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Abstract. We introduce the notion of language uniform theory and study topological
properties related to families of language uniform theory and their E-combinations. It is
shown that the class of language uniform theories is broad enough. Sufficient conditions
for the language similarity of language uniform theories are found. Properties of language
domination and of infinite language domination are studied. A characterization for E-
closure of a family of language uniform theories in terms of index sets is found. We
consider the class of linearly ordered families of language uniform theories and apply
that characterization for this special case. The properties of discrete and dense index
sets are investigated: it is shown that a discrete index set produces a least generating
set whereas a dense index set implies at least continuum many accumulation points and
the closure without the least generating set. In particular, having a dense index set the
theory of the E-combination does not have e-least models and it is not small. Using the
dichotomy for discrete and dense index sets we solve the problem of the existence of least
generating set with respect to E-combinations and characterize that existence in terms
of orders.

Values for e-spectra of families of language uniform theories are obtained. It is shown
that any e-spectrum can be realized by E-combination of language uniform theories. Low
estimations for e-spectra relative to cardinalities of language are found.

It is shown that families of language uniform theories produce an arbitrary given
Cantor-Bendixson rank and given degree with respect to this rank.

Keywords: E-combination, P -combination, closure operator, generating set, language
uniform theory.

We continue to study structural properties of E-combinations of struc-
tures and their theories [5; 6]. The notion of language uniform theory is
introduced. For the class of linearly ordered language uniform theories we
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solve the problem of the existence of least generating set with respect to
E-combinations and characterize that existence in terms of orders. Values
for e-spectra of families of language uniform theories are obtained. It is
shown that families of language uniform theories produce an arbitrary given
Cantor-Bendixson rank and given degree.

1. Preliminaries

Throughout the paper we use the following terminology in [5; 6].

Definition 1. [5]. Let P = (Pi)i∈I , be a family of nonempty unary pred-
icates, (Ai)i∈I be a family of structures such that Pi is the universe of Ai,
i ∈ I, and the symbols Pi are disjoint with languages for the structures
Aj, j ∈ I. The structure AP �

⋃
i∈I
Ai expanded by the predicates Pi is

the P -union of the structures Ai, and the operator mapping (Ai)i∈I to
AP is the P -operator. The structure AP is called the P -combination of the
structures Ai and denoted by CombP (Ai)i∈I if Ai = (AP � Ai) � Σ(Ai),
i ∈ I. Structures A′, which are elementary equivalent to CombP (Ai)i∈I ,
will be also considered as P -combinations.

Clearly, all structures A′ ≡ CombP (Ai)i∈I are represented as unions of
their restrictions A′

i = (A′ � Pi) � Σ(Ai) if and only if the set p∞(x) =
{¬Pi(x) | i ∈ I} is inconsistent. If A′ �= CombP (A′

i)i∈I , we write A′ =
CombP (A′

i)i∈I∪{∞}, where A′
∞ = A′ �

⋂
i∈I

Pi, maybe applying Morleyza-

tion. Moreover, we write CombP (Ai)i∈I∪{∞} for CombP (Ai)i∈I with the
empty structure A∞.

Note that if all predicates Pi are disjoint, a structure AP is a P -combi-
nation and a disjoint union of structures Ai. In this case the P -combination
AP is called disjoint. Clearly, for any disjoint P -combination AP , Th(AP ) =
Th(A′

P ), where A′
P is obtained from AP replacing Ai by pairwise disjoint

A′
i ≡ Ai, i ∈ I. Thus, in this case, similar to structures the P -operator

works for the theories Ti = Th(Ai) producing the theory TP = Th(AP ),
being P -combination of Ti, which is denoted by CombP (Ti)i∈I .

For an equivalence relation E replacing disjoint predicates Pi by E-
classes we get the structure AE being the E-union of the structures Ai.
In this case the operator mapping (Ai)i∈I to AE is the E-operator. The
structure AE is also called the E-combination of the structures Ai and
denoted by CombE(Ai)i∈I ; here Ai = (AE � Ai) � Σ(Ai), i ∈ I. Similar
above, structures A′, which are elementary equivalent to AE, are denoted
by CombE(A′

j)j∈J , where A′
j are restrictions of A′ to its E-classes. The

E-operator works for the theories Ti = Th(Ai) producing the theory TE =
Th(AE), being E-combination of Ti, which is denoted by CombE(Ti)i∈I or
by CombE(T ), where T = {Ti | i ∈ I}.
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Clearly, A′ ≡ AP realizing p∞(x) is not elementary embeddable into
AP and can not be represented as a disjoint P -combination of A′

i ≡ Ai,
i ∈ I. At the same time, there are E-combinations such that all A′ ≡
AE can be represented as E-combinations of some A′

j ≡ Ai. We call this

representability of A′ to be the E-representability.
If there is A′ ≡ AE which is not E-representable, we have the E′-

representability replacing E by E′ such that E′ is obtained from E adding
equivalence classes with models for all theories T , where T is a theory
of a restriction B of a structure A′ ≡ AE to some E-class and B is not
elementary equivalent to the structures Ai. The resulting structure AE′

(with the E′-representability) is a e-completion, or a e-saturation, of AE.
The structure AE′ itself is called e-complete, or e-saturated, or e-universal,
or e-largest.

For a structure AE the number of new structures with respect to the
structures Ai, i. e., of the structures B which are pairwise elementary non-
equivalent and elementary non-equivalent to the structures Ai, is called
the e-spectrum of AE and denoted by e-Sp(AE). The value sup{e-Sp(A′)) |
A′ ≡ AE} is called the e-spectrum of the theory Th(AE) and denoted by
e-Sp(Th(AE)).

If AE does not have E-classes Ai, which can be removed, with all E-
classes Aj ≡ Ai, preserving the theory Th(AE), then AE is called e-prime,
or e-minimal.

For a structure A′ ≡ AE we denote by TH(A′) the set of all theories
Th(Ai) of E-classes Ai in A′.

By the definition, an e-minimal structure A′ consists of E-classes with
a minimal set TH(A′). If TH(A′) is the least for models of Th(A′) then A′

is called e-least.

Definition 2. [6]. Let T be the class of all complete elementary theories
of relational languages. For a set T ⊂ T we denote by ClE(T ) the set of
all theories Th(A), where A is a structure of some E-class in A′ ≡ AE,
AE = CombE(Ai)i∈I , Th(Ai) ∈ T . As usual, if T = ClE(T ) then T is said
to be E-closed.

The operator ClE of E-closure can be naturally extended to the classes
T ⊂ T as follows: ClE(T ) is the union of all ClE(T0) for subsets T0 ⊆ T .

For a set T ⊂ T of theories in a language Σ and for a sentence ϕ with
Σ(ϕ) ⊆ Σ we denote by Tϕ the set {T ∈ T | ϕ ∈ T}.

Proposition 1. [6]. If T ⊂ T is an infinite set and T ∈ T \ T then T ∈
ClE(T ) (i.e., T is an accumulation point for T with respect to E-closure
ClE) if and only if for any formula ϕ ∈ T the set Tϕ is infinite.

Definition 3. [6]. Let T0 be a closed set in a topological space (T ,OE(T )),
where OE(T ) = {T \ ClE(T ′) | T ′ ⊆ T }. A subset T ′

0 ⊆ T0 is said to be
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generating if T0 = ClE(T ′
0 ). The generating set T ′

0 (for T0) is minimal if T ′
0

does not contain proper generating subsets. A minimal generating set T ′
0 is

least if T ′
0 is contained in each generating set for T0.

Theorem 1. [6]. If T ′
0 is a generating set for a E-closed set T0 then the

following conditions are equivalent:
(1) T ′

0 is the least generating set for T0;
(2) T ′

0 is a minimal generating set for T0;
(3) any theory in T ′

0 is isolated by some set (T ′
0 )ϕ, i.e., for any T ∈ T ′

0

there is ϕ ∈ T such that (T ′
0 )ϕ = {T};

(4) any theory in T ′
0 is isolated by some set (T0)ϕ, i.e., for any T ∈ T ′

0

there is ϕ ∈ T such that (T0)ϕ = {T}.

Proposition 2. [6]. For any closed nonempty set T0 in a topological space
(T ,OE(T )) and for any T ′

0 ⊆ T0, the following conditions are equivalent:
(1) T ′

0 is the least generating set for T0;
(2) any/some structure AE = CombE(Ai)i∈I , where {Th(Ai) | i ∈ I} =

T ′
0 , is an e-least model of the theory Th(AE) and E-classes of each/some
e-largest model of Th(AE) form models of all theories in T0;

(3) any/some structure AE = CombE(Ai)i∈I , where {Th(Ai) | i ∈ I} =
T ′
0 , Ai �≡ Aj for i �= j, is an e-least model of the theory Th(AE), where
E-classes of AE form models of the least set of theories and E-classes of
each/some e-largest model of Th(AE) form models of all theories in T0.

Theorem 1 and Proposition 2 answer Question 1 in [6] characterizing
the existence of the least generating set. The following question also has
been formulated in [6].

Question. Is there exists a theory Th(AE) without the least generating set?

Below we will consider a class of special theories with respect to their
languages and answer the question characterizing the existence of the least
generating set in these special cases.

2. Language uniform theories and related E-closures

Definition 4. A theory T in a predicate language Σ is called language
uniform, or a LU-theory if for each arity n any substitution on the set of
non-empty n-ary predicates preserves T . The LU-theory T is called IILU-
theory if it has non-empty predicates and as soon as there is a non-empty
n-ary predicate then there are infinitely many non-empty n-ary predicates
and there are infinitely many empty n-ary predicates.

Below we point out some basic examples of LU-theories:
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• Any theory T0 of infinitely many independent unary predicates Rk is
a LU-theory; expanding T0 by infinitely many empty predicates Rl we get
a IILU-theory T1.

• Replacing independent predicates Rk for T0 and T1 by disjoint unary
predicates R′

k with a cardinality λ ∈ (ω + 1) \ {0} such that each R′
k has

λ elements; the obtained theories are denoted by T λ
0 and T λ

1 respectively;
here, T λ

0 and T λ
1 are LU-theories, and, moreover, T λ

1 is a IILU-theory; we
denote T 1

0 and T 1
1 by T c

0 and T c
1 ; in this case nonempty predicates R′

k
are singletons symbolizing constants which are replaced by the predicate
languages.

• Any theory T of equal nonempty unary predicates Rk is a LU-theory;

• Similarly, LU-theories and IILU-theories can be constructed using n-
ary predicate symbols of arbitrary arity n.

• The notion of language uniform theory can be extended for an arbitrary
language taking graphs for language functions; for instance, theories of free
algebras can be considered as LU-theories.

• Acyclic graphs with colored edges (arcs), for which all vertices have
same degree with respect to each color, has LU-theories. If there are in-
finitely many colors and infinitely many empty binary relations then the
colored graph has a IILU-theory.

• Generic arc-colored graphs without colors for vertices [1; 4], free poly-
gonometries of free groups [2], and cube graphs with coordinated colorings
of edges [2; 3] have LU-theories.

The simplest example of a theory, which is not language uniform, can
be constructed taking two nonempty unary predicates R1 and R2, where
R1 ⊂ R2. More generally, if a theory T , with nonempty predicates Ri, i ∈ I,
of a fixed arity, is language uniform then cardinalities of Rδ1

i1
(x̄)∧. . .∧Rδ1

ij
(x̄)

do not depend on pairwise distinct i1, . . . , ij .

Remark 1. Any countable theory T of a predicate language Σ can be
transformed to a LU-theory T ′. Indeed, since without loss of generality

Σ is countable consisting of predicate symbols R
(kn)
n , n ∈ ω, then we

can step-by-step replace predicates Rn by predicates R′
n in the following

way. We put R′
0 � R0. If predicates R

′
0, . . . , R

′
n of arities r0 < . . . < rn,

respectively, are already defined, we take for R′
n+1 a predicate of an arity

rn+1 > max{rn, kn+1}, which is obtained from R′
n+1 adding rn+1 − kn+1

fictitious variables corresponding to the formula

R′(x1, . . . , xkn+1) ∧ (xkn+2 ≈ xkn+2) ∧ (xrn+1 ≈ xrn+1).

If the resulted LU-theory T ′ has non-empty predicates, it can be trans-
formed to a countable IILU-theory T ′′ copying these non-empty predicated
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with same domains countably many times and adding countably many
empty predicates for each arity rn.

Clearly, the process of the transformation of T to T ′ do not hold for
uncountable languages, whereas any LU-theory can be transformed to an
IILU-theory as above.

Definition 5. Recall that theories T0 and T1 of languages Σ0 and Σ1

respectively are said to be similar if for any models Mi |= Ti, i = 0, 1,
there are formulas of Ti, defining inMi predicates, functions and constants
of language Σ1−i such that the corresponding structure of Σ1−i is a model
of T1−i.

Theories T0 and T1 of languages Σ0 and Σ1 respectively are said to
be language similar if T0 can be obtained from T1 by some bijective re-
placement of language symbols in Σ1 by language symbols in Σ0 (and vice
versa).

Clearly, any language similar theories are similar, but not vice versa.
Note also that, by the definition, any LU-theory T is language similar to
any theory T σ which is obtained from T replacing predicate symbols R by
σ(R), where σ is a substitution on the set of predicate symbols in Σ(T )
corresponding to nonempty predicates for T as well as a substitution on
the set of predicate symbols in Σ(T ) corresponding to empty predicates for
T . Thus we have

Proposition 3. Let T1 and T2 be LU-theories of same language such
that T2 is obtained from T1 by a bijection f1 (respectively f2) mapping
(non)empty predicates for T1 to (non)empty predicates for T2. Then T1
and T2 are language similar.

Corollary 1. Let T1 and T2 be countable IILU-theories of same language
such that the restriction T ′

1 of T1 to non-empty predicates is language similar
to the restriction T ′

2 of T2 to non-empty predicates. Then T1 and T2 are
language similar.

Proof. By the hypothesis, there is a bijection f2 for non-empty predicates of
T1 and T2. Since T1 and T2 be countable IILU-theories then T1 and T2 have
countably many empty predicates of each arity with non-empty predicates,
there is a bijection f1 for empty predicates of T1 and T2. Now Corollary is
implied by Proposition 3.

Definition 6. For a theory T in a predicate language Σ, we denote by
SuppΣ(T ) the support of Σ for T , i. e., the set of all arities n such that
some n-ary predicate R for T is not empty.

Clearly, if T1 and T2 are language similar theories, in predicate languages
Σ1 and Σ2 respectively, then SuppΣ1

(T1) = SuppΣ2
(T2).
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Definition 7. Let T1 and T2 be language similar theories of same language
Σ. We say that T2 language dominates T1 and write T1 �L T2 if for any
symbol R ∈ Σ, if T1 � ∃x̄R(x̄) then T2 � ∃x̄R(x̄), i. e., all predicates, which
are non-empty for T1, are nonempty for T2. If T1 �L T2 and T2 �L T1, we
say that T1 and T2 are language domination-equivalent and write T1 ∼L T2.

Proposition 4. The relation �L is a partial order on any set of LU-
theories.

Proof. Since �L is always reflexive and transitive, it suffices to note that
if T1 �L T2 and T2 �L T1 then T1 = T2. It follows as language similar
LU-theories coincide having the same set of nonempty predicates.

Definition 8. We say that T2 infinitely language dominates T1 and write
T1 �L

∞ T2 if T1 �L T2 and for some n, there are infinitely many new
nonempty predicates for T2 with respect to T1

Since there are infinitely many elements between any distinct compara-
ble elements in a dense order, we have

Proposition 5. If a class of theories T has a dense order �L then T1 �
L
∞

T2 for any distinct T1, T2 ∈ T with T1 �L T2.

Clearly, if T1 �L T2 then SuppΣ(T1) ⊆ SuppΣ(T2) but not vice versa. In
particular, there are theories T1 and T2 with T1 �L

∞ T2 and SuppΣ(T1) =
SuppΣ(T2).

Let T0 be a LU-theory with infinitely many nonempty predicate of some
arity n, and I0 be the set of indexes for the symbols of these predicates.

Now for each infinite I ⊆ I0 with |I| = |I0|, we denote by TI the theory
which is obtained from the complete subtheory of T0 in the language {Rk |
k ∈ I} united with symbols of all arities m �= n and expanded by empty
predicates Rl for l ∈ I0 \ I, where |I0 \ I| is equal to the cardinality of the
set empty predicates for T0, of the arity n.

By the definition, each TI is language similar to T0: it suffices to take a
bijection f between languages of TI and T0 such that (non)empty predicates
of TI in the arity n correspond to (non)empty predicates of T0 in the arity n,
and f is identical for predicate symbols of the arities m �= n. In particular,

Let T be an infinite family of theories TI , and TJ be a theory of the form
above (with infinite J ⊆ I0 such that |J | = |I0|). The following proposition
modifies Proposition 1 for the E-closure ClE(T ).

Proposition 6. If TJ /∈ T then TJ ∈ ClE(T ) if and only if for any finite
set J0 ⊂ I0 there are infinitely many TI with J ∩ J0 = I ∩ J0.

Proof. By the definition each theory TJ is defined by formulas describing
Pk �= ∅⇔ k ∈ J . Each such a formula ϕ asserts for a finite set J0 ⊂ I0 that
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if k ∈ J0 then Rk �= ∅⇔ k ∈ J . It means that {k ∈ J0 | Pk �= ∅} = J ∩ J0.
On the other hand, by Proposition 1, TJ ∈ ClE(T ) if and only if each such
formula ϕ belongs to infinitely many theories TI in T , i.e., for infinitely
many indexes I we have I ∩ J0 = J ∩ J0.

Now we take an infinite family F of infinite indexes I such that F is
linearly ordered by ⊆ and if I1 ⊂ I2 then I2 \ I1 is infinite. The set {TI |
I ∈ F} is denoted by TF .

For any infinite F ′ ⊆ F we denote by limF ′ the union-set
⋃
F ′ and by

limF ′ intersection-set
⋂
F ′. If limF ′ (respectively limF ′) does not belong

to F ′ then it is called the upper (lower) accumulation point (for F ′). If
J is an upper or lower accumulation point we simply say that J is an
accumulation point.

Corollary 2. If TJ /∈ TF then TJ ∈ ClE(TF ) if and only if J is an (upper
or lower) accumulation point for some infinite F ′ ⊆ F .

Proof. If J = limF ′ or J = limF ′ then for any finite set J0 ⊂ I0 there are
infinitely many TI with J ∩ J0 = I ∩ J0. Indeed, if J =

⋃
F ′ then for any

finite J0 ⊂ I0 there are infinitely many I ∈ F ′ such that I ∩ J0 contains
exactly same elements as J∩J0 since otherwise we have J ⊂

⋃
F ′. Similarly

the assertion holds for J =
⋂
F ′. By Proposition 6 we have TJ ∈ ClE(TF ).

Now let J �= limF ′ and J �= limF ′ for any infinite F ′ ⊆ F . In this case
for each F ′ ⊆ F , either J contains new index j for a nonempty predicate
with respect to

⋃
F ′ for each F ′ ⊆ F with

⋃
F ′ ⊆ J or

⋂
F ′ contains new

index j′ for a nonempty predicate with respect to J for each F ′ ⊆ F with⋂
F ′ ⊇ J . In the first case, for J0 = {j} there are no I ∈ F ′ such that

I ∩ J0 = J ∩ J0. In the second case, for J0 = {j′} there are no I ∈ F ′ such
that I ∩ J0 = J ∩ J0. By Proposition 6 we get TJ /∈ ClE(TF ).

By Corollary 2 the action of the operator ClE for the families TF is
reduced to unions and intersections of index subsets of F .

Now we consider possibilities for the linearly ordered sets F = 〈F ;⊆〉
and their closures F = 〈F ;⊆〉 related to ClE .

The structure F is called discrete if F does not contain accumulation
points.

By Corollary 2, if F is discrete then for any J ∈ F , TJ /∈ ClE(TF\{J}).
Thus we get

Proposition 7. For any discrete F , TF is the least generating set for
ClE(TF ).

By Proposition 7, for any discrete F , TF can be reconstructed from
ClE(TF ) removing accumulation points, which always exist. For instance, if
〈F ;⊆〉 is isomorphic to 〈ω;≤〉 or 〈ω∗;≤〉 (respectively, isomorphic to 〈Z;≤〉)
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then ClE(TF ) has exactly one (two) new element(s) limF or limF (both
limF and limF ).

Consider an opposite case: with dense F . Here, if F is countable then,
similarly to 〈Q;≤〉, taking cuts for F , i. e., partitions (F−, F+) of F with
F− < F+, we get the closure F with continuum many elements. Thus, the
following proposition holds.

Proposition 8. For any dense F , |F | ≥ 2ω.

Clearly, there are dense F with dense and non-dense F . If F is dense

then, since F = F , there are dense F1 with |F1| = |F1|. In particular, it is
followed by Dedekind theorem on completeness of R.

Answering the question in Section 1 we have

Proposition 9. If F is dense then ClE(TF ) does not contain the least
generating set.

Proof. Assume on contrary that ClE(TF ) contains the least generating set
with a set F0 ⊆ F of indexes. By the minimality F0 does not contain both
the least element and the greatest element. Thus taking an arbitrary J ∈ F0

we have that for the cut (F−
0,J , F

+
0,J ), where F

−
0,J = {J− ∈ F0 | J− ⊂ J}

and F+
0,J = {J+ ∈ F0 | J+ ⊃ J}, J = limF−

0,J and J = limF+
0,J . Thus,

F0 \ {J} is again a set of indexes for a generating set for ClE(TF ). Having
a contradiction we obtain the required assertion.

Combining Proposition 2 and Proposition 9 we obtain

Corollary 3. If F is dense then Th(AE) does not have e-least models
and, in particular, it is not small.

Remark 2. The condition of the density of F for Proposition 9 is essen-
tial. Indeed, we can construct step-by step a countable dense structure F
without endpoints such that for each J ∈ F and for its cut (F−

J , F
+
J ), where

F−
J = {J− ∈ F | J− ⊂ J} and F+

J = {J+ ∈ F | J+ ⊃ J}, J ⊃ limF−
J

and J ⊂ limF+
J . In this case ClE(TF ) contains the least generating set

{TJ | J ∈ F}.

In general case, if an element J of F has a successor J ′ or a predecessor
J−1 then J defines a connected component with respect to the operations
·′ and ·−1. Indeed, taking closures of elements in F with respect to ·′ and
·−1 we get a partition of F defining an equivalence relation such that two
elements J1 and J2 are equivalent if and only if J2 is obtained from J1
applying ·′ or ·−1 several (maybe zero) times.

Now for any connected component C we have one of the following
possibilities:
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(i) C is a singleton consisting of an element J such that J �= limF−
J and

J �= limF+
J ; in this case J is not an accumulation point for F \{J} and TJ

belongs to any generating set for ClE(TF );
(ii) C is a singleton consisting of an element J such that J = limF−

J

or J = limF+
J , and limF−

J �= limF+
J ; in this case J is an accumulation

point for exactly one of F−
J and F+

J , J separates F−
J and F+

J , and TJ can
be removed from any generating set for ClE(TF ) preserving the generation
of ClE(TF ); thus TJ does not belong to minimal generating sets;

(iii) C is a singleton consisting of an element J such that J = limF−
J =

limF+
J ; in this case J is a (unique) accumulation point for both F−

J and F+
J ,

moreover, again TJ can be removed from any generating set for ClE(TF )
preserving the generation of ClE(TF ), and TJ does not belong to minimal
generating sets;

(iv) |C| > 1 (in this case, for any intermediate element J of C, TJ
belongs to any generating set for ClE(TF )), limC ⊃ limF−

limC and limC ⊂
limF+

limC
; in this case, for the endpoint(s) J∗ of C, if it (they) exists, TJ∗

belongs to any generating set for ClE(TF );
(v) |C| > 1, and limC = limF−

limC or limC = limF+
limC

; in this case, for

the endpoint J∗ = limC of C, if it exists, TJ∗ does not belong to minimal
generating sets of ClE(TF ), and for the endpoint J∗∗ = limC of C, if it
exists, TJ∗∗ does not belong to minimal generating sets of ClE(TF ).

Summarizing (i)–(v) we obtain the following assertions.

Proposition 10. A partition of F by the connected components forms
discrete intervals or, in particular, singletons of F , where only endpoints J
of these intervals can be among elements J∗∗ such that TJ∗∗ does not belong
to minimal generating sets of ClE(TF ).

Proposition 11. If (F−, F+) is a cut of F with limF− = limF+ (re-
spectively limF− ⊂ limF+) then any generating set T 0 for ClE(TF ) is
represented as a (disjoint) union of generating set T 0

F− for ClE(TF−) and

of generating set T 0
F+ for ClE(TF+), moreover, any (disjoint) union of a

generating set for ClE(TF−) and of a generating set for ClE(TF+) is a
generating set T 0 for ClE(TF ).

Proposition 11 implies

Corollary 4. If (F−, F+) is a cut of F then ClE(TF ) has the least gen-
erating set if and only if ClE(TF−) and ClE(TF+) have the least generating
sets.

Considering⊂-ordered connected components we have that discretely or-
dered intervals in F , consisting of discrete connected components and their
limits lim and lim , are alternated with densely ordered intervals including
their limits. If F contains an (infinite) dense interval, then by Proposition
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9, ClE(TF ) does not have the least generating set. Conversely, if F does
not contain dense intervals then ClE(TF ) contains the least generating set.
Thus, answering Questions 1 and 2 [6] for ClE(TF ) including the question
in Section 1, we have

Theorem 2. For any linearly ordered set F , the following conditions are
equivalent:

(1) ClE(TF ) has the least generating set;
(2) F does not have dense intervals.

Remark 3. Theorem 2 does not hold for some non-linearly ordered
F . Indeed, taking countably many disjoint, incomparable with respect to
nonempty predicates modulo their intersections, copies Fq, q ∈ Q, of lin-
early ordered sets isomorphic to 〈ω,≤〉 and ordering limits Jq = limFq by
the ordinary dense order on Q such that {Jq | q ∈ Q} is densely ordered,
we obtain a dense interval {Jq | q ∈ Q} whereas the set ∪{Fq | q ∈ Q}
forms the least generating set T0 of theories for ClE(T0).

The above operation of extensions of theories for {Jq | q ∈ Q} by theories
for Fq as well as expansions of theories of the empty language to theories
for {Jq | q ∈ Q} confirm that the (non)existence of a least/minimal gener-
ating set for ClE(T0) is not preserved under restrictions and expansions of
theories.

Remark 4. Taking an arbitrary theory T with a non-empty predicate R
of an arity n, we can modify Theorem 2 in the following way. Extending
the language Σ(T ) by infinitely many n-ary predicates interpreted exactly
as R and by infinitely many empty n-ary predicates we get a class TT,R of
theories R-generated by T . The class TT,R satisfies the following: any linearly
ordered F as above is isomorphic to some family F ′, under inclusion, sets
of indexes of non-empty predicates for theories in TT,R such that strict
inclusions J1 ⊂ J2 for elements in F ′ imply that cardinalities J2 \ J1 are
infinite and do not depend on choice of J1 and J2. Theorem 2 holds for
linearly ordered F ′ involving the given theory T .

3. On e-spectra for families of language uniform theories

Remark 5. Remind [5, Proposition 4.1, (7)] that if T = Th(AE) has an
e-least modelM then e-Sp(T ) = e-Sp(M). Then, following [5, Proposition
4.1, (5)], e-Sp(T ) = |T0\T ′

0 |, where T ′
0 is the (least) generating set of theories

for E-classes of M, and T0 is the closed set of theories for E-classes of an
e-largest model of T . Note also that e-Sp(T ) is infinite if T0 does not have
the least generating set.
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Remind that, as shown in [5, Propositions 4.3], for any cardinality λ
there is a theory T = Th(AE) of a language Σ such that |Σ| = |λ+ 1| and
e-Sp(T ) = λ. Modifying this proposition for the class of LU-theories we
obtain

Proposition 12. (1) For any μ ≤ ω there is an E-combination T =
Th(AE) of IILU-theories in a language Σ of the cardinality ω such that T
has an e-least model and e-Sp(T ) = μ.

(2) For any uncountable cardinality λ there is an E-combination T =
Th(AE) of IILU-theories in a language Σ of the cardinality λ such that T
has an e-least model and e-Sp(T ) = λ.

Proof. In view of Propositions 2, 7 and Remark 5, it suffices to take an
E-combination of IILU-theories of a language Σ of the cardinality λ and
with a discrete linearly ordered set F having:

1) μ ≤ ω accumulation points if λ = ω;
2) λ accumulation points if λ > ω.
We get the required F for (1) taking:
(i) finite F for μ = 0;
(ii) μ/2 discrete connected components, forming F , with the ordering

type 〈Z;≤〉 and having pairwise distinct accumulation points, if μ > 0 is
even natural;

(iii) (μ − 1)/2 discrete connected components, forming F , with the or-
dering type 〈Z;≤〉 and one connected components with the ordering type
〈ω;≤〉 such that all accumulation points are distinct, if μ > 0 is odd natural;

(iv) ω discrete connected components, forming F , with the ordering type
〈Z;≤〉, if μ = ω.

The required F for (2) is formed by (uncountably many) λ discrete
connected components, forming F , with the ordering type 〈Z;≤〉.

Combining Propositions 2, 9, Theorem 2, and Remark 5 with F having
dense intervals, we get

Proposition 13. For any infinite cardinality λ there is an E-combination
T = Th(AE) of IILU-theories in a language Σ of cardinality λ such that T
does not have e-least models and e-Sp(T ) ≥ max{2ω, λ}.

Assertion of Proposition 13 can be improved as follows.

Proposition 14. For any infinite cardinality λ there is an E-combination
T = Th(AE) of LU-theories in a language Σ of cardinality λ such that T
does not have e-least models and e-Sp(T ) = 2λ.

Proof. Let Σ be a language consisting, for some natural n, of n-ary predicate
symbols Ri, i < λ. Choose a cardinality μ ∈ (ω \ {0}) ∪ {ω}. For any
Σ′ ⊆ Σ we take a structure AΣ′ of the cardinality μ such that Ri = (AΣ′)n
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for Ri ∈ Σ′, and Ri = ∅ for Ri ∈ Σ \ Σ′. Clearly, each structure AΣ′

has a LU-theory and AΣ′ �≡ AΣ′′ for Σ′ �= Σ′′. For the E-combination AE

of the structures AΣ′ we obtain the theory T = Th(AE) having a model
of the cardinality λ. At the same time AE has 2λ distinct theories of the
E-classes AΣ′ . Thus, e-Sp(T ) = 2λ. Finally we note that T does not have
e-least models by Theorem 1 and arguments for Proposition 6.

Remark 6. LU-theories in the proof of Proposition 14 can be easily
transformed to IILU-theories with the same effect for the e-spectrum.

4. Cantor-Bendixson ranks for language uniform theories

Recall the definition of the Cantor-Bendixson rank. It is defined on the
elements of a topological space X by induction: CBX(p) ≥ 0 for all p ∈ X;
CBX(p) ≥ α if and only if for any β < α, p is an accumulation point
of the points of CBX-rank at least β. CBX(p) = α if and only if both
CBX(p) ≥ α and CBX(p) � α + 1 hold; if such an ordinal α does not
exist then CBX(p) = ∞. Isolated points of X are precisely those having
rank 0, points of rank 1 are those which are isolated in the subspace of
all non-isolated points, and so on. For a non-empty C ⊆ X we define
CBX(C) = sup{CBX(p) | p ∈ C}; in this way CBX(X) is defined and
CBX({p}) = CBX(p) holds. If X is compact and C is closed in X then
the sup is achieved: CBX(C) is the maximum value of CBX(p) for p ∈ C;
there are finitely many points of maximum rank in C and the number of
such points is the CBX-degree of C. If X is countable and compact then
CBX(X) is a countable ordinal and every closed subset has ordinal-valued
rank and finite CBX -degree.

Clearly, for any set F , where ClE(TF ) does not have the least generating
set, CBTF (TF ) =∞.

Theorem 3. For any countable ordinal α and a natural number n > 0,
there is an E-closed family TFα of LU-theories such that CBTFα

(TFα) = α
and its CBTFα

-degree is equal to n.

Proof. If α = 0 it suffices to take n singletons F0,1, . . . ,F0,n. If α = 1
we take n disjoint copies F1,j , j = 1, . . . , n, of Fq in Remark 3, each of
which is ordered as 〈ω,≤〉 and ∪F0,j = limF1,j , j = 1, . . . , n. We set F0 =

F0,1∪. . .∪F0,n, F1 = F0∪
n⋃

j=1
F1,j . If α > 1 is finite and Fα is already defined

then we add ω new disjoint copies Fα+1,m of Fq related to each element
in Fα \ Fα−1, each of which is ordered as 〈ω,≤〉 and fm = limFα+1,m,
fm ∈ Fα \ Fα−1. In such a case, CB(F0,j) = α + 1 and CB-degree is equal
to n.

Известия Иркутского государственного университета.
2016. Т. 17. Серия «Математика». С. 62–76



FAMILIES OF LANGUAGE UNIFORM THEORIES 75

In general case, if α is limit we take TFα as the union of TFβ
for β < α

with ω disjoint copies of Fq such that each element in TFβ
is the limit lim

of unique new copy of Fq and vice versa. Otherwise, if α = β + 1, we add
ω disjoint copies of Fq such that the set of these new copies F are in the
bijective correspondence with the set of elements f , added in the step β,
and f = limF .

The inductive process guarantees that CBTFα
(TFα) = α and CBTFα

-
degree is equal to n.
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С. В. Судоплатов
Семейства сигнатурно однородных теорий и их порождаю-

щие множества

Аннотация. Вводится понятие сигнатурно однородной теории и изучаются
топологические свойства, относящиеся к семействам сигнатурно однородных тео-
рий и их E-совмещениям. Показано, что класс сигнатурно однородных теорий до-
статочно широк. Найдены достаточные условия сигнатурного подобия сигнатурно
однородных теорий. Изучены свойства сигнатурного доминирования и бесконечного
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сигнатурного доминирования. Найдена характеризация для E-замыкания семейства
сигнатурно однородных теорий в терминах индексных множеств. Рассмотрен класс
линейно упорядоченных семейств сигнатурно однородных теорий и к этому классу
применена указанная характеризация. Исследованы свойства дискретных и плотных
индексных множеств: показано, что любое дискретное индексное множество задает
наименьшее порождающее множество, в то время как плотные индексные множества
определяют по меньшей мере континуальное число точек накопления и замыкания
без наименьших порождающих множеств. В частности, при наличии плотного ин-
дексного множества теория соответствующего E-совмещения не имеет e-наименьшей
модели и не является малой. Используя дихотомию для дискретных и плотных
индексных множеств, решается проблема существования наименьшего порождаю-
щего множества относительно E-совмещений и характеризуется это существование
в терминах порядков.
Получены значения e-спектров для семейств сигнатурно однородных теорий. По-

казано, что любой e-спектр может быть реализован некоторым E-совмещением сиг-
натурно однородных теорий. Найдены нижние оценки для e-спектров относительно
мощностей сигнатур.
Показано, что семейства сигнатурно однородных теорий задают произвольный

ранг Кантора – Бендиксона и произвольную степень относительно этого ранга.
Ключевые слова: E-совмещение, P -совмещение, оператор замыкания, порож-

дающее множество, сигнатурно однородная теория.
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