty = Combg(T;);cr,
where T = {T; | i € I}, we have T ¢ Clg(T).

If for any formula ¢ € T, T, is infinite then {¢¥ | ¢ € T}UTE (where ¥
are E-relativizations of the formulas ) is locally satisfied and so satisfied.
Since T is a complete theory then {¢ | ¢ € T} C Tr and hence T €
Clg(T). O

Proposition 2 shows that the closure Clg corresponds to the closure with
respect to the ultraproduct operator [2; 3; 4; 6].

Theorem 1. For any sets To, T1 C T, Clg(ToUT1) = Clg(To) U Clg(T7).

Proof. We have Clg(7p) U Clg(T1) € Clg(To U T1) by Proposition 1 (1).
Let T € Clg(ToUT1) and we argue to show that T' € Clg (7o) U Clg(T7).
Without loss of generality we assume that 7' ¢ To U 71 and by Proposi-
tion 1, (3), 7o U 71 is infinite. Define a function f: ' — P({0,1}) by the
following rule: f(¢p) is the set of indexes k € {0,1} such that ¢ belongs

M3zBectus VpKyTCKOro rocy1apCTBEHHOIO YHUBEPCHUTETA.
2016. T. 16. Cepusa «Maremarurkas. C. 131-144



CLOSURES AND GENERATING SETS 135

to infinitely many theories in 7. Note that f(y) is always nonempty since
by Proposition 2, ¢ belong to infinitely many theories in 7o U 77 and so to
infinitely many theories in 7y or to infinitely many theories in 7;. Again
by Proposition 2 we have to prove that 0 € f(p) for each formula ¢ € T
or 1 € f(p) for each formula ¢ € T. Assuming on contrary, there are
formulas ¢, € T such that f(¢) = {0} and f(¢p) = {1}. Since (pAp) € T
and f(¢ A1) is nonempty we have 0 € f(o A) or 1 € f(p A). In the
first case, since Tony C Ty we get 0 € f(¢). In the second case, since
Tony € T, we get 1 € f(p). Both cases contradict the assumption. Thus,
T e CIE(']B) U CIE('Tl) |

Corollary 1. (Exchange property) If T1 € Clg(T U{T2}) \ Clg(T) then
Ty € Clg(T U{T1}).

Proof. Since Ty € Clg(T U{T>}) = Clg(T) U {T»} by Proposition 1, (3)
and Theorem 1, and T ¢ Clg(T), then T} = T and Ty € Clg(T U {T1})
in view of Proposition 1, (1). O

Definition 7. [5]. A topological space is a pair (X, O) consisting of a set
X and a family O of open subsets of X satisfying the following conditions:
(01) @ € O and X € O;
(02) If Uy € O and U, € O then Uy NU; € O;
(03) If O’ C O then UO' € O.

Definition 8. [5]. A topological space (X, ) is a Ty-space if for any pair
of distinct elements x1,z2 € X there is an open set U € O containing
exactly one of these elements.

Definition 9. [5]. A topological space (X, Q) is Hausdorff if for any pair
of distinct points x1,x9 € X there are open sets Uy,Us € O such that
x1 € Uy, x9 € Uy, and U1 NU; = @.

Let T C T beaset, Og(T) = {T\Clg(T") | T' € T}. Proposition 1 and
Theorem 1 imply that the axioms (01)—(03) are satisfied. Moreover, since
for any theory T' € T, Clg({T}) = {T} and hence, T \ Clg({T}) = T{T}
is an open set containing all theories in 7, which are not equal to 7', then
(T,0p(T)) is a Ty-space. Moreover, it is Hausdorff. Indeed, taking two
distinct theories 17,7 € T we have a formula ¢ such that ¢ € T7 and
-y € Ty. By Proposition 2 we have that 7, and 7-, are closed containing
Ty and T respectively; at the same time 7, and 7-, form a partition of T,
so T, and 7-, are disjoint open sets. Thus we have

Theorem 2. For any set T C T the pair (T,0p(T)) is a Hausdorff
topological space.

Similarly to the operator Clg(7) we define the operator Clp(7) for
families P of predicates P; as follows.
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Definition 10. For a set 7 C T we denote by Clp(T) the set of all
theories Th(A) such that Th(A) € T or A is a structure of type poo(z)
in A = Ap, where Ap = Combp(A;)icr and Th(A;) € T are pairwise
distinct. As above, if 7 = Clp(7) then T is said to be P-closed.

Using above only disjoint P-combinations Ap we get the closure CldP(T)
being a subset of Clp(T).

The following example illustrates the difference between Clp(7) and
CIL(T).

Example 1. Taking disjoint copies of predicates P; = {a € My | a < ¢;}
with their <-structures as in [15, Example 4.8], C1%(7)\ T produces models
of the Ehrenfeucht example and unboundedly many connected components
each of which is a copy of a model of the Ehrenfeucht example. At the same
time Clp(7T) produces two new structures: densely ordered structures with
and without the least element.

The following proposition is obvious.

Proposition 3. (1) If Ty, T1 are sets of theories, To € T1 C T, then
To € Clp(To) € Clp(Th).

(2) Bvery finite set T C T is P-closed.

(3) (Negation of finite character) For any T € Clp(T)\ T there are no
finite To C T such that T € Clp(Ty).

(4) Any intersection of P-closed sets is P-closed.

Remark 1. Note that an analogue of Proposition 2 for P-combinations
fails. Indeed, taking disjoint predicates P;, i € w, with 2i + 1 elements
and with structures A; of the empty language, we get, for the set T of
theories T; = Th(A;), that Clp(7T) consists of the theories whose models
have cardinalities witnessing all ordinals in w+1. Thus, for instance, theories
in 7 do not contain the formula

S, y((e ~ y) AVE((z 1) V (2 % ) (2.2)

whereas Clp(T) (which is equal to Cl4(T)) contains a theory with the
formula (2.2).

More generally, for C1%(7) with infinite 7", we have the following.

Since there are no links between distinct P;, the structures of poo(z) are
defined as disjoint unions of connected components C(a), for a realizing
Poo(x), where each C(a) consists of a set of realizations of p..-preserving
formulas ¥ (a,x) (i.e., of formulas p(a,z) with ¥ (a,z) b peo(x)). Similar
to Proposition 2 theories T, ¢(q) of C(a)-restrictions of A, coincide and
are characterized by the following property: T, c(q) € Clﬁlp(T) if and only
if Too.c(a) € T or for any formula ¢ € T, ¢(q), there are infinitely many
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theories T' in T such that ¢ satisfies all structures approximating C'(a)-
restrictions of models of T'.

Thus similarly to Theorem 1, Corollary 1, and Theorem 2 we get the
following three assertions for disjoint P-combinations.

Theorem 3. For any sets To, T C T, C1L(To U Tq) = C1%(To) U CI&(Th).

Corollary 2. (Exchange property) If Ty € C14(T U {T3}) \ CIL(T) then
Ty € Cl4(T U {Ty}).

Let T C T be aset, OL(T) = {T \CI&(T") | T C T}.

Theorem 4. For any set T C T the pair (T,0%(T)) is a topological
Ty-space.

Remark 2. By Proposition 3, (2), for any finite 7 the spaces (7T, Op(T))
and (T,0%(T)) are Hausdorff, moreover, here Op(T) = O%(T) consist-
ing of all subsets of 7. However, in general, the spaces (7,0p(7T)) and
(T,0%4(T)) are not Hausdorff.

Indeed, consider structures A;, i € I, where I = (w+1)\{0}, of the empty
language and such that |A;| = i. Let T; = Th(A;), i € I, T ={T; | i € I}.
Coding the theories T; by their indexes we have the following. For any
finite set F' C I, Clp(F) = CI%&(F) = F, and for any infinite set INF C I,
Clp(INF) = CI4(INF) = I. So any open set U is either cofinite or empty.
Thus any two nonempty open sets are not disjoint.

Remark 3. If the closure operator CIC;;T is obtained from Cldp permitting
repetitions of structures for predicates P;, we can lose both the property of
Ty-space and the identical closure for finite sets of theories. Indeed, for the
example in Remark 2, Cl;lf(’T) is equal to the Clif—closure of any singleton
{T} e CI%T(T) since the type poo(x) has arbitrarily many realizations pro-
ducing models for each element in 7. Thus there are only two possibilities
for open sets U: either U = @ or U =T.

Remark 4. Let Tg, be the class of all theories for finite structures. By
compactness, for a set T C Tgn, Clg(T) is a subset of Tg, if and only
if models of 7 have bounded cardinalities, whereas Clp(7T) is a subset of
Tan if and only if T is finite. Proposition 2 and its P-analogue allows to
describe both Clg(7) and Clp(T), in particular, the sets Clg(T) \ Tgan and
Clp(T) \ Tan- Clearly, there is a broad class of theories in 7 which do not
lay in
U cemu | %),

T CTin TCTéin

For instance, finitely axiomatizable theories with infinite models can not
be approximated by theories in 7g, in such way.
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Remark 5. Proposition 2 shows that if a set T has theories only with
models in an axiomatizable class K then theories in Clg(7) again have
models only in K. At the same time, by Remark 1, this assertion does not
hold for P-closures.

3. Generating subsets of E-closed sets

Definition 11. Let 7j be a closed set in a topological space (T, Og(T)).
A subset 7§ C 7Ty is said to be generating if To = Clg(77). The generating
set 7y (for To) is minimal if T; does not contain proper generating subsets.
A minimal generating set 7 is least if 7 is contained in each generating
set for To.

Remark 6. Each set 7y has a generating subset 7] with a cardinality
< max{|X|,w}, where ¥ is the union of the languages for the theories in 7.
Indeed, the theory T'= Th(Ag), whose E-classes are models for theories in
Clg(Tp), has a model M with |M| < max{|X|,w}. The E-classes of M are
models of theories in Clg(7p) and the set of these theories is the required
generating set.

Theorem 5. If 7] is a generating set for a E-closed set Ty then the
following conditions are equivalent:

(1) Ty is the least generating set for To;

(2) Ty is a minimal generating set for To;

(3) any theory in Ty is isolated by some set (Ty),, i.e., for any T € T
there is @ € T such that (Tq), = {T'};

(4) any theory in Ty is isolated by some set (To)y, i-e., for any T € T
there is p € T' such that (To), = {T'}.

Proof. (1) = (2) and (4) = (3) are obvious.

(2) = (1). Assume that 7 is minimal but not least. Then there is a
generating set 7’ such that 77\ 7y’ # @ and 7'\ Ty # @. Take T € T\ 7y’

We assert that T' € Clg(7§ \ {T'}), i.e., T is an accumulation point of
To\{T}. Indeed, since T)'\ Ty # @ and Ty’ C Clg(7]), then by Proposition
1, (3), 7y is infinite and by Proposition 2 it suffices to prove that for any
@ €T, (T) \ {T'}), is infinite. Assume on contrary that for some ¢ € T,
(To \{T'}), is finite. Then (7)), is finite and, moreover, as 7 is generating
for 7o, by Proposition 2, (7p), is finite, too. So (7y’), is finite and, again by
Proposition 2, T' does not belong to Clg(7;’) contradicting to Clg(7y") =
To-
Since T € Clg(Ty \ {T'}) and 7 is generating for 7y, then 77\ {T'} is
also generating for 7y contradicting the minimality of 7.

(2) = (3). If 7 is finite then by Proposition 1, (3), 75 = To. Since To
is finite then for any T € 7y there is a formula ¢ € T negating all theories
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in 7o\ {T'}. Therefore, (7o), = (73), is a singleton containing 7" and thus,
(7Tq), isolates T

Now let 77 be infinite. Assume that some 7' € 7 is not isolated by the
sets (7g),. It implies that for any ¢ € T, (7 \ {T'}), is infinite. Using
Proposition 2 we obtain T' € Clg (77 \ {T'}) contradicting the minimality of
T

(3) = (2). Assume that any theory 7" in 7 is isolated by some set (7).
By Proposition 2 it implies that T ¢ Clg(7; \ {T'}). Thus, 7 is a minimal
generating set for 7.

(3) = (4) is obvious for finite 7. If 7 is infinite and any theory T
in 7y is isolated by some set (7;), then T is isolated by the set (7).,
since otherwise using Proposition 2 and the property that 7 generates 7y,
there are infinitely many theories in 7; containing ¢ contradicting |(7),| =
1. U

The equivalences (2) < (3) < (4) in Theorem 5 were noticed by E.A. Pa-
lyutin.

Theorem 5 immediately implies

Corollary 3. For any structure Ag, Ag is e-minimal if and only if Ag
is e-least.

Definition 12. Let T be the theory Th(Ag), where Ap = Combg(A;)icr,
{Th(A;) | i € I} = To. We say that T has a minimal/least generating set if
Clg (7o) has a minimal/least generating set.

Since by Theorem 5 the notions of minimality and to be least coincide in
the context, below we shall consider least generating sets as well as e-least
structures in cases of minimal generating sets.

Proposition 4. For any closed nonempty set Ty in a topological space
(T,0g(T)) and for any T;  To, the following conditions are equivalent:

(1) Ty is the least generating set for To;

(2) any/some structure Ap = Combpg(A;)icr, where {Th(A;) |i eI} =
T4, is an e-least model of the theory Th(Ag) and E-classes of each/some
e-largest model of Th(Ag) form models of all theories in To;

(3) any/some structure Ap = Combpg(A;)icr, where {Th(A;) |i eI} =

0, Ai & Aj for i # j, is an e-least model of the theory Th(Ag), where
E-classes of Ag form models of the least set of theories and E-classes of
each/some e-largest model of Th(Ag) form models of all theories in Ty.

Proof. (1) = (2). Let 7 be the least generating set for 7j. Consider the
structure Agp = Combpg(A;)icr, where {Th(A4;) | i € I} = 7. Since T is
the least generating set for 7Ty, then Apg is an e-least model of the theory
Th(Ag). Moreover, by Proposition 2, E-classes of models of Th(Ag) form
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models of all theories in 7g. Thus, E-classes of Ag form models of the
least set 7 of theories such that E-classes of each/some e-largest model of
Th(Ag) form models of all theories in 7.

Similarly, constructing Ag with A; # A; for i # j, we obtain (1) = (3).

Since (3) is a particular case of (2), we have (2) = (3).

(3) = (1). Let Ap be an e-least model of the theory Th(Ag) and E-
classes of each/some e-largest model of Th(Ag) form models of all theories
in 7o. Then by the definition of Clg, 7 is the least generating set for 75. O

Note that any prime structure Ag (or a structure with finitely many
E-classes, or a prime structure extended by finitely many E-classes), is e-
minimal forming, by its E-classes, the least generating set 7 of theories
for the set Ty of theories corresponding to E-classes of e-largest Ay = Ag.
Indeed, if a set 7’ is generating for 7y then by Proposition 2 there is a
model M of T consisting of F-classes with the set of models such that
their theories form the set 7;". Since Ag prime (or with finitely many E-
classes, or a prime structure extended by finitely many FE-classes), then
Apg is elementary embeddable into M (respectively, has F-classes with
theories forming 77, or elementary embeddable to a restriction without
finitely many E-classes), then 77 C 77, and so 7 is the least generating
set for Ty. Thus, Proposition 4 implies

Corollary 4. Any theory Th(Ag) with a prime model M, or with a finite
set {Th(A;) | i € I}, or both with E-classes for M and A;, has the least
generating set.

Clearly, the converse for prime models does not hold, since finite sets 7Ty
are least generating whereas theories in Ty can be arbitrary, in particular,
without prime models. Again the converse for finite sets does not hold since
there are prime models with infinite 7. Finally the general converse is not
true since we can combine a theory T having a prime model with infinite
To and a theory T” with infinitely many FE-classes of disjoint languages and
without prime models for these classes. Denoting by 7 the set of theories
for these E-classes, we get the least infinite generating set 7o U 7y for the
combination of 7" and T”, which does not have a prime model.

Replacing E-combinations by P-combinations we obtain the notions of
(minimal/least) generating set for Clp(7p).

Example in Remark 2 shows that Corollary 4 does not hold even for
disjoint P-combinations. Indeed, take structures A;, i € (w + 1) \ {0}, in
the remark and the theories T; = Th(A;) forming the Cl%-closed set 7.
Since T is generated by any its infinite subset, we get that having prime
models of Th(Ap), the closure C1%(7) does not have minimal generating
sets.

For the example above, with the empty language, Cljﬁ’“ (T) is generated

by any singleton {T'} € Cl?f (T) since the type poo(z) has arbitrarily many
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realizations producing models for each T;, i € (w+ 1) \ {0}. Thus, each
element of Cljff (T) forms a minimal generating set.

Natural questions arise concerning minimal generating sets:

Question 1. What are characterizations for the existence of least generat-
ing sets?

Question 2. Is there exists a theory Th(Ag) (respectively Th(Ap)) without
the least generating set?

Remark 7. Obviously, for E-combinations, Question 1 has an answer
in terms of Proposition 2 (clarified in Theorem 5) taking the least, under
inclusion, set 77 generating the set Clg(7;). It means that 7; does not
have accumulation points inside 7§ (with respect to the sets (7g),), i.e.,
any element in 7 is isolated by some formula, whereas each element 7' in
Clg(Ty) \ Tg is an accumulation point of 7 (again with respect to (77),),
Le., 7y is dense in its E-closure.

A positive answer to Question 2 for Clp is obtained in Remark 2. More-
over, Theorem 5 does not hold with respect to the operator Cldp. Indeed, the
theories T} for the structures A;, i € (w -+ 1)\ {0}, form the Cl%-closed set
To. Clearly, the theories Tj;, for finite ¢, are isolated by formulas describing
cardinalities for A;, whereas Ty does not have minimal generating sets since
it is generated by a subset 7 if and only if 7 is infinite.

More generally, if A; consist of finitely many isomorphic definable equiv-
alence classes and the number of these classes in unbounded varying the
indexes i (taking, for instance, models of cubic theories [11; 12] with a fixed
finite diameter, or isomorphic trees with a fixed finite diameter), then, as
above, the P-closure Ty of the set of theories Th(.A4;) does not have minimal
generating sets.

Remark 7 shows that Theorem 5 fails for the operator C1%. At the same
time using approximations of C'(a)-restrictions of A in the arguments for
(2) = (1) in Theorem 5 we get

Theorem 6. If 7] is a generating set for a P-closed set Ty with respect
to the operator C1%, then the following conditions are equivalent:

(1) Ty is the least generating set for To,

(2) Ty is a minimal generating set for To.

Definition 13. An infinite P-closed family 7 of theories is called (P,w)-
reconstructible (respectively (P,d,w)-reconstructible) if T = Clp(Tg) (T =
C1%4 (7)) for any countable Ty C 7.

Since C1%(7g) C Clp(To) for any family 7o, each (P, d, w)-reconstructible
family is (P, w)-reconstructible.

By the definition, the families of theories in Remark 7 are (P,d,w)-
reconstructible and therefore (P,w)-reconstructible.
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Proposition 5. If a P-closed family T has a least generating set then T
is not (P,w)-reconstructible.

Proof. 1t suffices to note that if 7 is (P, w)-reconstructible then 7 has only
infinite generating sets 7y and for any T' € Ty, 7o \ {T'}, being infinite, is
generating for 7 as well. O

In contrast to Remark 7 we have

Proposition 6. If for a theory T = Th(Ap), e-Sp(T) is finite then the set
T of theories for substructures A; in A" = Ap with respect to the predicates
P; and to the type poo(x) has a least generating set.

Proof. If e-Sp(T) is finite then for any generating set 7o for 7 we have
|7\ To| < e-Sp(T'). Thus, removing at most e-Sp(7") theories in T we get a
minimal generating set for T being the least by Theorem 6. U

Propositions 5 and 6 imply

Corollary 5. If for a theory T = Th(Ap), e-Sp(T) is finite then the set
T of theories for substructures A; in A" = Ap with respect to the predicates
P; and to the type poo(x) is not (P,w)-reconstructible.
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C. B. CynomiaToB

3aMbIKaHUS 1 IIopoxgawiiue MHO>KeCTBa, CBdA3aHHbIEe C COBMe-
IHI€eHnsIMI CUCTEM

Awnnoranusi.  Vccaemyiorcst omepaTopbl 3aMbIKAHUST U OMHUCHIBAIOTCS UX CBOHCTBA
st E-coBmerniennit u P-cOBMeIIEHUT CUCTEM M WX TEOPUil, BKJOYas OTPUIAHUE KO-
HEYHOI'0 XapaKTepa W CBOMCTBO 3aMeHbI. 1lokazaHo, 4TO omepaTopbl 3aMBIKAHUS JIJIS
FE-coBMerieHnit COOTBETCTBYIOT 3aMBIKAHUIO OTHOCUTEJILHO OIEepaTopa yIbTPAIpPOU3Be-
JeHuit u 06pa3yoT Xaycaop@dOBhl TOMOJIOTHIECKHE TPOCTPAHCTBA. TaKKe MOKA3aHO, ITO
OIepaToOphbl 3aMbIKAHUS I JU3BIOHKTHBIX P-COBMEIEeHN 00pa3yioT TOIOJOTHIECKUe
To-TIpOCTPAHCTBA, KOTOPbIE MOTYT He OBITh XaycaopdoBbiMu. Takum 00pa30M, TOIOJIOTAN
s F-coBmemenunit u P-coBMeIieHnii CyIecTBeHHO pagdiandaiorcs. [lns F-coBMertennit
JOKa3aHO, YTO CYIIECTBOBAHNE MUHUMAJIBLHOIO TTOPOXKJAIOIIETN0 MHOXKECTBA TEOPUil SKBHU-
BAJIEHTHO CYIIIECTBOBAHWIO HAMMEHBIIIETO TOPOXKIAOINIEro MHOXKeCcTBa. Kpome Toro, cun-
TAKCUYIECKN M CEMaHTUYIECKU OXapPaKTEPU30BAHO CBOMCTBO CYIIECTBOBAHUSI HAMMEHBIIIETO
IMOPOXKIAIOIIET0 MHOXKECTBA: IMOKA3aHO, YTO 3JIEMEHThl HAMMEHBIIIErO ITOPOXKIAIOIIEr0
MHOXKECTBa M30JIMPOBAHBI U SIBJISIOTCS IIJIOTHBIMU B CBOeM F-3aMbIKaHUM.

Paccmorpensr mogobubie cBoiicTBa 7yist P-COBMeIIeHmit: TOKA3aHO, 9TO CHOBA CYIIle-
CTBOBaHHE MUHUMAJBHOI'O MOPOXKIAIOIIEI0 MHOXKECTBa TEOPUil SKBUBAJIEHTHO CYIIECTBO-
BAHUIO HAMMEHBIIIETO IMOPOXKIAIONIEr0 MHOYKECTBA, HO 9TO HE 3KBUBAJIEHTHO U30JIMPOBAH-
HOCTH 3JIEMEHTOB B TTOPOXK JaroieM MHoKecTBe. [lokazano, 4ro P-3aMbIKaHUSI C HAUMEHb-
MIUMU TTOPOXKJAIONIAMU MHOXKECTBAMHU CBdA3aHbI C CeMeficTBaMU, KOTOPbIE HE SIBJISTIOTCS
W-BOCCTAHOBUMBIMHU, & TAKXKE C CEMEMCTBAMU, UMEIOIIMMNA KOHEYHBIA e-CIIeKTP.

CdopMympoBaHbI JIBa BOIIPOCA O HAMMEHBIINX MTOPOXKIAIOIINX MHOXKeCTBaX Mt F-
coBmertennii u P-coBmernennii. IIpenoKeHbl YaCcTUIHBbIE OTBETHI HA 9TU BOIIPOCHI.
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KuaoueBbie cioBa: E-coBMmerieHue, P-coBMeleHne, OepaTop 3aMbIKaHUsI, TTIOPOXK-
JAIOIIEee MHOYXKECTBO.
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