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Abstract. We investigate closure operators and describe their properties for E-com-
binations and P -combinations of structures and their theories including the negation
of finite character and the exchange property. It is shown that closure operators for
E-combinations correspond to the closures with respect to the ultraproduct operator
forming Hausdorff topological spaces. It is also shown that closure operators for disjoint
P -combinations form topological T0-spaces, which can be not Hausdorff. Thus topologies
for E-combinations and P -combinations are rather different. We prove, for E-combi-
nations, that the existence of a minimal generating set of theories is equivalent to the
existence of the least generating set, and characterize syntactically and semantically the
property of the existence of the least generating set: it is shown that elements of the least
generating set are isolated and dense in its E-closure.

Related properties for P -combinations are considered: it is proved that again the
existence of a minimal generating set of theories is equivalent to the existence of the least
generating set but it is not equivalent to the isolation of elements in the generating set.
It is shown that P -closures with the least generating sets are connected with families
which are not ω-reconstructible, as well as with families having finite e-spectra.

Two questions on the least generating sets for E-combinations and P -combinations
are formulated and partial answers are suggested.

Keywords: E-combination, P -combination, closure operator, generating set.

1. Introduction and preliminaries

Topological aspects related to model theoretic problems are investigated
in a series of papers [1; 7; 8; 9; 10; 13; 14]. At present paper we study
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structural properties of E-combinations and P -combinations of structures
and their theories [15] from the topological viewpoint.

In Section 2, using the E-operators and P -operators we introduce topolo-
gies (related to topologies in [1]) and investigate their properties.

In Section 3, we prove, for E-combinations, that the existence of a
minimal generating set of theories is equivalent to the existence of the
least generating set, and characterize syntactically and semantically the
property of the existence of the least generating set. Related properties for
P -combinations are considered.

Throughout the paper we use the following terminology in [15].

Definition 1. Let P = (Pi)i∈I , be a family of nonempty unary predicates,
(Ai)i∈I be a family of structures such that Pi is the universe of Ai, i ∈ I,
and the symbols Pi are disjoint with languages for the structures Aj, j ∈ I.
The structure AP �

⋃
i∈I

Ai expanded by the predicates Pi is the P -union

of the structures Ai, and the operator mapping (Ai)i∈I to AP is the P -
operator. The structure AP is called the P -combination of the structures
Ai and denoted by CombP (Ai)i∈I if Ai = (AP � Ai) � Σ(Ai), i ∈ I.
Structures A′, which are elementary equivalent to CombP (Ai)i∈I , will be
also considered as P -combinations.

Clearly, all structures A′ ≡ CombP (Ai)i∈I are represented as unions of
their restrictions A′

i = (A′ � Pi) � Σ(Ai) if and only if the set p∞(x) =
{¬Pi(x) | i ∈ I} is inconsistent. If A′ 
= CombP (A′

i)i∈I , we write A′ =
CombP (A′

i)i∈I∪{∞}, where A′
∞ = A′ �

⋂
i∈I

Pi, maybe applying Morleyza-

tion. Moreover, we write CombP (Ai)i∈I∪{∞} for CombP (Ai)i∈I with the
empty structure A∞.

Note that if all predicates Pi are disjoint, a structure AP is a P -combi-
nation and a disjoint union of structures Ai. In this case the P -combination
AP is called disjoint. Clearly, for any disjoint P -combination AP , Th(AP ) =
Th(A′

P ), where A′
P is obtained from AP replacing Ai by pairwise disjoint

A′
i ≡ Ai, i ∈ I. Thus, in this case, similar to structures the P -operator

works for the theories Ti = Th(Ai) producing the theory TP = Th(AP ),
which is denoted by CombP (Ti)i∈I .

Definition 2. For an equivalence relation E replacing disjoint predicates
Pi by E-classes we get the structure AE being the E-union of the structures
Ai. In this case the operator mapping (Ai)i∈I to AE is the E-operator. The
structure AE is also called the E-combination of the structures Ai and
denoted by CombE(Ai)i∈I ; here Ai = (AE � Ai) � Σ(Ai), i ∈ I. Similar
above, structures A′, which are elementary equivalent to AE, are denoted
by CombE(A′

j)j∈J , where A′
j are restrictions of A′ to its E-classes.

Clearly, A′ ≡ AP realizing p∞(x) is not elementary embeddable into
AP and can not be represented as a disjoint P -combination of A′

i ≡ Ai,
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i ∈ I. At the same time, there are E-combinations such that all A′ ≡
AE can be represented as E-combinations of some A′

j ≡ Ai. We call this

representability of A′ to be the E-representability.

Definition 3. If there is A′ ≡ AE which is not E-representable, we have
the E′-representability replacing E by E′ such that E′ is obtained from
E adding equivalence classes with models for all theories T , where T is a
theory of a restriction B of a structure A′ ≡ AE to some E-class and B is
not elementary equivalent to the structures Ai. The resulting structure AE′

(with the E′-representability) is a e-completion, or a e-saturation, of AE.
The structure AE′ itself is called e-complete, or e-saturated, or e-universal,
or e-largest.

Definition 4. For a structure AE the number of new structures with
respect to the structures Ai, i. e., of the structures B which are pairwise
elementary non-equivalent and elementary non-equivalent to the structures
Ai, is called the e-spectrum of AE and denoted by e-Sp(AE). The value
sup{e-Sp(A′)) | A′ ≡ AE} is called the e-spectrum of the theory Th(AE)
and denoted by e-Sp(Th(AE)).

Definition 5. If AE does not have E-classes Ai, which can be removed,
with all E-classes Aj ≡ Ai, preserving the theory Th(AE), then AE is
called e-prime, or e-minimal.

For a structure A′ ≡ AE we denote by TH(A′) the set of all theories
Th(Ai) of E-classes Ai in A′.

By the definition, an e-minimal structure A′ consists of E-classes with
a minimal set TH(A′). If TH(A′) is the least for models of Th(A′) then A′

is called e-least.

2. Closure operators

Definition 6. Let T be the class of all complete elementary theories of
relational languages. For a set T ⊂ T we denote by ClE(T ) the set of
all theories Th(A), where A is a structure of some E-class in A′ ≡ AE,
AE = CombE(Ai)i∈I , Th(Ai) ∈ T . As usual, if T = ClE(T ) then T is said
to be E-closed.

By the definition,
ClE(T ) = TH(A′

E′), (2.1)

where A′
E′ is an e-largest model of Th(AE), AE consists of E-classes

representing models of all theories in T .
Note that the equality (2.1) does not depend on the choice of e-largest

model of Th(AE).
The following proposition is obvious.
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Proposition 1. (1) If T0, T1 are sets of theories, T0 ⊆ T1 ⊂ T , then
T0 ⊆ ClE(T0) ⊆ ClE(T1).

(2) For any set T ⊂ T , T ⊂ ClE(T ) if and only if the structure composed
by E-classes of models of theories in T is not e-largest.

(3) Every finite set T ⊂ T is E-closed.

(4) (Negation of finite character) For any T ∈ ClE(T ) \ T there are no
finite T0 ⊂ T such that T ∈ ClE(T0).

(5) Any intersection of E-closed sets is E-closed.

For a set T ⊂ T of theories in a language Σ and for a sentence ϕ with
Σ(ϕ) ⊆ Σ we denote by Tϕ the set {T ∈ T | ϕ ∈ T}. Denote by TF the
family of all sets Tϕ.

Clearly, the partially ordered set 〈TF ;⊆〉 forms a Boolean algebra with
the least element ∅ = T¬(x≈x), the greatest element T = T(x≈x), and
operations ∧, ∨, ¯ satisfying the following equalities: Tϕ ∧ Tψ = T(ϕ∧ψ),
Tϕ ∨ Tψ = T(ϕ∨ψ), Tϕ = T¬ϕ.

By the definition, Tϕ ⊆ Tψ if and only if for any model M of a theory
in T satisfying ϕ we have M |= ψ.

Proposition 2. If T ⊂ T is an infinite set and T ∈ T \T then T ∈ ClE(T )
(i.e., T is an accumulation point for T with respect to E-closure ClE) if
and only if for any formula ϕ ∈ T the set Tϕ is infinite.

Proof. Assume that there is a formula ϕ ∈ T such that only finitely many
theories in T , say T1, . . . , Tn, satisfy ϕ. Since T /∈ T then there is ψ ∈ T such
that ψ /∈ T1∪. . .∪Tn. Then (ϕ∧ψ) ∈ T does not belong to all theories in T .
Since (ϕ ∧ ψ) does not satisfy E-classes in models of TE = CombE(Ti)i∈I ,
where T = {Ti | i ∈ I}, we have T /∈ ClE(T ).

If for any formula ϕ ∈ T , Tϕ is infinite then {ϕE | ϕ ∈ T}∪TE (where ϕE

are E-relativizations of the formulas ϕ) is locally satisfied and so satisfied.
Since TE is a complete theory then {ϕE | ϕ ∈ T} ⊂ TE and hence T ∈
ClE(T ).

Proposition 2 shows that the closure ClE corresponds to the closure with
respect to the ultraproduct operator [2; 3; 4; 6].

Theorem 1. For any sets T0,T1 ⊂ T , ClE(T0 ∪ T1) = ClE(T0) ∪ClE(T1).

Proof. We have ClE(T0) ∪ ClE(T1) ⊆ ClE(T0 ∪ T1) by Proposition 1 (1).
Let T ∈ ClE(T0∪T1) and we argue to show that T ∈ ClE(T0)∪ClE(T1).

Without loss of generality we assume that T /∈ T0 ∪ T1 and by Proposi-
tion 1, (3), T0 ∪ T1 is infinite. Define a function f : T → P({0, 1}) by the
following rule: f(ϕ) is the set of indexes k ∈ {0, 1} such that ϕ belongs
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to infinitely many theories in Tk. Note that f(ϕ) is always nonempty since
by Proposition 2, ϕ belong to infinitely many theories in T0 ∪ T1 and so to
infinitely many theories in T0 or to infinitely many theories in T1. Again
by Proposition 2 we have to prove that 0 ∈ f(ϕ) for each formula ϕ ∈ T
or 1 ∈ f(ϕ) for each formula ϕ ∈ T . Assuming on contrary, there are
formulas ϕ,ψ ∈ T such that f(ϕ) = {0} and f(ψ) = {1}. Since (ϕ∧ψ) ∈ T
and f(ϕ ∧ ψ) is nonempty we have 0 ∈ f(ϕ ∧ ψ) or 1 ∈ f(ϕ ∧ ψ). In the
first case, since Tϕ∧ψ ⊆ Tψ we get 0 ∈ f(ψ). In the second case, since
Tϕ∧ψ ⊆ Tϕ we get 1 ∈ f(ϕ). Both cases contradict the assumption. Thus,
T ∈ ClE(T0) ∪ ClE(T1).

Corollary 1. (Exchange property) If T1 ∈ ClE(T ∪ {T2}) \ ClE(T ) then
T2 ∈ ClE(T ∪ {T1}).

Proof. Since T1 ∈ ClE(T ∪ {T2}) = ClE(T ) ∪ {T2} by Proposition 1, (3)
and Theorem 1, and T1 /∈ ClE(T ), then T1 = T2 and T2 ∈ ClE(T ∪ {T1})
in view of Proposition 1, (1).

Definition 7. [5]. A topological space is a pair (X,O) consisting of a set
X and a family O of open subsets of X satisfying the following conditions:

(O1) ∅ ∈ O and X ∈ O;
(O2) If U1 ∈ O and U2 ∈ O then U1 ∩ U2 ∈ O;
(O3) If O′ ⊆ O then ∪O′ ∈ O.

Definition 8. [5]. A topological space (X,O) is a T0-space if for any pair
of distinct elements x1, x2 ∈ X there is an open set U ∈ O containing
exactly one of these elements.

Definition 9. [5]. A topological space (X,O) is Hausdorff if for any pair
of distinct points x1, x2 ∈ X there are open sets U1, U2 ∈ O such that
x1 ∈ U1, x2 ∈ U2, and U1 ∩ U2 = ∅.

Let T ⊂ T be a set, OE(T ) = {T \ClE(T ′) | T ′ ⊆ T }. Proposition 1 and
Theorem 1 imply that the axioms (O1)–(O3) are satisfied. Moreover, since
for any theory T ∈ T , ClE({T}) = {T} and hence, T \ ClE({T}) = T {T}
is an open set containing all theories in T , which are not equal to T , then
(T ,OE(T )) is a T0-space. Moreover, it is Hausdorff. Indeed, taking two
distinct theories T1, T2 ∈ T we have a formula ϕ such that ϕ ∈ T1 and
¬ϕ ∈ T2. By Proposition 2 we have that Tϕ and T¬ϕ are closed containing
T1 and T2 respectively; at the same time Tϕ and T¬ϕ form a partition of T ,
so Tϕ and T¬ϕ are disjoint open sets. Thus we have

Theorem 2. For any set T ⊂ T the pair (T ,OE(T )) is a Hausdorff
topological space.

Similarly to the operator ClE(T ) we define the operator ClP (T ) for
families P of predicates Pi as follows.
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Definition 10. For a set T ⊂ T we denote by ClP (T ) the set of all
theories Th(A) such that Th(A) ∈ T or A is a structure of type p∞(x)
in A′ ≡ AP , where AP = CombP (Ai)i∈I and Th(Ai) ∈ T are pairwise
distinct. As above, if T = ClP (T ) then T is said to be P -closed.

Using above only disjoint P -combinations AP we get the closure CldP (T )
being a subset of ClP (T ).

The following example illustrates the difference between ClP (T ) and
CldP (T ).

Example 1. Taking disjoint copies of predicates Pi = {a ∈ M0 | a < ci}
with their <-structures as in [15, Example 4.8], CldP (T )\T produces models
of the Ehrenfeucht example and unboundedly many connected components
each of which is a copy of a model of the Ehrenfeucht example. At the same
time ClP (T ) produces two new structures: densely ordered structures with
and without the least element.

The following proposition is obvious.

Proposition 3. (1) If T0, T1 are sets of theories, T0 ⊆ T1 ⊂ T , then
T0 ⊆ ClP (T0) ⊆ ClP (T1).

(2) Every finite set T ⊂ T is P -closed.

(3) (Negation of finite character) For any T ∈ ClP (T ) \ T there are no
finite T0 ⊂ T such that T ∈ ClP (T0).

(4) Any intersection of P -closed sets is P -closed.

Remark 1. Note that an analogue of Proposition 2 for P -combinations
fails. Indeed, taking disjoint predicates Pi, i ∈ ω, with 2i + 1 elements
and with structures Ai of the empty language, we get, for the set T of
theories Ti = Th(Ai), that ClP (T ) consists of the theories whose models
have cardinalities witnessing all ordinals in ω+1. Thus, for instance, theories
in T do not contain the formula

∃x, y(¬(x ≈ y) ∧ ∀z((z ≈ x) ∨ (z ≈ y))) (2.2)

whereas ClP (T ) (which is equal to CldP (T )) contains a theory with the
formula (2.2).

More generally, for CldP (T ) with infinite T , we have the following.
Since there are no links between distinct Pi, the structures of p∞(x) are

defined as disjoint unions of connected components C(a), for a realizing
p∞(x), where each C(a) consists of a set of realizations of p∞-preserving
formulas ψ(a, x) (i.e., of formulas ϕ(a, x) with ψ(a, x) # p∞(x)). Similar
to Proposition 2 theories T∞,C(a) of C(a)-restrictions of A∞ coincide and

are characterized by the following property: T∞,C(a) ∈ CldP (T ) if and only
if T∞,C(a) ∈ T or for any formula ϕ ∈ T∞,C(a), there are infinitely many
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theories T in T such that ϕ satisfies all structures approximating C(a)-
restrictions of models of T .

Thus similarly to Theorem 1, Corollary 1, and Theorem 2 we get the
following three assertions for disjoint P -combinations.

Theorem 3. For any sets T0,T1 ⊂ T , CldP (T0 ∪ T1) = CldP (T0) ∪CldP (T1).

Corollary 2. (Exchange property) If T1 ∈ CldP (T ∪ {T2}) \ CldP (T ) then
T2 ∈ CldP (T ∪ {T1}).

Let T ⊂ T be a set, Od
P (T ) = {T \CldP (T ′) | T ′ ⊆ T }.

Theorem 4. For any set T ⊂ T the pair (T ,Od
P (T )) is a topological

T0-space.

Remark 2. By Proposition 3, (2), for any finite T the spaces (T ,OP (T ))
and (T ,Od

P (T )) are Hausdorff, moreover, here OP (T ) = Od
P (T ) consist-

ing of all subsets of T . However, in general, the spaces (T ,OP (T )) and
(T ,Od

P (T )) are not Hausdorff.
Indeed, consider structuresAi, i ∈ I, where I = (ω+1)\{0}, of the empty

language and such that |Ai| = i. Let Ti = Th(Ai), i ∈ I, T = {Ti | i ∈ I}.
Coding the theories Ti by their indexes we have the following. For any
finite set F ⊂ I, ClP (F ) = CldP (F ) = F , and for any infinite set INF ⊆ I,
ClP (INF) = CldP (INF) = I. So any open set U is either cofinite or empty.
Thus any two nonempty open sets are not disjoint.

Remark 3. If the closure operator Cld,rP is obtained from CldP permitting
repetitions of structures for predicates Pi, we can lose both the property of
T0-space and the identical closure for finite sets of theories. Indeed, for the

example in Remark 2, Cld,rP (T ) is equal to the Cld,rP -closure of any singleton

{T} ∈ Cld,rP (T ) since the type p∞(x) has arbitrarily many realizations pro-
ducing models for each element in T . Thus there are only two possibilities
for open sets U : either U = ∅ or U = T .

Remark 4. Let Tfin be the class of all theories for finite structures. By
compactness, for a set T ⊂ Tfin, ClE(T ) is a subset of Tfin if and only
if models of T have bounded cardinalities, whereas ClP (T ) is a subset of
Tfin if and only if T is finite. Proposition 2 and its P -analogue allows to
describe both ClE(T ) and ClP (T ), in particular, the sets ClE(T ) \ Tfin and
ClP (T ) \ Tfin. Clearly, there is a broad class of theories in T which do not
lay in ⋃

T ⊂Tfin

ClE(T ) ∪
⋃

T ⊂Tfin

CldP (T ).

For instance, finitely axiomatizable theories with infinite models can not
be approximated by theories in Tfin in such way.
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Remark 5. Proposition 2 shows that if a set T has theories only with
models in an axiomatizable class K then theories in ClE(T ) again have
models only in K. At the same time, by Remark 1, this assertion does not
hold for P -closures.

3. Generating subsets of E-closed sets

Definition 11. Let T0 be a closed set in a topological space (T ,OE(T )).
A subset T ′

0 ⊆ T0 is said to be generating if T0 = ClE(T ′
0 ). The generating

set T ′
0 (for T0) is minimal if T ′

0 does not contain proper generating subsets.
A minimal generating set T ′

0 is least if T ′
0 is contained in each generating

set for T0.

Remark 6. Each set T0 has a generating subset T ′
0 with a cardinality

≤ max{|Σ|, ω}, where Σ is the union of the languages for the theories in T0.
Indeed, the theory T = Th(AE), whose E-classes are models for theories in
ClE(T0), has a model M with |M | ≤ max{|Σ|, ω}. The E-classes of M are
models of theories in ClE(T0) and the set of these theories is the required
generating set.

Theorem 5. If T ′
0 is a generating set for a E-closed set T0 then the

following conditions are equivalent:
(1) T ′

0 is the least generating set for T0;
(2) T ′

0 is a minimal generating set for T0;
(3) any theory in T ′

0 is isolated by some set (T ′
0 )ϕ, i.e., for any T ∈ T ′

0

there is ϕ ∈ T such that (T ′
0 )ϕ = {T};

(4) any theory in T ′
0 is isolated by some set (T0)ϕ, i.e., for any T ∈ T ′

0
there is ϕ ∈ T such that (T0)ϕ = {T}.

Proof. (1)⇒ (2) and (4)⇒ (3) are obvious.
(2) ⇒ (1). Assume that T ′

0 is minimal but not least. Then there is a
generating set T ′′

0 such that T ′
0 \T ′′

0 
= ∅ and T ′′
0 \T ′

0 
= ∅. Take T ∈ T ′
0 \T ′′

0 .
We assert that T ∈ ClE(T ′

0 \ {T}), i.e., T is an accumulation point of
T ′
0 \{T}. Indeed, since T ′′

0 \T ′
0 
= ∅ and T ′′

0 ⊂ ClE(T ′
0 ), then by Proposition

1, (3), T ′
0 is infinite and by Proposition 2 it suffices to prove that for any

ϕ ∈ T , (T ′
0 \ {T})ϕ is infinite. Assume on contrary that for some ϕ ∈ T ,

(T ′
0 \{T})ϕ is finite. Then (T ′

0 )ϕ is finite and, moreover, as T ′
0 is generating

for T0, by Proposition 2, (T0)ϕ is finite, too. So (T ′′
0 )ϕ is finite and, again by

Proposition 2, T does not belong to ClE(T ′′
0 ) contradicting to ClE(T ′′

0 ) =
T0.

Since T ∈ ClE(T ′
0 \ {T}) and T ′

0 is generating for T0, then T ′
0 \ {T} is

also generating for T0 contradicting the minimality of T ′
0 .

(2) ⇒ (3). If T ′
0 is finite then by Proposition 1, (3), T ′

0 = T0. Since T0
is finite then for any T ∈ T0 there is a formula ϕ ∈ T negating all theories
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in T0 \ {T}. Therefore, (T0)ϕ = (T ′
0 )ϕ is a singleton containing T and thus,

(T ′
0 )ϕ isolates T .
Now let T ′

0 be infinite. Assume that some T ∈ T ′
0 is not isolated by the

sets (T ′
0 )ϕ. It implies that for any ϕ ∈ T , (T ′

0 \ {T})ϕ is infinite. Using
Proposition 2 we obtain T ∈ ClE(T ′

0 \{T}) contradicting the minimality of
T ′
0 .
(3) ⇒ (2). Assume that any theory T in T ′

0 is isolated by some set (T ′
0 )ϕ.

By Proposition 2 it implies that T /∈ ClE(T ′
0 \ {T}). Thus, T ′

0 is a minimal
generating set for T0.

(3) ⇒ (4) is obvious for finite T ′
0 . If T ′

0 is infinite and any theory T
in T ′

0 is isolated by some set (T ′
0 )ϕ then T is isolated by the set (T0)ϕ,

since otherwise using Proposition 2 and the property that T ′
0 generates T0,

there are infinitely many theories in T ′
0 containing ϕ contradicting |(T ′

0 )ϕ| =
1.

The equivalences (2) ⇔ (3)⇔ (4) in Theorem 5 were noticed by E.A. Pa-
lyutin.

Theorem 5 immediately implies

Corollary 3. For any structure AE, AE is e-minimal if and only if AE

is e-least.

Definition 12. Let T be the theory Th(AE), where AE = CombE(Ai)i∈I ,
{Th(Ai) | i ∈ I} = T0. We say that T has a minimal/least generating set if
ClE(T0) has a minimal/least generating set.

Since by Theorem 5 the notions of minimality and to be least coincide in
the context, below we shall consider least generating sets as well as e-least
structures in cases of minimal generating sets.

Proposition 4. For any closed nonempty set T0 in a topological space
(T ,OE(T )) and for any T ′

0 ⊆ T0, the following conditions are equivalent:
(1) T ′

0 is the least generating set for T0;
(2) any/some structure AE = CombE(Ai)i∈I , where {Th(Ai) | i ∈ I} =

T ′
0 , is an e-least model of the theory Th(AE) and E-classes of each/some
e-largest model of Th(AE) form models of all theories in T0;

(3) any/some structure AE = CombE(Ai)i∈I , where {Th(Ai) | i ∈ I} =
T ′
0 , Ai 
≡ Aj for i 
= j, is an e-least model of the theory Th(AE), where
E-classes of AE form models of the least set of theories and E-classes of
each/some e-largest model of Th(AE) form models of all theories in T0.

Proof. (1) ⇒ (2). Let T ′
0 be the least generating set for T0. Consider the

structure AE = CombE(Ai)i∈I , where {Th(Ai) | i ∈ I} = T ′
0 . Since T ′

0 is
the least generating set for T0, then AE is an e-least model of the theory
Th(AE). Moreover, by Proposition 2, E-classes of models of Th(AE) form
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models of all theories in T0. Thus, E-classes of AE form models of the
least set T ′

0 of theories such that E-classes of each/some e-largest model of
Th(AE) form models of all theories in T0.

Similarly, constructing AE with Ai 
≡ Aj for i 
= j, we obtain (1)⇒ (3).
Since (3) is a particular case of (2), we have (2) ⇒ (3).
(3) ⇒ (1). Let AE be an e-least model of the theory Th(AE) and E-

classes of each/some e-largest model of Th(AE) form models of all theories
in T0. Then by the definition of ClE , T ′

0 is the least generating set for T0.

Note that any prime structure AE (or a structure with finitely many
E-classes, or a prime structure extended by finitely many E-classes), is e-
minimal forming, by its E-classes, the least generating set T ′

0 of theories
for the set T0 of theories corresponding to E-classes of e-largest A′

E ≡ AE.
Indeed, if a set T ′′

0 is generating for T0 then by Proposition 2 there is a
model M of T consisting of E-classes with the set of models such that
their theories form the set T ′′

0 . Since AE prime (or with finitely many E-
classes, or a prime structure extended by finitely many E-classes), then
AE is elementary embeddable into M (respectively, has E-classes with
theories forming T ′′

0 , or elementary embeddable to a restriction without
finitely many E-classes), then T ′

0 ⊆ T ′′
0 , and so T ′

0 is the least generating
set for T0. Thus, Proposition 4 implies

Corollary 4. Any theory Th(AE) with a prime model M, or with a finite
set {Th(Ai) | i ∈ I}, or both with E-classes for M and Ai, has the least
generating set.

Clearly, the converse for prime models does not hold, since finite sets T0
are least generating whereas theories in T0 can be arbitrary, in particular,
without prime models. Again the converse for finite sets does not hold since
there are prime models with infinite T0. Finally the general converse is not
true since we can combine a theory T having a prime model with infinite
T0 and a theory T ′ with infinitely many E-classes of disjoint languages and
without prime models for these classes. Denoting by T ′

0 the set of theories
for these E-classes, we get the least infinite generating set T0 ∪ T ′

0 for the
combination of T and T ′, which does not have a prime model.

Replacing E-combinations by P -combinations we obtain the notions of
(minimal/least) generating set for ClP (T0).

Example in Remark 2 shows that Corollary 4 does not hold even for
disjoint P -combinations. Indeed, take structures Ai, i ∈ (ω + 1) \ {0}, in
the remark and the theories Ti = Th(Ai) forming the CldP -closed set T .
Since T is generated by any its infinite subset, we get that having prime
models of Th(AP ), the closure CldP (T ) does not have minimal generating
sets.

For the example above, with the empty language, Cld,rP (T ) is generated

by any singleton {T} ∈ Cld,rP (T ) since the type p∞(x) has arbitrarily many
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realizations producing models for each Ti, i ∈ (ω + 1) \ {0}. Thus, each
element of Cld,rP (T ) forms a minimal generating set.

Natural questions arise concerning minimal generating sets:

Question 1. What are characterizations for the existence of least generat-
ing sets?

Question 2. Is there exists a theory Th(AE) (respectively Th(AP )) without
the least generating set?

Remark 7. Obviously, for E-combinations, Question 1 has an answer
in terms of Proposition 2 (clarified in Theorem 5) taking the least, under
inclusion, set T ′

0 generating the set ClE(T ′
0 ). It means that T ′

0 does not
have accumulation points inside T ′

0 (with respect to the sets (T ′
0 )ϕ), i.e.,

any element in T ′
0 is isolated by some formula, whereas each element T in

ClE(T ′
0 ) \ T ′

0 is an accumulation point of T ′
0 (again with respect to (T ′

0 )ϕ),
i.e., T ′

0 is dense in its E-closure.
A positive answer to Question 2 for ClP is obtained in Remark 2. More-

over, Theorem 5 does not hold with respect to the operator CldP . Indeed, the
theories Ti for the structures Ai, i ∈ (ω + 1) \ {0}, form the CldP -closed set
T0. Clearly, the theories Ti, for finite i, are isolated by formulas describing
cardinalities for Ai, whereas T0 does not have minimal generating sets since
it is generated by a subset T ′

0 if and only if T ′
0 is infinite.

More generally, if Ai consist of finitely many isomorphic definable equiv-
alence classes and the number of these classes in unbounded varying the
indexes i (taking, for instance, models of cubic theories [11; 12] with a fixed
finite diameter, or isomorphic trees with a fixed finite diameter), then, as
above, the P -closure T0 of the set of theories Th(Ai) does not have minimal
generating sets.

Remark 7 shows that Theorem 5 fails for the operator CldP . At the same
time using approximations of C(a)-restrictions of A∞ in the arguments for
(2) ⇒ (1) in Theorem 5 we get

Theorem 6. If T ′
0 is a generating set for a P -closed set T0 with respect

to the operator CldP , then the following conditions are equivalent:
(1) T ′

0 is the least generating set for T0,
(2) T ′

0 is a minimal generating set for T0.
Definition 13. An infinite P -closed family T of theories is called (P, ω)-
reconstructible (respectively (P, d, ω)-reconstructible) if T = ClP (T0) (T =
CldP (T0)) for any countable T0 ⊆ T .

Since CldP (T0) ⊆ ClP (T0) for any family T0, each (P, d, ω)-reconstructible
family is (P, ω)-reconstructible.

By the definition, the families of theories in Remark 7 are (P, d, ω)-
reconstructible and therefore (P, ω)-reconstructible.
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Proposition 5. If a P -closed family T has a least generating set then T
is not (P, ω)-reconstructible.

Proof. It suffices to note that if T is (P, ω)-reconstructible then T has only
infinite generating sets T0 and for any T ∈ T0, T0 \ {T}, being infinite, is
generating for T as well.

In contrast to Remark 7 we have

Proposition 6. If for a theory T = Th(AP ), e-Sp(T ) is finite then the set
T of theories for substructures Ai in A′ ≡ AP with respect to the predicates
Pi and to the type p∞(x) has a least generating set.

Proof. If e-Sp(T ) is finite then for any generating set T0 for T we have
|T \ T0| ≤ e-Sp(T ). Thus, removing at most e-Sp(T ) theories in T we get a
minimal generating set for T being the least by Theorem 6.

Propositions 5 and 6 imply

Corollary 5. If for a theory T = Th(AP ), e-Sp(T ) is finite then the set
T of theories for substructures Ai in A′ ≡ AP with respect to the predicates
Pi and to the type p∞(x) is not (P, ω)-reconstructible.

References

1. Baldwin J. T. A topology for the space of countable models of a first order the-
ory / J. T. Baldwin, J. M. Plotkin // Zeitshrift Math. Logik and Grundlagen der
Math. — 1974. — Vol. 20, No. 8–12. — P. 173–178.

2. Bankston P. Ulptraproducts in topology / P. Bankston // General Topology and
its Applications. — 1977. — Vol. 7, No. 3. — P. 283–308.

3. Bankston P. A survey of ultraproduct constructions in general topology /
P. Bankston // Topology Atlas Invited Contributions. — 2003. — Vol. 8, No. 2. —
P. 1–32.

4. Chang C. C. Model theory / C. C. Chang, H. J. Keisler. — Amsterdam : Elsevier,
1990. — Studies in Logic and the Foundations of Mathematics. — Vol. 73. —
650 p.

5. Engelking R. General topology / R. Engelking. — Berlin : Heldermann Verlag,
1989. — 529 p.

6. Ershov Yu. L. Mathematical logic / Yu. L. Ershov, E. A. Palyutin. — Moscow :
FIZMATLIT, 2011. — 356 p.

7. Gismatullin J. On compactifications and the topological dynamics of definable
groups / J. Gismatullin, D. Penazzi, A. Pillay // Annals of Pure and Applied
Logic. — 2014. Vol. 165, No. 2. — P. 552–562.
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С. В. Судоплатов
Замыкания и порождающие множества, связанные с совме-

щениями систем

Аннотация. Исследуются операторы замыкания и описываются их свойства
для E-совмещений и P -совмещений систем и их теорий, включая отрицание ко-
нечного характера и свойство замены. Показано, что операторы замыкания для
E-совмещений соответствуют замыканию относительно оператора ультрапроизве-
дений и образуют хаусдорфовы топологические пространства. Также показано, что
операторы замыкания для дизъюнктных P -совмещений образуют топологические
T0-пространства, которые могут не быть хаусдорфовыми. Таким образом, топологии
для E-совмещений и P -совмещений существенно различаются. Для E-совмещений
доказано, что существование минимального порождающего множества теорий экви-
валентно существованию наименьшего порождающего множества. Кроме того, син-
таксически и семантически охарактеризовано свойство существования наименьшего
порождающего множества: показано, что элементы наименьшего порождающего
множества изолированы и являются плотными в своем E-замыкании.

Рассмотрены подобные свойства для P -совмещений: доказано, что снова суще-
ствование минимального порождающего множества теорий эквивалентно существо-
ванию наименьшего порождающего множества, но это не эквивалентно изолирован-
ности элементов в порождающем множестве. Показано, что P -замыкания с наимень-
шими порождающими множествами связаны с семействами, которые не являются
ω-восстановимыми, а также с семействами, имеющими конечный e-спектр.

Сформулированы два вопроса о наименьших порождающих множествах для E-
совмещений и P -совмещений. Предложены частичные ответы на эти вопросы.
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Ключевые слова: E-совмещение, P -совмещение, оператор замыкания, порож-
дающее множество.
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