

Серия «Математика» 2012. Т. 5, № 1. С. 42—47

Онлайн-доступ к журналу: http://isu.ru/izvestia ИЗВЕСТИЯ

Иркутского государственного университета

УДК 517.958:550.3

Математическое моделирование нелинейной релаксации сейсмического процесса Прибайкалья

Ф. И. Иванов

Иркутский государственный университет

Аннотация. В статье представлена постановка и анализ статистической модели процессов релаксации в сейсмичности Прибайкалья (МК-модель).

Ключевые слова: сейсмический процесс; метод Монте-Карло.

Центральной проблемой исследования сейсмичности является прогноз сильных землетрясений. На настоящем этапе немногие задачи прогноза решаются с хорошей точностью. В основной их части мы можем дать только достаточно грубые статистические оценки на основе коротких рядов инструментальных наблюдений, исторических данных и идентификации сейсмоактивных зон методами сейсмогеологии и геофизики. Достаточно отметить, что в Прибайкалье сеть сейсмических станций начала развиваться с середины прошлого столетия, в то время как периоды подготовки сильных землетрясений измеряются десятками и сотнями лет.

В то же время, накопленные инструментальные данные составляют хорошую основу для построения математических моделей сейсмичности региона. Решающую роль в их обосновании и развитии сыграла концепция структурной неоднородности геофизической среды, разработанная в механике крупномасштабных взрывов [1; 2].

В статье рассматривается новый подход к построению модели сейсмичности Прибайкалья, базирующийся на алгоритме оценки энергии землетрясений, разработанном в работе [3].

Данная модель позволила сделать обоснованные предположения о направлении активизации Байкальской рифтовой зоны, достаточно уверенно выделить афтершоковую составляющую в сейсмическом процессе и уточнить связь между длительностью сейсмических колебаний и размером очага землетрясения.

1. Общая постановка задачи

МК-моделирование неравновесных систем, как правило, проводится в два этапа. На первом этапе в систему вводится некоторое возмущение, случайным образом нарушающее равновесное распределение системы. Второй этап обеспечивает поиск решения задачи, т. е. построение динамики возврата к равновесному состоянию. Формализованные элементы этого динамического процесса, а также регулирующие правила допустимых переходов с помощью техники Монте-Карло и определяют собственно МК-модель той или иной динамической системы.

Существенной особенностью геомеханической системы является блоковая структура, которая может быть описана диагональной матрицей:

$$p_{ij} = \delta_{ij} f(\alpha V_i).$$

Здесь V_i — размер блока, p_{ii} — вероятность обнаружения блока заданного размера, а f(x) — монотонно убывающая функция.

Под воздействием внешних сил, которые являются медленными по сравнению с временами релаксации в системе, каждый блок является генератором возбуждений, вероятности которых проявиться в виде землетрясений, описываются верхней треугольной матрицей $W_{ij}(E)$, где E — энергия землетрясения.

Отсюда формально строится эволюционный оператор, который при заданном векторе начального состояния системы определяет наблюдаемые величины: количество землетрясений за определенный интервал времени как функцию энергии землетрясений и их координат (график повторяемости).

При анализе сейсмического процесса метод Монте-Карло удобно ввести через матрицу плотности, имеющую в энергетическом представлении вид:

$$\rho_{ij} = \delta_{ij} \exp(-\beta E_i).$$

То есть матрица плотности диагональная и ρ_{ii} — есть вероятность обнаружить систему в состоянии с энергией E_i .

В свою очередь, матрица плотности ρ формально может быть определена как решение эволюционного уравнения в координатном представлении:

$$\frac{\partial \rho(x, x', \beta)}{\partial \beta} = -H\rho(x, x', \beta).$$

Здесь: H — гамильтониан системы, а решение удовлетворяет начальному условию $\rho(x,x',\beta)=\delta(x-x')$.

Для свободной частицы данное уравнение принимает вид уравнения диффузии:

$$\frac{\partial \rho(x,x',\beta)}{\partial \beta} = -\chi \frac{\partial^2}{\partial \beta^2} \rho(x,x',\beta).$$

Аналитическое решение уравнения в изотропной и однородной среде с указанными начальными условиями хорошо известно.

Но данное решение может быть получено путем статистического усреднения по ансамблю траекторий случайного блуждания, которые легко генерируются в компьютерном эксперименте.

Отсюда естественным образом формулируется вариант МК-моделирования задач релаксации структурно неоднородных макроскопических систем, как построение и анализ броуновского движения в многомерном конфигурационном пространстве с заданной или вычисляемой дискретной структурой. Отметим, что данный подход асимптотически точен, как и автомодельное решение диффузионного уравнения.

2. МК-модель сейсмичности Прибайкалья

Представленная модель построена на основе системы уравнений нестационарной теории возмущений:

$$\frac{\partial P_m}{\partial t} = \sum_n \left(W_{nm} P_n - W_{mn} P_m \right).$$

Здесь: P_m — вероятность нахождения системы в одном из допустимых состояний, W_{nm} — отнесенная к единице времени вероятность перехода системы из состояния n в состояние m.

В качестве основного постулата модели принят график повторяемости землетрясений равновесного сейсмического процесса в виде [3]:

$$P_m = S/E_m.$$

Соответственно, правило разрешенного перехода в МК-модели неравновесного сейсмического процесса принято в виде:

$$W_{nm} = \frac{\alpha}{\tau \left(\alpha + \delta E_{nm}(n)\right)}.$$

Здесь τ , α — параметры настройки модели, n — плотность элементарных возбуждений в системе, δE_{nm} — изменение энергии системы при вариации одной из координат конфигурационного пространства.

Вторая особенность МК-модели сейсмического процесса — изменение направления времени. То есть изначально генерируется случайное равномерное распределение точек, а в модельном гамильтониане системы эффективное отталкивание соседних частиц изменяется на притяжение. Конечным состоянием системы является неравновесная система как конфигурация кластеров, моделирующих очаги землетрясений.

График повторяемости включает в себя как основные события (стационарный сейсмический процесс), так и индуцированные — афтершоки сильных землетрясений. Соответственно, задача оценки неравновесного распределения сводится к подсчету количества и размеров кластеров с последующим усреднением по совокупности реализаций.

Вторая задача составляет точную идентификацию структуры максимального кластера и решение задачи броуновского движения внутри этого кластера.

Дополнительно, в МК-модель был включен блок оценки энтропии сейсмического процесса:

$$\frac{\partial S}{\partial t} = -\sum_{n} W_{nm}(P_n - P_m) \ln(P_n - P_m).$$

3. Анализ МК-модели

В Байкальской сейсмической зоне район южного Байкала и дельты Селенги относится к наиболее активным очаговым областям. В 1862 г. здесь произошло сильнейшее в Прибайкалье Цаганское землетрясение с магнитудой M=7,5, в результате которого, по мнению ряда исследователей, образовался залив Провал. В 1903 г. произошло землетрясение с M=6,7, а в 1959 г. — землетрясение с магнитудой 6,8. Особенность этого региона состояла в том, что с начала 1952 г, когда началась регистрация слабых землетрясений и до момента последнего землетрясения 1959 г., здесь регистрировались лишь единичные случаи. Уже за первые 3 месяца после этого землетрясения сформировался устойчивый сейсмический процесс.

Это событие дало уникальную возможность оценить релаксационные процессы в достаточно чистом виде. Детальный анализ афтершоковой активности этого региона вплоть до последнего землетрясения 2001 г. дан в [3]. Здесь мы представим только основные параметры, на основе которых настраивалась МК-модель.

- 1) Область очаговой зоны может быть описана эллипсом с полуосями 11.8 км и 13,3 км. Эффективный сферический радиус излучателя упругой энергии составляет R=12,4 км.
- 2) Радиационная энергия излучения в логарифмическом масштабе составляет 16,68. Суммарная энергия афтершоков в области очага за первые 4 месяца соизмерима и составляет 16,62.
- 3) За 2 года сформировался афтершоковый процесс в области, вмещающей очаг с радиусом $R_{{
 m per}}=8R.$

4) На длительном интервале времени (40 лет) достаточно уверенно выделяются землетрясения с высокой энергией, составляющие основной стационарный процесс, график повторяемости которых описывается формулой

$$P = \frac{S}{E^{(1-0.5)}}.$$

5) График повторяемости землетрясений афтершокового процесса описывается формулой

$$P = \frac{S(t)}{E^{(1-\delta(t))}}.$$

Здесь максимальные вариации S(t) достигают 1,5 логарифмических единиц, а $\delta(t)$ изменяется в диапазоне 0,2–0,5.

На основе этих данных определен размер сетки МК-модели, оценена энергия нерегистрируемых возбуждений $\alpha(M)$, а вдоль большой оси эллипса очаговой зоны в МК-модель включен слабый логарифмический потенциал. При этих параметрах МК-модель достаточно уверенно определяет $\delta(t)$ афтершокового процесса, однако гармонические вариации S(t) существенно превышают оценки стандартного отклонения.

Для исследования данного вопроса был выполнен совместный анализ параметров сейсмичности представленного района и зоны, включающей юг Байкала и озеро Хубсугул. В целом кривые, описывающие вариации S(t) для этих районов, удовлетворительно согласуются между собой. Это свидетельствует о том, что изучаемые процессы являются пространственно-временным фрагментом сейсмического процесса Прибайкалья в целом. То есть мы должны существенно огрубить модель, включив более длительные интервалы времен и увеличить масштаб исследуемого процесса.

В связи с этим Байкальская рифтовая зона была разбита на 5 крупных зон, а время усреднения в МК-модели включало 20-летний период наблюдений. На этих объектах хороший результат показал модуль оценки энтропии глобального в рамках региона сейсмического процесса. На его основе установлено закономерное снижение энтропии при движении от юго-восточного к северо-западному флангу, что дает основания сделать важное заключения о соответствующем направлении активизации Байкальского рифта.

Хорошие результаты МК-модель дает и на уровне анализа отдельного кластера. Эта задача интересна тем, что размер кластера в модели связывается с энергией отдельного землетрясения. Соответственно, выделяются два этапа:

точная идентификация конфигурации крупных кластеров в модели;

решение задачи броуновского движения частицы внутри отдельного кластера.

Эти этапы легко реализуются в компьютерном эксперименте. Одним из проверяемых результатов МК-модели служит длительность колебаний, генерируемых очагом сильного землетрясения. Результаты расчетов позволили установить связь длительности колебаний с размером очага землетрясения в виде формулы:

$$t = 0.054R^{0.49}$$

что в целом соответствует экспериментальным данным.

Список литературы

- 1. Адушкин В. В. Геомеханика крупномасштабных взрывов / В. В. Адушкин, А. А. Спивак. М. : Недра, 1993. 319 с.
- Садовский М. А. От сейсмологии к геомеханике / М. А. Садовский, В. Ф. Писаренко, В. Н. Родионов // Вестн. АН СССР. 1983. № 1. С. 32–38.
- 3. Потапов В. А. Дискретные и непрерывные модели в сейсмологии / В. А. Потапов, Ф. И. Иванов. Иркутск : Ин-т земной коры СО РАН, 2005. 196 с.

F. I. Ivanov

Mathematical modeling of nonlinear relaxation in seismic process

Abstract. The article present formulation of the statistical model of relaxation processes in seismicity of Baikal region (MK-model).

Keywords: seismic process, Monte-Carlo method

Иванов Федор Илларионович, доктор физико-математических наук, профессор, Институт математики, экономики и информатики, Иркутский государственный университет, 664003, Иркутск, ул. К. Маркса, 1, тел.: (3952)242210 (fivanov@math.isu.ru)

Ivanov Fedor, Irkutsk State University, 1, K. Marks St., Irkutsk, 664003 professor, Phone: (3952)242210 (fivanov@math.isu.ru)