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Abstract. We introduce the notion of language uniform theory and study topological
properties related to families of language uniform theory and their F-combinations. It is
shown that the class of language uniform theories is broad enough. Sufficient conditions
for the language similarity of language uniform theories are found. Properties of language
domination and of infinite language domination are studied. A characterization for F-
closure of a family of language uniform theories in terms of index sets is found. We
consider the class of linearly ordered families of language uniform theories and apply
that characterization for this special case. The properties of discrete and dense index
sets are investigated: it is shown that a discrete index set produces a least generating
set whereas a dense index set implies at least continuum many accumulation points and
the closure without the least generating set. In particular, having a dense index set the
theory of the E-combination does not have e-least models and it is not small. Using the
dichotomy for discrete and dense index sets we solve the problem of the existence of least
generating set with respect to E-combinations and characterize that existence in terms
of orders.

Values for e-spectra of families of language uniform theories are obtained. It is shown
that any e-spectrum can be realized by E-combination of language uniform theories. Low
estimations for e-spectra relative to cardinalities of language are found.

It is shown that families of language uniform theories produce an arbitrary given
Cantor-Bendixson rank and given degree with respect to this rank.

Keywords: E-combination, P-combination, closure operator, generating set, language
uniform theory.

We continue to study structural properties of E-combinations of struc-
tures and their theories [5; 6]. The notion of language uniform theory is
introduced. For the class of linearly ordered language uniform theories we
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Science in Education and Science Ministry of the Republic of Kazakhstan (Grant No.
0830/GF4).
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solve the problem of the existence of least generating set with respect to
E-combinations and characterize that existence in terms of orders. Values
for e-spectra of families of language uniform theories are obtained. It is
shown that families of language uniform theories produce an arbitrary given
Cantor-Bendixson rank and given degree.

1. Preliminaries

Throughout the paper we use the following terminology in [5; 6].

Definition 1. [5]. Let P = (P;);cs, be a family of nonempty unary pred-
icates, (A;)icr be a family of structures such that P; is the universe of A;,
i € I, and the symbols P; are disjoint with languages for the structures
Aj, j € I. The structure Ap = |J A; expanded by the predicates P; is
el

the P-union of the structures A;, and the operator mapping (A;)csr to
Ap is the P-operator. The structure Ap is called the P-combination of the
structures A; and denoted by Combp(A;)ier if A; = (Ap [ 4;) | 2(A;),
i € I. Structures A’, which are elementary equivalent to Combp(A4;)icr,
will be also considered as P-combinations.

Clearly, all structures A’ = Combp(A;);cr are represented as unions of
their restrictions A; = (A" | B;) | X(A;) if and only if the set poo(z) =
{=Pi(x) | i € I} is inconsistent. If A" # Combp(A})icr, we write A" =
Combp(Aj)ierufoc}, Where AL = A’ | (| P;, maybe applying Morleyza-

el
tion. Moreover, we write Combp(A;)iciufooy for Combp(A;)ies with the
empty structure Aso.

Note that if all predicates P; are disjoint, a structure Ap is a P-combi-
nation and a disjoint union of structures 4;. In this case the P-combination
Ap is called disjoint. Clearly, for any disjoint P-combination Ap, Th(Ap) =
Th(A%), where A’ is obtained from Ap replacing A; by pairwise disjoint
Al = A;, i € I. Thus, in this case, similar to structures the P-operator
works for the theories T; = Th(A;) producing the theory Tp = Th(Ap),
being P-combination of T;, which is denoted by Combp(7;);er.

For an equivalence relation E replacing disjoint predicates P; by FE-
classes we get the structure Ag being the E-union of the structures A;.
In this case the operator mapping (A;)ier to Ag is the E-operator. The
structure Ag is also called the E-combination of the structures A; and
denoted by Combpg(A;)icr; here A; = (Ag | 4;) | X(A;), i € 1. Similar
above, structures A’, which are elementary equivalent to Ag, are denoted
by Combp(A%)jes, where A’ are restrictions of A’ to its E-classes. The
E-operator works for the theories T; = Th(A;) producing the theory Tp =
Th(Ag), being E-combination of T;, which is denoted by Combg(T;)cr or
by Combpg(T), where T ={T; | i € T}.
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Clearly, A" = Ap realizing poo(x) is not elementary embeddable into
Ap and can not be represented as a disjoint P-combination of A, = A;,
i € I. At the same time, there are F-combinations such that all A" =
Apg can be represented as E-combinations of some .A; = A;. We call this
representability of A’ to be the E-representability.

If there is A" = Ag which is not E-representable, we have the E’-
representability replacing E by E’ such that E’ is obtained from F adding
equivalence classes with models for all theories T, where T is a theory
of a restriction B of a structure A’ = Ag to some FE-class and B is not
elementary equivalent to the structures A;. The resulting structure Apg
(with the E’-representability) is a e-completion, or a e-saturation, of Ag.
The structure Ag itself is called e-complete, or e-saturated, or e-universal,
or e-largest.

For a structure Ag the number of new structures with respect to the
structures A;, i. e., of the structures B which are pairwise elementary non-
equivalent and elementary non-equivalent to the structures A;, is called
the e-spectrum of Ag and denoted by e-Sp(Ag). The value sup{e-Sp(A")) |
A" = Ag} is called the e-spectrum of the theory Th(Ag) and denoted by
e-Sp(Th(Ag)).

If Ag does not have E-classes A;, which can be removed, with all E-
classes A; = A;, preserving the theory Th(Ag), then Ag is called e-prime,
or e-minimal.

For a structure A" = Agr we denote by TH(A’) the set of all theories
Th(A;) of E-classes A; in A’.

By the definition, an e-minimal structure A’ consists of F-classes with
a minimal set TH(A). If TH(A’) is the least for models of Th(A") then A’
is called e-least.

Definition 2. [6]. Let T be the class of all complete elementary theories
of relational languages. For a set 7 C T we denote by Clg(T) the set of
all theories Th(A), where A is a structure of some E-class in A" = Ap,
Ap = Combg(A;)icr, Th(A;) € T. As usual, if T = Clg(T) then T is said
to be E-closed.

The operator Clg of E-closure can be naturally extended to the classes
T C T as follows: Clg(T) is the union of all Clg(7p) for subsets To C 7.

For a set 7 C T of theories in a language ¥ and for a sentence ¢ with
3(¢) € X we denote by T, the set {T'€ T | p € T'}.

Proposition 1. [6]. If T C T is an infinite set and T € T\ T then T €
Clg(T) (i.e., T is an accumulation point for T with respect to E-closure
Clg) if and only if for any formula ¢ € T the set T, is infinite.

Definition 3. [6]. Let 7 be a closed set in a topological space (T, Og(T)),
where Op(T) = {T \Clg(T") | T" € T}. A subset 7 C 7o is said to be
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generating if To = Clg(7]). The generating set 77 (for 7o) is minimal if T
does not contain proper generating subsets. A minimal generating set 7 is
least if T is contained in each generating set for 7.

Theorem 1. [6]. If 7] is a generating set for a E-closed set Ty then the
following conditions are equivalent:

(1) Ty is the least generating set for To;

(2) Ty is a minimal generating set for To;

(3) any theory in Ty is isolated by some set (Ty)y, i.e., for any T € Ty
there is ¢ € T' such that (Tq), = {T'};

(4) any theory in Ty is isolated by some set (To)y, i.e., for any T € Ty
there is p € T' such that (To), = {T'}.

Proposition 2. [6]. For any closed nonempty set To in a topological space
(T,0r(T)) and for any T, C To, the following conditions are equivalent:

(1) 7y is the least generating set for To;

(2) any/some structure Ap = Combpg(A;)icr, where {Th(A;) |i eI} =
Tq, is an e-least model of the theory Th(Ag) and E-classes of each/some
e-largest model of Th(Ag) form models of all theories in To;

(3) any/some structure Ap = Combpg(A;)icr, where {Th(A;) |i eI} =

0, Ai £ Aj for i # j, is an e-least model of the theory Th(Ag), where
E-classes of Ag form models of the least set of theories and E-classes of
each/some e-largest model of Th(Ag) form models of all theories in Ty.

Theorem 1 and Proposition 2 answer Question 1 in [6] characterizing
the existence of the least generating set. The following question also has
been formulated in [6].

Question. Is there exists a theory Th(Ag) without the least generating set?

Below we will consider a class of special theories with respect to their
languages and answer the question characterizing the existence of the least
generating set in these special cases.

2. Language uniform theories and related E-closures

Definition 4. A theory T in a predicate language X is called language
uniform, or a LU-theory if for each arity m any substitution on the set of
non-empty n-ary predicates preserves T'. The LU-theory T is called TILU-
theory if it has non-empty predicates and as soon as there is a non-empty
n-ary predicate then there are infinitely many non-empty n-ary predicates
and there are infinitely many empty n-ary predicates.

Below we point out some basic examples of LU-theories:
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e Any theory Tp of infinitely many independent unary predicates Ry, is
a LU-theory; expanding Ty by infinitely many empty predicates R; we get
a [ILU-theory T7.

e Replacing independent predicates Ry for Ty and T by disjoint unary
predicates R) with a cardinality A € (w+ 1) \ {0} such that each Rj has
A elements; the obtained theories are denoted by TOA and TlA respectively;
here, TO)‘ and Tf‘ are LU-theories, and, moreover, Tf‘ is a IILU-theory; we
denote Ty and T} by T¢ and TY; in this case nonempty predicates R},
are singletons symbolizing constants which are replaced by the predicate
languages.

e Any theory T of equal nonempty unary predicates Ry is a LU-theory;

e Similarly, LU-theories and IILU-theories can be constructed using n-
ary predicate symbols of arbitrary arity n.

e The notion of language uniform theory can be extended for an arbitrary
language taking graphs for language functions; for instance, theories of free
algebras can be considered as LU-theories.

e Acyclic graphs with colored edges (arcs), for which all vertices have
same degree with respect to each color, has LU-theories. If there are in-
finitely many colors and infinitely many empty binary relations then the
colored graph has a IILU-theory.

e Generic arc-colored graphs without colors for vertices [1; 4], free poly-
gonometries of free groups [2], and cube graphs with coordinated colorings
of edges [2; 3] have LU-theories.

The simplest example of a theory, which is not language uniform, can
be constructed taking two nonempty unary predicates Ry and Ro, where
Ry C Rs. More generally, if a theory T', with nonempty predicates R;, i € I,
of a fixed arity, is language uniform then cardinalities of Rfll (Z)A.. ./\jol (7)
do not depend on pairwise distinct i1,...,1;.

Remark 1. Any countable theory T of a predicate language ¥ can be
transformed to a LU-theory T”. Indeed, since without loss of generality
>} is countable consisting of predicate symbols R£k7l), n € w, then we
can step-by-step replace predicates R, by predicates R], in the following
way. We put R, = Ry. If predicates RY,..., R}, of arities 79 < ... < 1y,
respectively, are already defined, we take for R, a predicate of an arity
Tpt1 > max{ry, kpy1}, which is obtained from R/, adding rpy1 — kpy1
fictitious variables corresponding to the formula

R/($17 ce 7':Ukn+1) A ($kn+2 ~ $kn+2) A ($Tn+1 ~ xTnJrl)‘

If the resulted LU-theory 7" has non-empty predicates, it can be trans-
formed to a countable IILU-theory T” copying these non-empty predicated
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with same domains countably many times and adding countably many
empty predicates for each arity r,.

Clearly, the process of the transformation of T to T” do not hold for
uncountable languages, whereas any LU-theory can be transformed to an
IILU-theory as above.

Definition 5. Recall that theories Ty and T of languages ¥y and X4
respectively are said to be similar if for any models M; E T;, i = 0,1,
there are formulas of T, defining in M, predicates, functions and constants
of language >1_; such that the corresponding structure of ¥;_; is a model
of Tl—i-

Theories Ty and 77 of languages g and X respectively are said to
be language similar if Ty can be obtained from T by some bijective re-
placement of language symbols in ¥; by language symbols in Xy (and vice
versa).

Clearly, any language similar theories are similar, but not vice versa.
Note also that, by the definition, any LU-theory T is language similar to
any theory T which is obtained from T replacing predicate symbols R by
o(R), where o is a substitution on the set of predicate symbols in X(7')
corresponding to nonempty predicates for T as well as a substitution on
the set of predicate symbols in 3(7") corresponding to empty predicates for
T. Thus we have

Proposition 3. Let T} and Ty be LU-theories of same language such
that Ty is obtained from Ty by a bijection f1 (respectively fa) mapping
(non)empty predicates for Ty to (non)empty predicates for To. Then T
and Ts are language similar.

Corollary 1. Let Ty and T be countable IILU-theories of same language
such that the restriction Ty of Ty to non-empty predicates is language similar
to the restriction Ty of Ty to non-empty predicates. Then Ty and Ty are
language similar.

Proof. By the hypothesis, there is a bijection f5 for non-empty predicates of
T1 and T5. Since 17 and 15 be countable IILU-theories then 77 and T5 have
countably many empty predicates of each arity with non-empty predicates,
there is a bijection f; for empty predicates of 77 and T5. Now Corollary is
implied by Proposition 3. U

Definition 6. For a theory T in a predicate language Y, we denote by
Suppy;(T') the support of X for T, i. e., the set of all arities n such that
some n-ary predicate R for T is not empty.

Clearly, if T1 and T» are language similar theories, in predicate languages
¥1 and ¥ respectively, then Suppy, (T1) = Suppy, (13).
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Definition 7. Let T} and T5 be language similar theories of same language
Y. We say that Ty language dominates T and write Ty CL Ty if for any
symbol R € ¥, if T} - 3z R(Z) then Ty + IZR(Z), i. e., all predicates, which
are non-empty for 7}, are nonempty for Ty. If T} T T, and T, T T, we
say that T and T» are language domination-equivalent and write T ~L Ty,

Proposition 4. The relation T is a partial order on any set of LU-
theories.

Proof. Since CF is always reflexive and transitive, it suffices to note that
if Ty CY Ty and T CY Ty then T} = T». It follows as language similar
LU-theories coincide having the same set of nonempty predicates. O

Definition 8. We say that T, infinitely language dominates T} and write
T [50 T, if Ty CTF T, and for some n, there are infinitely many new
nonempty predicates for 75 with respect to T}

Since there are infinitely many elements between any distinct compara-
ble elements in a dense order, we have

Proposition 5. If a class of theories T has a dense order L then Ty CL
Ty for any distinct Ty, Ty € T with Ty CL T.

Clearly, if Ty CF Ty then Suppy,(71) € Supps:(72) but not vice versa. In
particular, there are theories 71 and Ty with 7} CL T and Suppy(T1) =

Suppy; (13).

Let Ty be a LU-theory with infinitely many nonempty predicate of some
arity n, and Iy be the set of indexes for the symbols of these predicates.

Now for each infinite I C Iy with |I| = |Iy|, we denote by 17 the theory
which is obtained from the complete subtheory of T in the language { Ry, |
k € I} united with symbols of all arities m # n and expanded by empty
predicates R for [ € Iy \ I, where |Iy \ I| is equal to the cardinality of the
set empty predicates for Tj, of the arity n.

By the definition, each 77 is language similar to Tj: it suffices to take a
bijection f between languages of 77 and Tj such that (non)empty predicates
of T in the arity n correspond to (non)empty predicates of Ty in the arity n,
and f is identical for predicate symbols of the arities m # n. In particular,

Let 7 be an infinite family of theories T7, and Ty be a theory of the form
above (with infinite J C Iy such that |J| = |Iy|). The following proposition
modifies Proposition 1 for the E-closure Clg(T).

Proposition 6. If T; ¢ T then T; € Clg(T) if and only if for any finite
set Jy C Iy there are infinitely many Tr with J N Jy =10 Jy.

Proof. By the definition each theory T'; is defined by formulas describing
P, # @ < k € J. Each such a formula ¢ asserts for a finite set Jy C Iy that
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if k € Jy then Ry # & < k € J. It means that {k € Jy | P, # @} = J N Jy.
On the other hand, by Proposition 1, Ty € Clg(T) if and only if each such
formula ¢ belongs to infinitely many theories 77 in 7T, i.e., for infinitely
many indexes I we have I N Jy=J N Jp. O

Now we take an infinite family F' of infinite indexes I such that F' is
linearly ordered by C and if I; C Iy then Iy \ I; is infinite. The set {77 |
I € F} is denoted by Tp.

For any infinite F/ C F we denote by lim F” the union-set | J F’ and by
lim F’ intersection-set () F”. If lim F’ (respectively lim F”) does not belong
to F’ then it is called the upper (lower) accumulation point (for F'). If
J is an upper or lower accumulation point we simply say that J is an
accumulation point.

Corollary 2. If Ty ¢ Tr then T € Clg(Tr) if and only if J is an (upper
or lower) accumulation point for some infinite F' C F.

Proof. If J =lim F’ or J = lim F’ then for any finite set Jy C Iy there are
infinitely many 77 with J N Jy = I N Jy. Indeed, if J = |J F’ then for any
finite Jy C Iy there are infinitely many I € F’ such that I N Jy contains
exactly same elements as JN.Jy since otherwise we have J C |J F’. Similarly
the assertion holds for J = (| F’. By Proposition 6 we have T € Clg(Tr).

Now let J # lim F' and J # lim F” for any infinite F' C F. In this case
for each F’' C F, either J contains new index j for a nonempty predicate
with respect to | J F' for each F' C F with |JF' C J or (| F’ contains new
index j' for a nonempty predicate with respect to J for each F’ C F with
N F' 2 J. In the first case, for Jy = {j} there are no I € F’ such that
I'NnJy=JNJy. In the second case, for Jy = {j'} there are no I € F’ such
that I N Jy = J N Jy. By Proposition 6 we get T ¢ Clg(Tr). O

By Corollary 2 the action of the operator Clg for the families 7TF is
reduced to unions and intersections of index subsets of F.

Now we consider possibilities for the linearly ordered sets F = (F;C)
and their closures F = (F; C) related to Clg.

The structure F is called discrete if F' does not contain accumulation
points.

By Corollary 2, if F is discrete then for any J € F, Ty ¢ Clg(Tr\(s})-
Thus we get

Proposition 7. For any discrete F, Tg is the least generating set for
Clg(Tr).

By Proposition 7, for any discrete F, Trp can be reconstructed from
Clg(Tr) removing accumulation points, which always exist. For instance, if
(F'; C) is isomorphic to (w; <) or (w*; <) (respectively, isomorphic to (Z; <))
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then Clg(7F) has exactly one (two) new element(s) lim F' or lim F' (both
lim F' and lim F').

Consider an opposite case: with dense F. Here, if F is countable then,
similarly to (Q; <), taking cuts for F, i. e., partitions (F'~, F*) of F with
F~ < F*, we get the closure F with continuum many elements. Thus, the
following proposition holds.

Proposition 8. For any dense F, |F| > 2%.

Clearly, there are dense F with dense and non-dense F. If F is dense
then, since F' = F, there are dense F; with |Fy| = |Fy|. In particular, it is
followed by Dedekind theorem on completeness of R.

Answering the question in Section 1 we have

Proposition 9. If F is dense then Clg(Tr) does not contain the least
generating set.

Proof. Assume on contrary that Clg(Tr) contains the least generating set
with a set Fy C F of indexes. By the minimality F{y does not contain both
the least element and the greatest element. Thus taking an arbitrary J € Fy
we have that for the cut (FO_’J,FJJ), where Iy, = {J~ € Fy | J~ C J}
and Fy; = {J* € iy | J* D J}, J = lim Fy ; and J = lim Fy ;. Thus,
Fy \ {J} is again a set of indexes for a generating set for Clg(7r). Having
a contradiction we obtain the required assertion. [l

Combining Proposition 2 and Proposition 9 we obtain

Corollary 3. If F is dense then Th(Ag) does not have e-least models
and, in particular, it is not small.

Remark 2. The condition of the density of F for Proposition 9 is essen-
tial. Indeed, we can construct step-by step a countable dense structure F
without endpoints such that for each J € F and for its cut (¥, Fj), where
F;={J-e€eF|J CJtand Ff ={Jt € F|J" > J},J D ImF;
and J C h_ij In this case Clg(7Fr) contains the least generating set
{TJ ’ JeF }

In general case, if an element J of F has a successor .J' or a predecessor
J~! then J defines a connected component with respect to the operations
Y and -~!. Indeed, taking closures of elements in F with respect to -’ and
-~ we get a partition of F defining an equivalence relation such that two
elements J; and Jo are equivalent if and only if Jy is obtained from .J;
applying - or -~! several (maybe zero) times.

Now for any connected component C' we have one of the following
possibilities:
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(i) C is a singleton consisting of an element J such that J # EFJ_ and
J # lim F'[; in this case J is not an accumulation point for F'\ {J} and T
belongs to any generating set for Clg(7r);

(ii) C is a singleton consisting of an element J such that J = lim F';
or J = lim F}, and EFJ_ # lim F; in this case J is an accumulation
point for exactly one of F'; and Ff, J separates F; and F + and T can
be removed from any generating set for Clg(7F) preserving the generation
of Clg(7TF); thus Ty does not belong to minimal generating sets;

(iii) C is a singleton consisting of an element J such that J = lim F/; =
lim F f; in this case J is a (unique) accumulation point for both F';” and F f,
moreover, again Ty can be removed from any generating set for Clg(7r)
preserving the generation of Clg(7r), and Ty does not belong to minimal
generating sets;

(iv) |C| > 1 (in this case, for any intermediate element J of C, T
belongs to any generating set for Clg(7r)), im C D hmF e and limC C
li_mF%C; in this case, for the endpoint(s) J* of C, if it (they) exists, T«
belongs to any generating set for Clg(7r);

(v) |C] > 1, and lim C = lim F};,_  or im C = hmF+ ; in this case, for
the endpoint J* = lim C of C, if 1t exists, Ty« does not belong to minimal
generating sets of Clg(7F), and for the endpoint J** = lim C of C, if it
exists, Ty«« does not belong to minimal generating sets of Clg(7Tr).

Summarizing (i)—(v) we obtain the following assertions.

Proposition 10. A partition of F by the connected components forms
discrete intervals or, in particular, singletons of F, where only endpoints J
of these intervals can be among elements J** such that Ty« does not belong
to minimal generating sets of Clg(Tr).

Proposition 11. If (F~,F*) is a cut of F with lim F~ = lim F™ (re-
spectively im F~ C lim F'*) then any generating set T for Clg(Tr) is
represented as a (disjoint) union of generating set TIQ, for Clg(Tp-) and
of generating set 7}9+ for Clg(Tg+), moreover, any (disjoint) union of a
generating set for Clg(Tp-) and of a generating set for Clg(Tp+) is a
generating set T° for Clg(Tr).

Proposition 11 implies

Corollary 4. If (F~,F") is a cut of F then Clg(Tr) has the least gen-
erating set if and only if Clg(Tp-) and Clg(Tg+) have the least generating
sets.

Considering C-ordered connected components we have that discretely or-
dered intervals in F, consisting of discrete connected components and their
limits lim and lim, are alternated with densely ordered intervals including
their limits. If F contains an (infinite) dense interval, then by Proposition
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9, Clg(Tr) does not have the least generating set. Conversely, if F does
not contain dense intervals then Clg(7r) contains the least generating set.
Thus, answering Questions 1 and 2 [6] for Clg(7F) including the question
in Section 1, we have

Theorem 2. For any linearly ordered set F, the following conditions are
equivalent:

(1) Clg(Tr) has the least generating set;

(2) F does not have dense intervals.

Remark 3. Theorem 2 does not hold for some non-linearly ordered
F. Indeed, taking countably many disjoint, incomparable with respect to
nonempty predicates modulo their intersections, copies Fg, ¢ € Q, of lin-
early ordered sets isomorphic to (w, <) and ordering limits .J, = lim F}, by
the ordinary dense order on Q such that {.J; | ¢ € Q} is densely ordered,
we obtain a dense interval {J, | ¢ € Q} whereas the set U{F} | ¢ € Q}
forms the least generating set 7Ty of theories for Clg(7p).

The above operation of extensions of theories for {.J; | ¢ € Q} by theories
for F; as well as expansions of theories of the empty language to theories
for {J; | ¢ € Q} confirm that the (non)existence of a least/minimal gener-
ating set for Clg(7p) is not preserved under restrictions and expansions of
theories.

Remark 4. Taking an arbitrary theory T with a non-empty predicate R
of an arity n, we can modify Theorem 2 in the following way. Extending
the language ¥(7") by infinitely many n-ary predicates interpreted exactly
as R and by infinitely many empty n-ary predicates we get a class 77 r of
theories R-generated by T'. The class Tt g satisfies the following: any linearly
ordered F as above is isomorphic to some family F’, under inclusion, sets
of indexes of non-empty predicates for theories in 77 r such that strict
inclusions J; C Js for elements in F’ imply that cardinalities Jy \ Jp are
infinite and do not depend on choice of J; and Js. Theorem 2 holds for
linearly ordered F' involving the given theory T.

3. On e-spectra for families of language uniform theories

Remark 5. Remind [5, Proposition 4.1, (7)] that if 7= Th(.Ag) has an
e-least model M then e-Sp(T) = e-Sp(M). Then, following [5, Proposition
4.1, (5)], e-Sp(T') = |To\Ty|, where 7 is the (least) generating set of theories
for E-classes of M, and 7Ty is the closed set of theories for F-classes of an
e-largest model of T'. Note also that e-Sp(T) is infinite if 7y does not have
the least generating set.
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Remind that, as shown in [5, Propositions 4.3], for any cardinality A
there is a theory T'= Th(Ag) of a language 3 such that [3| = |\ + 1| and
e-Sp(T) = A. Modifying this proposition for the class of LU-theories we
obtain

Proposition 12. (1) For any p < w there is an E-combination T =
Th(Ag) of IILU-theories in a language ¥ of the cardinality w such that T
has an e-least model and e-Sp(T') = p.

(2) For any uncountable cardinality \ there is an E-combination T =
Th(Ag) of IILU-theories in a language . of the cardinality \ such that T
has an e-least model and e-Sp(T) = .

Proof. In view of Propositions 2, 7 and Remark 5, it suffices to take an
E-combination of IILU-theories of a language X of the cardinality A and
with a discrete linearly ordered set F having:

1) u < w accumulation points if A = w;

2) X\ accumulation points if A > w.

We get the required F for (1) taking:

(i) finite F for p = 0;

(ii) p/2 discrete connected components, forming F, with the ordering
type (Z; <) and having pairwise distinct accumulation points, if 1 > 0 is
even natural;

(iii) (u — 1)/2 discrete connected components, forming F, with the or-
dering type (Z; <) and one connected components with the ordering type
(w; <) such that all accumulation points are distinct, if 4 > 0 is odd natural;

(iv) w discrete connected components, forming F, with the ordering type
<Z; §>7 if p = w.

The required F for (2) is formed by (uncountably many) A discrete
connected components, forming F, with the ordering type (Z; <). O

Combining Propositions 2, 9, Theorem 2, and Remark 5 with F having
dense intervals, we get

Proposition 13. For any infinite cardinality \ there is an E-combination
T = Th(Ag) of IILU-theories in a language ¥ of cardinality A such that T
does not have e-least models and e-Sp(T) > max{2¥, \}.

Assertion of Proposition 13 can be improved as follows.

Proposition 14. For any infinite cardinality \ there is an E-combination
T = Th(Ag) of LU-theories in a language ¥ of cardinality X such that T
does not have e-least models and e-Sp(T) = 2*.

Proof. Let X be a language consisting, for some natural n, of n-ary predicate
symbols R;, i < A. Choose a cardinality u € (w \ {0}) U {w}. For any
¥ C ¥ we take a structure Ay of the cardinality p such that R; = (Asg/ )™
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for R; € ¥/, and R; = @ for R; € ¥\ ¥'. Clearly, each structure Ay
has a LU-theory and Ays # Ayx» for ¥’ # ¥”. For the E-combination Ag
of the structures Ay, we obtain the theory 7' = Th(Ag) having a model
of the cardinality A. At the same time Ag has 2* distinct theories of the
E-classes Asy. Thus, e-Sp(T) = 2*. Finally we note that 7" does not have
e-least models by Theorem 1 and arguments for Proposition 6. O

Remark 6. LU-theories in the proof of Proposition 14 can be easily
transformed to IILU-theories with the same effect for the e-spectrum.

4. Cantor-Bendixson ranks for language uniform theories

Recall the definition of the Cantor-Bendixson rank. It is defined on the
elements of a topological space X by induction: CBx(p) > 0 for all p € X;
CBx(p) > « if and only if for any 5 < «, p is an accumulation point
of the points of CBx-rank at least 5. CBx(p) = « if and only if both
CBx(p) > « and CBx(p) # a + 1 hold; if such an ordinal o does not
exist then CBx(p) = oo. Isolated points of X are precisely those having
rank 0, points of rank 1 are those which are isolated in the subspace of
all non-isolated points, and so on. For a non-empty C C X we define
CBx(C) = sup{CBx(p) | p € C}; in this way CBx(X) is defined and
CBx({p}) = CBx(p) holds. If X is compact and C is closed in X then
the sup is achieved: CBx (C) is the maximum value of CBx(p) for p € C;
there are finitely many points of maximum rank in C' and the number of
such points is the CBx-degree of C. If X is countable and compact then
CBx(X) is a countable ordinal and every closed subset has ordinal-valued
rank and finite CB x-degree.

Clearly, for any set F, where Clg(7F) does not have the least generating
set, CB7,. (Tr) = oo.

Theorem 3. For any countable ordinal o and a natural number n > 0,
there is an E-closed family Tr, of LU-theories such that CBr, (Tr,) = «
and its CBr;, -degree is equal to n.

Proof. If @ = 0 it suffices to take n singletons Fo1,...,Fon. If @ =1
we take n disjoint copies Fy;, j = 1,...,n, of F; in Remark 3, each of
which is ordered as (w, <) and UFo; =lm Fy 5, j =1,...,n. We set Fy =

n
Fo1U.. .UFyy, F1 = FoU |J F1 ;. If @ > 1is finite and F, is already defined
j=1
then we add w new disjoint copies Fn11,,m of F; related to each element
in F, \ Fu—1, each of which is ordered as (w,<) and f,, = lim Fj41 .,
fm € Foy \ Fo1. In such a case, CB(Fy ;) = o + 1 and CB-degree is equal
to n.
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In general case, if « is limit we take Tp, as the union of T, for § < a
with w disjoint copies of F; such that each element in TFB is the limit lim
of unique new copy of F, and vice versa. Otherwise, if a = 8+ 1, we add
w disjoint copies of F; such that the set of these new copies F are in the
bijective correspondence with the set of elements f, added in the step S,
and f =lim F.

The inductive process guarantees that CBr, (7r,) = a and CBy, -
degree is equal to n. O
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C. B. CynomaToB

CemeiicTBa CUTHATYPHO OJHOPOJHBIX TeOpI/Iﬁ n UX IMOpo2Kaaro-
mue MHO>KeCTBa

Amnvoranusi.  BBoaurcs moHsITHE CUTHATYDPHO OHOPOJIHONW TEOPHH M M3y 9alOTCst
TOIIOJIOTUYECKHNE CBOWCTBa, OTHOCAIIMECA K CeMelCTBaM CHTHATYPHO OJHOPOIHBIX Teo-
puit u ux E-coBmemenusm. [lokazaHo, 9TO KJTaCC CUTHATYPHO OTHOPOJHBIX TEOPHil I0-
craToyHo mupok. HaiiieHpl mocTaTo4Hble yCIOBHUS CUTHATYPHOTO IIOJOOMS CUIHATYDPHO
OIHOPOMHBIX Teopuit. VI3ydeHbl CBOICTBA CHTHATYPHOTO JOMUHUPOBAHUS U OECKOHETHOTO
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CHTHaTypHOIo JoMuHupoBaHus. Haiinena xapakrepusanus 11 F-3aMbpIKaHus ceMeiCTBa
CHTHATYPHO OJHOPOJHBIX TEOPHUil B TEPMUHAX WHIECKCHBIX MHOXKECTB. PaccMoTpen Kjacc
JIMHEHHO yNOPsAOYeHHBIX CeMeHCTB CUTHATYPHO OJHOPOJHBIX TEOPHUIl M K 9TOMY KJIacCy
MpUMEHEHa YKa3aHHas xapakrepu3arusi. MccaemoBanbl CBOMCTBA JUCKPETHBIX U INIOTHBIX
WHIIEKCHBIX MHOXKECTB: TIOKA3aHO, UTO JII000e JUCKPETHOE MHIEKCHOE MHOXKECTBO 33/1a€T
HauMeHbIIlee MOPOoXK JAIolee MHOXKECTBO, B TO BpeMs KaK IIJIOTHbIe NH/IEKCHbIE MHOYKECTBa
OIIpeNeIAI0T IO MEHBbIIEH Mepe KOHTUHYAJBHOE YUC/I0 TOYCK HAKOIJICHAS U 3aMBIKAHUSA
0e3 HAMMEHBIINX ITOPOXKIAOIINX MHOXKECTB. B 9acTHOCTH, IIpU HAJUYHUHU IIJIOTHOTO WH-
JEKCHOT'O MHOYKECTBA TEOPUs COOTBETCTBYIOIErO [-coBMelleHnsI He UMeeT e-HauMeHbIIei
MOJEN U He sBJAeTcd Mayioil. VICIonb3ys MUXOTOMHIO IJjisl JTUCKPETHBIX WM IIOTHBIX
WHJIEKCHBIX MHOYKECTB, PEIIaeTCs mpobjeMa CyIIeCTBOBAHUS HAWMEHBIIETO TOPOXKIAI0-
I[er0 MHOXKECTBA OTHOCUTEJIBHO F-COBMEIEHHI U XapaKTePU3yeTCsl 3TO CYILIECTBOBaHUE
B TepMHUHaX MOPAIKOB.

Ilosrygens! 3HaYEHUS e-CIIEKTPOB JIJIsI CEMENCTB CUIHATYPHO ONHOPOIHBIX Teopuii. [To-
Ka3aHO, ITO JIIOOOH e-CIeKTP MOXKET ObITh peaJTn30BaH HEKOTOPBIM F-COBMeEITIeHneM CHT-
HATYPHO OJHOPOMHBIX Teopuil. HaiiieHbl HUKHIE OIEHKH JIJIsi e-CIIEKTPOB OTHOCUTEIBHO
MONIIHOCTEH CUTHATYP.

Ilokazamo, 9TO ceMeiiCTBa CUTHATYPHO OMHOPOIHBIX TEOPWIl 33/af0T MPOU3BOJIBHBIM
panr Kanropa — BenaukcoHa U IpOM3BOJILHYIO CTEIIEHb OTHOCUTEBHO STOIO PAHra.

KuroueBbie cioBa: F-coBmenienne, P-coBMerieHne, omepaTop 3aMbIKAHUS, TOPOK-
Jaroliee MHOXKECTBO, CUTHATYPHO OJHOPOIHAs TEOPHs.
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