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Abstract. The main purpose of this paper is to retrace the evolution of mathematical
models focused on relation and interaction between economic growth, sustainable deve-
lopment and natural environment conservation. The starting point is a simple model of
common-property harvesting, where renewable resource grows according to the course
of nature. Further, this model is amended with defensive expenditures that favor the
species growth. Apart from solely harvesting models, a transition model comprising both
harvesting and non-harvesting values of wild biological species is presented. Preponde-
rantly, all these models are designed to seek for long-term optimal and/or sustainable
strategies for harvesting, where species preservation guarantees the profit stability for
future generations and thus contributes to the economic development.
On the other hand, there is a group of purely non-harvesting models where anthropic

activities and economic growth may have positive or negative impact on the natural
evolution of wild species. Several scholars have proved that optimal strategies that are
relatively good for harvesting purposes are not merely transferrable to the context of
conservation of wildlife biological species with no harvesting value. However, existence of
long-term conservation policies for all biological species (with or without harvesting value)
cannot be guaranteed without having relatively large species populations at initial time.
Therefore, all such strategies are incapable to enhance scarce population of endangered
species and save them from eventual (local) extinction.
As an alternative, policy makers are compelled to design and implement short-term

defensive actions aimed at enhancement of wildlife species populations. The latter is
referred to as an emergent area of research in conservation biology.
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1. Introduction

Almost all scientists agree that the major factors that contribute to
biodiversity loss1 are: overexploitation, deforestation, invasive species, air
and water pollution, soil contamination, and climate change. Despite signifi-
cant efforts of human society (such as ecosystem stewardship, new common-
property ecological policies, legislative initiatives aimed at habitat restora-
tion, increase of protected terrestrial, coastal and maritime areas, etc.),
biodiversity continues to decline world-wide (see a thorough analysis in [18]
and numerous references therein). Therefore, it is fair to say that global
commitments made in 2002, through the Convention on Biological Diversity
(CBD), have not been met yet.

A critical review [16] summarizes key features of four basic categories
of models that integrate economic theories and strategies aimed at species
conservation. The majority of these models are designed in order to help a
social planner to define strategies for optimal and/or sustainable harvesting,
where species preservation guarantees the profit stability for future genera-
tions and thus contributes to the economic development. A pioneering work
of H. S. Gordon [17] provided the framework for bioeconomical modeling of
common-property renewable resources (such as fisheries, for example), and
fundamental principles of sustainable bioeconomics were further summari-
zed by C. W. Clark [10] using mathematical modeling.

In recent decades, there has been noted an increasing interest in research
on relation and interaction between economic growth, sustainable develop-
ment and natural environment conservation. Besides direct consumption
of renewable resources (i.e. harvesting) there are other factors that may
provoke drastic reductions and, possibly, extinction of the species popula-
tions. It is worthwhile to note that, according to [15], the primary cause of
the decay of organic diversity is not direct human exploitation or malevo-
lence, but the habitat destruction that inevitably results from expansion of
human population and human activities.

Several authors tried to predict the long-run consequences of pollution
and natural resource scarcity using macroeconomic growth models. Such
models consider man-made capital, natural stock and emissions as necessary
factors of production, where pollution directly affects both the growth of
renewable resources and social welfare (see, e.g., [11; 23; 24]).

Alternatively, T. M. Swanson [22] had proposed a constructive adjust-
ment to classical harvesting models of Gordon-Schaefer type (thoroughly
described in [4; 10] among other similar texts) where harvesting effort
is traditionally modeled by a control variable. He had explicitly included
another control variable that expresses the allocation of resources required

1 For more comprehensive review on imminent threats to biodiversity please refer to
[19, pp. 133-135].
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for a species’ survival. The latter can be treated as an initial attempt to
modify the biological dynamics of species growth with defensive actions of
policy-makers aimed at species protection.

Swanson’s idea was further developed by R. Alexander [2] who also
proposed to include in the objective function both consumptive and non-
consumptive2 values of the biological species. This approach can be applied
to analyze the population dynamics of endangered species that have both
consumptive and non-consumptive values in order to design the appropriate
conservation policies for their sustainability and bioeconomic viability.

On the other hand, there are many wildlife species with no harvest
value that are currently in threat by negative side-effects of human activity
(urbanization, pollution, habitat loss, etc.). As pointed out by several scho-
lars (see, e.g. [19, p. 133] and [1]), most of the species that are becoming
extinct are not “food species” (that is, they are not directly consumed
by humans) but their biomass is converted into human food when their
habitat is transformed into pasture, cropland, and orchards. A recent study
carried out by E. Dumont [14] indicates that we are facing a considerable
reduction of the surface area of wild biodiverse land by the year 2050 as a
consequence of growing human population on our planet. One may argue
that wild species are not absolutely essential for human survival. However,
loss of wilderness irreplaceably diminishes an important source of human
wellbeing.

To study the evolution of such species, R. Alexander and D.W. Shields [3]
had proposed a non-harvesting variant of dynamic model for one particular
species (New Zealand’s yellow-eyed penguin) using as control variable an
index of the quantity of land resources which are vital for the species
survival. The latter can be viewed as a defensive expenditure of the society
aimed at the conservation of the natural habitat of the species. In fact,
this non-harvesting model does not explicitly include the negative impact
that human activity and aggregated production may have on the natural
evolution of species population.

However, other results (such as, [5; 6]) clearly demonstrate that both
negative and positive human actions may alter the stability properties of
the natural dynamic of biological species. These studies, performed on the
basis of dynamic model of two interacting species with linear dynamics,
revealed an interesting fact. Namely, if the equilibrium level of the species
is high enough, the local stability’s properties will be preserved when the
natural biological dynamics (without human intervention) is amended with
economic and ecological features (that is, negative impact of aggregated
production and positive impact of defensive expenditures). Additionally,

2 R. Alexander also cites several previous studies that addressed some non-
consumptive values (principally, tourism values) of particular biological species; however,
none of these studies had explicitly included such non-consumptive values in the
mathematical models.
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other authors (see [8] and [12]) have come to the same conclusion using as
a basis a single-species model with Gompertz-type and logistic population
growth, respectively.

All previously mentioned models have been formulated for infinite time
horizon and are aimed at design of long-term policies for species conserva-
tion. Their meticulous analysis disclosed that initial abundance of the spe-
cies population is crucial for existence of sustainable policies for long-term
conservation planning. In other words, long-term policies are incapable to
enhance initially scarce populations of endangered species.

On the other hand, an emergent study conducted in [13] had revealed the
existence of short-term decision policies capable to enhance the population
of single endangered species within a finite period time. However, such
policies will require a relatively high level of initial capital to be quickly
spent for species conservation. Thus, and aggregated production that gene-
rates additional capital surplus may also have a positive effect on species
conservation.

2. Harvesting models with consumptive utility

A customary framework of bioeconomic models with harvesting of so-
called Schaefer-Gordon type can be found in [4; 10] or similar textbooks.
This type of models fits into the following mathematical formulation:

dx

dt
= F (x)−H(x, h), x(0) = x0 (2.1)

where x can be scalar (x = x) or vector
(
x = (x1, x2, . . . , xn)

′) quantity that
stands for the biomass of renewable natural stock consisting of one or more
biological species with harvesting value, and x0 denotes an initial stock
level (constant). Function F = (F1, F2, . . . , Fn) describes the biological
recruitment or growth of the species (and possibly an interaction between
species in the ecosystem), and H(x, h) is a function of harvest with h = h(t)
expressing a stock removal (or harvesting effort) at time t. Variable h(t) is
usually exogenous and is chosen by the social planner in order to maximize
the present values of its future net revenues (or utility) U(x, h):

max
h(t)≥0

∞∫
0

e−ρtU (x(t), h(t)) dt s.t. (2.1) (2.2)

where ρ > 0 denotes the instantaneous discount rate. The above utility is
understood as “consumptive” since it express the net revenue obtained from
direct consumption (or harvesting) of the biological resource:

U(x, h) = [total income] − [total cost].
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In case of single species, x = x, scalar function F is usually supposed to
be a hump-shaped function satisfying the following conditions:

F (x) > 0 for 0 < x < K
F (0) = F (K) = 0
F ′′(x) < 0 for 0 < x < K

where K > 0 represents the maximal stock level sustainable by the environ-
ment which is usually called “carrying capacity.” This term reflects the fact
that without harvesting (H ≡ 0) the natural stock x is bounded from above:

lim
t→∞x(t) = K.

A classical example of F is Verhulst’s logistic function:

F (x) = rx
(
1− x

K

)
(as well as its numerous modifications), where r > 0 stands for intrinsic
growth rate of the stock. Other useful examples are Gompertz growth
function

F (x) = rx ln

(
K

x

)
(see, e.g., [20]) and

F (x) =
rx(K − x)

K + (r/a)x

attributed to F. E. Smith [21].
It was fairly stated by C. W. Clark [10] that low growth rate of biological

stock relative to discount rate (that is, ρ > r > 0) and/or gradual decay
of the carrying capacity K will inevitably lead to stock extermination in
common-property models with harvesting. In this situation, there are two
possible scenarios, namely:

1) Stock extermination or resource mining. If a biological resource is unab-
le to generate a competitive return, a social planner may choose so-
called “optimal extinction” (see more details in [9]). This option is
considered economically viable when
(a) the discount rate sufficiently exceeds the maximum reproductive
potential of the population, and
(b) an immediate profit can be made from harvesting the last remaining
stock.
T. M. Swanson [22] provides a valid example concerned with deforesta-
tion of tropical hardwood forests. He points out: “These trees represent
substantial amount of standing value, but they have very low growth
potential. Thus it is economically rational to “cash in” the hardwoods
and invest the return in other, more productive assets”.
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2) Avoiding extermination. If the natural growth rate of biological stock
is decelerated by limited base resources required for species survival
(such as land, water, etc.) then social planner should provide them
even by incurring to additional costs. This option (also suggested by
T. M. Swanson [22] in attempt to avoid species extinction) requires to
make some adjustment to the traditional harvesting model (2.1)-(2.2),
namely:

max
h(t),R(t)≥0

∞∫
0

e−ρt [U (x(t), h(t)) − ρCRR(t)] dt (2.3)

s.t.
dx

dt
= F (x,R) −H(x, h), x(0) = x0 (2.4)

where CR is the price of a unit of base resource R. These alteration
in the model indicate that, given sufficient resources for the species
survival and reproduction, the biological stock will give a competitive
return even after discounting the total cost of allocation of additional
base resource (expressed by the term ρCRR(t) in (2.3)).

It is worthwhile to note that common-property models with harvesting
described by (2.1)–(2.2) are derived under implicit assumption that biologi-
cal resources are naturally “free goods” and do not require (external) invest-
ments. However, Swanson’s model (2.3)–(2.4) does require societal invest-
ment R in allocation of base resources to the extent that the species is able
to generate a competitive return on its own stock value and to provide an
additional surplus which compensates the investments in its sustenance.

3. Consumptive and non-consumptive utility

Effectively, Swanson’s idea can be viewed as an initial attempt to modify
the biological dynamics of species growth with defensive actions of policy-
makers aimed at species protection. This idea was further developed by
R. Alexander [2] who proposed to include in the objective functional both
consumptive and non-consumptive values of the biological species. His pio-
neering term “non-consumptive utility” principally refers to “non-consump-
tive use values of endangered species” (in the sense of Boyle and Bishop [7])
and can be perceived as species existence values3.

Traditional harvesting models fail to account for existence values of
endangered biological species even though some particular species may have
more significant existence values than their consumptive valuation. Using
the African elephant (Loxodonta africanus) as an example, R. Alexander

3 The term “non-consumptive utility” also stands for “non-harvesting utility” for
biological species with no harvest value.
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had proposed another bioeconomic model that accounts for both consumpti-
ve and non-consumptive utility of this particular species and highlights the
incentives faced by economic agents who make decisions affecting endange-
red species:

max
h(t)≥0

∞∫
0

e−ρt [U (x(t), h(t)) − CRRx+ Unc(x)] dt (3.1)

s.t.
dx

dt
= F (x)−H(x, h), x(0) = x0. (3.2)

In the above model, U(x, h) expresses the utility of harvesting (ivory and
non-ivory products, revenues from safari hunting minus the total cost of
harvesting), CR is the unit value of land resources used by elephants, Rx
is quantity of land resources used by elephants as a constant proportion of
their population, and Unc(x) stands for non-consumptive utility. The latter
can be displayed as

Unc(x) = PTT (x) +N(x), (3.3)

where PT is the unit price of one tourist day, T (x) is tourist-days as function
of population, and N(x) is the non-market existence value of elephants as
function of population4. The non-consumptive utility (3.3) displays revenues
obtained from tourism and contributes to people’s awareness that this spe-
cies exists (for both harvest and tourism purposes).

Remark 1. It is worthwhile to note that in contrast to Swanson’s model
(2.3)-(2.4), land resources allocated to elephants are not expressed as a
control variable in the model (3.1)-(3.2). Instead, R. Alexander suggests
that if the correct incentives are put in place in society, further transfers of
land resources from alternative uses may naturally arise through the market.

Inclusion of non-consumptive values of a wildlife resource illustrates
social values and benefits of maintaining that resource. Such benefits become
particularly important for studying endangered species with no consumptive
(or harvesting) value.

Many scholars agree that the principal cause of (local) extinction of
wildlife species with no harvesting value is merely incidental. In other words,
local extinction is frequently provoked by habitat reduction due to urbaniza-
tion, farming, and other anthropic activities, that are not directly intended
to harm the species. The obvious questions that arise are:
— Do such wildlife species have a chance to avoid eventual extinction?

4 R. Alexander does not provide explicit forms for T (x) and N(x) and merely states
that they are strictly increasing and concave. The latter makes sense since the non-
consumptive utility (3.3) augments as x increases while its marginal return decreases due
to saturation or overpopulation.
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— Can human external intervention contribute to conservation of such
species?

In attempt to answer these questions, R. Alexander and D. Shields [3]
had proposed a non-harvesting bioeconomic model for conservation of the
New Zealand yellow-eyed penguin (Megadyptes antipodes). This model is
significantly different from those revised above, and its objective functional
represents the net returns to society derived from tourism, in other word,
there is no harvesting value involved. This model is formulated as follows:

max
L(t)≥0

∞∫
0

e−ρtUtour (x(t), L(t)) dt, (3.4)

s.t.
dx

dt
= F (x,L), x(0) = x0. (3.5)

where Utour(x,L) expresses the non-consumptive utility obtained from tou-
rism business5, x is the population of yellow-eyed penguin, and L represents
an index of the quality of land resources used by the penguins (control
variable). The resource owner may reallocate his land resources L(t) avai-
lable for penguins, and the latter will be reflected in the population growth,
for example,

F (x,L) = rx
(
1− x

K · L
)

assuming logistic growth of the species. Within the mathematical framework
of the optimal control theory, R. Alexander and D. Shields [3] derived a non-
harvesting variant of so-called “golden rule” which is widely used in models
with harvesting6. Further argument, based on this relationship, results in
rather logical conclusion. Namely, if the population is relatively small (less
than a half of current carrying capacity) and the intrinsic growth rate of
the species is below the discount rate (i.e., r < ρ), then it will be optimal
to allocate more land resources to the species. On the other hand, if the
population is relatively small and the intrinsic growth rate of the species
exceeds the discount rate (i.e., r > ρ), then it will be optimal to decrease the
land allocated to the species up to some “sustainable” level. This implies that
the initial population density was too low on the land initially available, and
that by increasing that density (that is, by reducing the carrying capacity)
one may guarantee an economically viable income from tourism. Impartially
speaking, a tourist may choose not to pay for a visit when the probability

5 According to [3], Utour(x, L) = [PTT (x)− CL − CO]L where PTT (x) represents the
income generated by tourist visits, CL is the cost per unit of land resources used by the
penguins, and CO is the cost of operation of tourism enterprise.

6 In fishery models of the type (2.1)-(2.2), the “golden rule” is a relationship that
specifies an “economically optimal” equilibrium biomass level x∗. Therefore, the control
variable of fishing effort, h(t), is chosen in order to move the initial stock x0 towards x∗.
For more detail, the reader may refer to [10].
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of sighting is small, but once that probability becomes close to certainty,
additional population is unlikely to generate additional visits. Therefore,
there must be an economically “sustainable” level of population and an
“economically viable” amount of land resources should be allocated to the
species.

4. Conservation policies under economic growth

In a broader sense, the control variable L in the model (3.4)-(3.5) can be
viewed as a defensive expenditure of the society aimed at the conservation
of the natural habitat of the species. On the other hand, there are many wild
species with rather low intrinsic growth rate that may require not only the
land but other resources (such as additional water, food, special conditions
for breeding, etc.) for their survival and sustainable growth. Additionally,
the model (3.4)-(3.5) does not explicitly include any impact (positive or
negative) that anthropic activity and aggregated production may have on
the natural evolution of species population.

A study conducted by A. Antoci et al. [5; 6] claims that defensive actions
may deeply alter the natural ecological dynamics and modify its equilibria.
In support of this argument, the authors of [5; 6] had proposed another
variant of bioeconomic model with two interacting species x = (x1, x2) and
non-harvesting utility Ûnh which is stated as follows:

max
c(t) > 0
d(t) ≥ 0

∞∫
0

e−ρtÛnh (x(t), c(t)) dt, (4.1)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx

dt
= F (x)− kα(t)ε+ dμ(t)σ, x(0) = x0 > 0

dk

dt
= pkα(t)− c(t)− d(t), k(0) = k0 > 0

(4.2)

where F (x) = (F1(x1, x2), F2(x1, x2))
′ is a linear affine vector function of

(x1, x2)
′ while the positive components of ε = (ε1, ε2)

′ and σ = (σ1, σ2)
′

measure, respectively, the negative impact of aggregated production k and
the positive impact of generic defensive expenditure d on the target popula-
tions x1 and x2. The second equation in (4.2) describe the accumulation of
capital k(t) which is considered as a sole product of global economy. The
capital output can be used for re-investment (expressed by the production
function pkα(t), 0 < α < 1 of Cobb-Douglas type), consumption c(t), and
defensive expenditures d(t).

Economic activity modeled by the second equation in (4.2) induces ob-
vious changes in natural biological dynamics of the species given by the
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first equation in (4.2). Namely, the pollution, habitat reduction and other
consequences attributed to aggregated production kα(t), will have negative
effect for both populations x1(t) and x2(t). On the other hand, defensive
expenditures d will constitute positive effect for x1(t) and x2(t). Thus,
the natural biological dynamics becomes amended with both negative and
positive effects of anthropic activity.

It should be noted that parameter μ ∈ (0, 1) is introduced in order to
emphasize that the positive effect of defensive investment on the specie
evolution is not directly proportional to population growth; in other words,
extra-spending on species conservation (increase in d(t)) may decrease the
positivity of such impact on the species evolution due to the carrying
capacity limitations of the environment.

It is assumed that there is a representative agent in the economy whose
welfare Ûnh (x(t), c(t)) depends, in each instant of time t, on the consump-
tion c(t) and on the present amounts of both species x = (x1, x2). It should
be emphasized that these species have no harvesting value. In [5], two
alternative forms of Ûnh (x(t), c(t)) had been proposed:

U1(x1, x2, c) = q1x1 + q2x2 + q ln c, (4.3)
U2(x1, x2, c) = q1 lnx1 + q2 lnx2 + q ln c, (4.4)

where q1, q2, and q are strictly positive weight parameters. These utility
functions U1 and U2 clearly reflect the priorities of decision-making. Namely,
function U1 expresses that the non-harvesting utility of the species is directly
proportional to the species abundance and has constant utility gain, while
the utility of consumption (logarithmic term) has decreasing utility gain.
Thus, the maximization problem (4.1)-(4.2) with function (4.3) may yield
an optimal policy (c∗(t), d∗(t)) which is not adverse to species’ extinction
since x1 = 0 and/or x2 = 0 can be paid off by an aggregated consumption
level.

Alternatively, the maximization problem (4.1)-(4.2) with function (4.4)
requires that x1 > 0, x2 > 0 since otherwise the representative agent may
suffer an infinite loss of utility when either x1 → 0+ or x2 → 0+. Therefore,
this definition of utility function should yield an optimal policy (c∗(t), d∗(t))
that favors the conservation of the species.

The analysis of the model (4.1)-(4.2) (see [5]) suggested that if the
agents get constant marginal utility from x1 and x2 (i.e. function (4.3)
is applied), then the stability features of natural equilibrium (that is, of the
ecosystem dx/dt = F (x) with no human intervention) will be preserved in
the integrated bioeconomic system regardless of both populations’ initial
or fixed-point levels. In other words, if the fixed point x̄ of natural system
(F (x̄) = 0) is a repellor (or saddle point, or attractor) then under optimal
policy (c∗(t), d∗(t)) it will remain being a repellor (or saddle point, or
attractor) of the bioeconomic system (4.2). The latter implies that there
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is no policy capable to convert an “initial” repellor into a “future” attractor
when the agents do not care for the species protection.

On the contrary, if the agents suffer an infinite loss of utility from species
extinction (i.e. function (4.4) is applied), the defensive expenditures may
alter the natural evolutionary dynamics of the interacting species. A study
conducted in [6] revealed an existence of optimal policy (c∗(t), d∗(t)) under
which the stability can be achieved in the bioeconomic system (4.2) even
for “naturally unstable” interacting populations.

The results of Antoci el al. [5; 6] comply with a study focused on single-
species model with Gompertz population growth under human intervention
(see [8]). This bioeconomic model fits into the formal framework of (4.1)-
(4.2) when instead of two interacting species x1, x2 a single one (0 ≤ x ≤ K)
is considered, and its biological growth is described by so-called Gompertz
function F (x) = rx ln (K/x) where K > 0 stands for carrying capacity of
the environment. Since x = K is an attractor of natural dynamics with
Gompertz population growth, there exists an optimal policy (c∗(t), d∗(t))
capable to preserve stability features in the bioeconomic system (4.2) with
either U1(x, c) = q1x+q ln c or U2(x, c) = q1 lnx+q ln c substituted in (4.1).
However, the latter is possible only if the population value in the fixed point
x̄ of bioeconomic system (4.2) is relatively high, namely, (K/e) < x̄ ≤ K,
and if the initial population x(0) = x0 is sufficiently close to x̄.

Another pertinent contribution to this strand of research is a single-
species bioeconomic model with logistic population growth and non-harves-
ting utility of the form (4.3) which was thoroughly analyzed in [12]. This
bioeconomic model also fits into the formal framework of (4.1)-(4.2) when
instead of two interacting species x1, x2 a single one (0 ≤ x ≤ K ) is
considered, and its biological growth is described by logistic function F (x) =
rx (1− x/K) where K > 0 denotes the carrying capacity.

Besides confirming the general trend on preservation of stability features
(claimed in preceding works [5; 6; 8]), this study also addressed an important
question: Can the defensive expenditures mitigate the negative impact of
aggregated production on the species population and to what extent?

To answer this question, the underlying features of logistic dynamics
(such as its quadratic nature and symmetry of the fixed points with respect
to the axis x = K/2 ) were rather beneficial, and helped to disclose and
visualize some essential changes in stability properties of the “amended”
ecological dynamics, that is, natural population dynamics modified by hu-
man intervention. It was established that such changes principally depend
on the model’s parameters, including two control variables c and d.

The range of damage possibly caused by the aggregated production
(term −εkα in the first equation of (4.2)) to the species population can
be estimated by varying ε > 0 while holding other parameters of the model
constant. This procedure yields two ε-depended fixed points x∗−(ε) and x∗+(ε)
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satisfying the following relationships:

0 ≤ x∗−(ε) ≤
K

2
≤ x∗+(ε) ≤ K, x∗−(ε) + x∗+(ε) = K.

Additionally, it resulted possible to define particular values of the parameter
ε > 0 such that

ε∗ : x∗−(ε∗) = 0, x∗+(ε∗) = K (logistic case) (4.5)

ε0 : x∗−(ε0) = x∗+(ε0) =
K

2
(degenerate case) (4.6)

From the ecological point of view, ε∗ can be referred to as opportune referen-
ce value since it characterizes an “ideal situation”, that is, both positive
and negative effects of aggregated production do not alter the natural
equilibrium of the dynamic system. On the other hand, ε0 can be called
critical reference value since it characterizes an “unhealthy situation” when
the equilibrium of the system is unreachable in infinite time t. Both reference
values ε∗ and ε0 can be determined outside of the model in accordance
with other constant parameters, and then provide the decision-maker with
some useful insights regarding to actual ecological situation described by the
model (4.1)-(4.2). Naturally, if the value of ε given in the first equation of
(4.1) is close to ε∗, then we say that ecological situation is “good”; otherwise,
if ε is proximal to ε0, the situation is “bad”.

Moreover, if ε �= ε0 and if the initial population x(0) = x0 is situated
closer to x∗+(ε) than to x∗−(ε) (that is, x0 > K/2) there exists an optimal
policy (c∗(t), d∗(t)) capable to guarantee stability of the bioeconomic system
(4.2) even when the ecological situation is regarded as “bad” (that is, if
ε > 0 given in the model is closer to ε0 than to ε∗). Under such policy,
the species population trajectory will eventually reach the fixed point of
maximal possible abundance of the species (K/2 < x∗+(ε) ≤ K).

It is worthwhile to note that all results described so far deal with design
of long-term optimal policies capable to provide stability of bioeconomic
systems when t → ∞ and initial populations are proximal enough to their
fixed-point values. Such policies are rather useful when the primary goal is to
maintain the species population(s) on some “desired” level. However, these
policies are incapable to enhance (in finite or even infinite time) initially
scarce populations and thus save the species from eventual extinction.

5. Conservation policies aimed at enhancement of scarce
populations

In the previous section it was shown that initial abundance of the species
population is indispensable for existence of long-term conservation policies.
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How crucial it is in case of short-term planning? To answer this questions, a
finite-time variant of bioeconomic model (4.1)-(4.2) was proposed for single-
species population with logistic biological growth [13], namely:

max
c(t) > 0
d(t) ≥ 0

T∫
0

U1 (x(t), c(t)) dt+ x(T ) + k(T ), (5.1)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx

dt
= F (x)− εkα(t) + εdμ(t), x(0) = x0 > 0

dk

dt
= pkα(t)− c(t) − d(t), k(0) = k0 > 0

(5.2)

where F (x) has logistic form and U1(x, c) = q1x + q ln c expresses the
preferences of decision-making that are not adverse to local species extinc-
tion (rather cruel but more realistic case). Here the objective functional (5.1)
is different from the previous one (4.1) and targets not only to maximize
the overall utility within the finite period of time [0, T ] but also to enhance
the terminal values of both state variables — species population x(T ) and
capital k(T ). Additionally, the discount factor e−+ρt is suppressed in (5.1)
in order to emphasize that the planning task is set for a short period of
time. In other words, it is supposed that discount rate ρ is close to zero7.

Among several scenarios meticulously considered in [13], there is one
of particular interest and it deserves to be quoted. This scenario deals
with design of optimal policies aimed at enhancement of initially scarce
populations (i.e., x(0) = x0 is rather low) when the initial level of production
k(0) = k0 is reasonably high.

Under this scenario, there are sufficient capital resources k0 to be spent
immediately for defensive expenditures d(t) in order to obtain a significant
increase in the species population x(t) by the final time T . Given the scarcity
of biological species at initial time, the social planner must implement the
defensive policy from very beginning and continue to spend increasingly up
to the mid-point (T/2) of the time lapse. At the same time, the optimal
consumption c(t) and capital accumulation k(t) should be maintained strict-
ly increasing within [0, T ] in order to guarantee maximization of the integral
part and second terminal-value term of the objective (5.1)8. The optimal
decision policy (c∗(t), d∗(t)) proposed in [13] complies with maximization
criterion (5.1) in the sense that:

7 Strictly speaking, the intertemporal discount rate ρ characterizes the patience of
decision-makers when it comes to obtaining the maximum overall utility and lower values
of ρ describe rather patient social planning (U1(x, c)e

−ρt ≈ U1(x, c) when ρ ≈ 0).
8 The term k(T ) is included in the objective in order to ensure sufficient capital

resources for next planning period (e.g., [T, 2T ]) if a desired level of species population
is not achieved during [0, T ].
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− it guarantees a significant increase of final states x∗(T ), k∗(T ) and thus
impede the species extinction;

− it ensures the growth of utility (expressed by the integral part) since
U(x, c) is an increasing function of x and c.

Thus, high initial level of production k0 plays an essential and notably
positive role for further enhancement of initially scarce populations. Howe-
ver, initial abundance of capital resources is only necessary (but not suffici-
ent) condition for existence of the optimal policy (c∗(t), d∗(t)). The length of
planning horizon T > 0 also play an essential role. Strictly speaking, optimal
policy (c∗(t), d∗(t)) obtained for t ∈ [0, T ] cannot be simply “truncated” or
“extended” to shorter or longer time intervals (such as [0, T/2] or [0, 2T ], for
example).

Numerical experiments held in [13] disclosed that the variation of the
length of planning period [0, T ] has significant impact on decision policies
and the underlying value of the objective (5.1). Namely, shorter periods
are more “expensive” since they result in decline of capital accumulation
during the whole period while ensuring steady increase in consumption
and providing moderate rise of the species population. Alternatively, longer
planning periods guarantee strictly increasing capital accumulation together
with significant enhancement of the species population and without neglec-
ting the consumption. Thus, there is coherence between the planning hori-
zon T and the preferences of decision-making.

Effectively, in order to achieve faster the highest level of consumption,
one may employ a shorter-time decision policy that disregards the capital
accumulation while trying to enhance the species population. Conversely,
longer-time decision policy will guarantee significant increase in both states
(species population x and capital k) on the cost of lesser overall consump-
tion. Therefore, a social planner may implement successively a sequence of
decision policies for [T0, T1] ∪ [T1, T2] ∪ · · · ∪ [TN−1, TN ] where T0 = 0 and(
x∗j+1(t), k

∗
j+1(t), c

∗
j+1(t), d

∗
j+1(t)

)
are defined as solutions of the optimiza-

tion problem (5.1) subject to (5.2) for t ∈ [Tj , Tj+1], j = 0, . . . , N − 1 with
initial conditions given in the form

(x1(T0), k1(T0)) = (x0, k0) when t ∈ [T0, T1] and j = 0,

(xj+1(Tj), kj+1(Tj)) =
(
x∗j(Tj), k

∗
j (Tj)

)
when t ∈ [Tj , Tj+1] and j = 1, . . . , N − 1.

Such a “partitioned” planning may turn up rather beneficial due to its
capability to reflect different priorities of decision-making within each subin-
terval [Tj , Tj+1].

Finally, it will be fair to assert that economic growth may have two-fold
effect on the species evolution. On the one hand, the aggregated production
may reduce the species population to dangerous levels (leading to local
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extinction) if the social planner does not spend at all (or spends too little)
on defensive measures, preferring to disburse the whole capital surplus (or
a great part of it) solely for consumption.

On the other hand, the aggregated production may provide additional
surplus which, being destined for defensive expenditures, may significantly
enhance the species population. In this case, the social planner should
find and implement an optimal decision policy (c∗(t), d∗(t)) which utterly
depends on three factors:
– the initial species population x0,
– the initial capital k0, and
– the length of policy implementation (that is, final time T )
while other parameters of the model (5.1)-(5.2) are kept unchanged.

Remark 2. In mathematical terminology, if either one or both initial
values x0, k0 are too small for a chosen final time T , the optimality system9

may simply fail to have feasible solution in bioeconomic sense, i.e., such that

(x∗(t), k∗(t)) ∈ R2
+, ∀t ∈ [0, T ].

To remedy the situation, the social planner will be forced to extend the
length of policy implementation period; in other words, to increase the value
of T .

6. Further perspectives and conclusions

The controversy between the preservation of biological species and the
inevitable proliferation of multiple economic activities has been a central
topic for many debates in academic circles. However, the main stream of
underlying research has been focused at design of long-term conservation
policies seeking to maintain so-called “bioeconomic equilibrium” that per-
mits a “sustainable use” of natural resources. Under this posture, the conser-
vation of wildlife species with no harvesting value has been nearly ignored.

There is no secret that rather common wildlife species worldwide are
becoming locally extinct in the surroundings of megalopolis areas not be-
cause of animal slaughter but because of lack of food, water or land resources
necessary for the species survival and reproduction. To counterbalance this
tendency, policy makers are compelled to design and implement defensive
actions aimed at enhancement of wildlife species populations. These defen-
sive actions should be set for near future and have a finite planning horizon
in order to impede local extinction of the species.

9 That is, the boundary value problem that results from the application of Pontryagin
maximum principle to the model (5.1)-(5.2)
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Previous studies (see e.g. [5; 6; 8; 12] and references therein) have revealed
that initial abundance of the species population x0 plays central role in the
long-term conservation planning (that is, when planning horizon is set as
infinite: T → ∞). In other words, long-term policies are incapable to save
initially scarce populations from eventual extinction.

In case of finite-horizon planning, the absolute value of x0 is of lesser
concern than initial capital resources k0. Thus, the forecast for near future
can be rather optimistic and reassuring even for scarce species populations
x0 at initial time. Thereby, it is not enough to have time, it is also necessary
to have relatively high level of initial capital and to spend it quickly for
conservation.
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О. О. Васильева
Методы оптимального управления в моделях природоохран-

ной биологии с неурожайным критерием

Аннотация. Основной целью данной статьи является проследить эволюцию
математических моделей, ориентированных на взаимодействие между экономиче-
ским ростом, устойчивым развитием и сохранением окружающей среды. В качестве
отправной точки была взята простейшая модель сбора урожая, в которой возобнов-
ляемые ресурсы растут согласно природным законам. Далее рассматривается другой
вариант этой модели, в которой учитываются расходы на рост биологических видов.
В основном, модели такого типа предназначены для поиска долгосрочных опти-
мальных стратегий сбора урожая, где сохранение биологических видов гарантирует
устойчивую прибыль и, следовательно, вносит вклад в экономическое развитие.
С другой стороны, существует группа моделей, где факторы, связанные с чело-

веческой деятельностью, а также экономический рост могут оказать положительное
или отрицательное влияние на естественную эволюцию диких видов. Некоторые
исследователи доказали, что оптимальные стратегии, которые относительно хороши
для урожайных целей, в контексте сохранения биологических видов не переносят-
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ся на неурожайные критерии. Однако проведение долгосрочной природоохранной
политики для всех биологических видов не может быть гарантировано, если в на-
чальный момент времени популяция не имеет достаточно большой численности.
Следовательно, такие стратегии неспособны повысить численность вымирающих
видов и спасти их от окончательного (локального) исчезновения. В качестве аль-
тернативы, политики вынуждены разрабатывать и реализовывать краткосрочные
природоохранные действия, направленных на улучшение популяций диких видов.

Ключевые слова: био-экономические модели, вымирающие виды, охрана при-
роды, неурожайный критерий, оптимальное управление.
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