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Abstract. This paper examines the problem of meeting an inelastic demand for public
goods of club type in an economy with a finite number of agents, who exhibit different
preferences regarding the choice of public projects. The choice problem is assumed to be
multidimensional as there are several dimensions of a societal decision.
From the formal point of view, the problem can be summarized as follows. There are n

players, identified by points in a multidimensional space, who should be partitioned into
a finite number of groups under the requirement that there exists no nonempty subset
S of players, each member of which strictly prefers (in terms of utilities) group S to the
group he was initially allocated.
Utilities which are inversely related to costs consist of two parts: monetary part

(inversely proportional to the group’s size), and the transportation part (distance from
the location of a player to the point minimizing aggregate transportation cost within his
group).
One cannot hope for a general result of existence of stable coalition structure even in

a uni-dimensional setting. However, by allowing formation of several coalition structures,
each pursuing a different facet of public decision, we obtain a very general existence
result. Formally, this means that for each coalition there exists a balanced system of
weights assigned to each of the dimensions of the public project.

Keywords: equilibrium, regions, federal structures, monetary contribution, equal share.

∗ All three authors wish to acknowledge the support of the Ministry of Education and
Science of the Russian Federation, grant No. 14.U04.31.0002, administered through the
NES CSDSI.



AN EQUILIBRIUM MODEL WITH MIXED FEDERAL STRUCTURES 63

1. Introduction

In this note we consider a model of country formation with a «world»
consisting of multiple regions that may either form a unified entity or
to be partitioned into several countries. Each country chooses a (possibly
multidimensional) public policy whose cost is shared among country’s re-
gions. However, since regions have heterogenous preferences over public
policies, some of them may find centrally chosen policies sufficiently distant
from their ideal choices and may pose a threat of secession from the country
to which they belong. A natural question is whether there are stable parti-
tions of the world that do not admit a group of regions each benefiting by
breaking away from the status quo. It turns out that, in general, the stability
cannot be guaranteed. In particular, in the case where all regions within a
country equally share the cost of public policies, even uni-dimensionality
of the policy space and single-peakedness of regions’ preferences do not
guarantee the existence of a stable world structure [3].

The paradigm of the centralized decision making, however, has been
recently revised on both theoretical and empirical grounds. As Alesina
et al. [2] point out: “Historically, the nation state concentrated most of
the authority in every policy domain. In recent decades, however, a more
complex structure has begun to emerge, characterized by a demand for
more autonomy (if not secession) at a sub-national level of country unions
which assume certain policy prerogatives.” Indeed, in the context of the
federal structures and multiple public goods, the local governments assume
an increasing responsibility for providing local public goods while macro-
economic and redistribution policies with the federal government. Regional
projects that tackle the trade, environmental and migration issues play
an ever increasing role across the globe. These observations indicate that
from the theoretical point of view, the players (regions) may belong to
several unions, each assigned to a certain aspect of the public policy and
we therefore permit an option of the multiple union membership for every
region. Note that a membership in several unions is a wide-spread pheno-
mena as some European countries may sustain a simultaneous membership
in the European Union, European Monetary Union, NATO, United Nations
or WTO.

Thus, the regions could be members in several unions and we even allow
for an opt-out option [8] where some regions forego their participation in the
provision of some public goods. Every formed union of regions S is assigned
a certain public project and a participation weight Λ(S), where for every
region r the sum of the participation weights over the unions r belongs to,
must be equal to one. A set of unions with the corresponding participation
weights will be called a federal structure.

Given a federal structure, some of the regions may reject the proposed
arrangement and pose a threat of secession. Our secession requirement is
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very mild: a group of regions S poses a threat of secession if it can guarantee
to every region in S a higher payoff than at least in one of the unions
r belongs to. The main result of this paper yields the existence of stable
federal structures. In order to prove our result we use the framework of
cooperative game without transferable utility and rely on the Danilov’s
(1999) variant [5] of the celebrated Scarf (1967) theorem on nonemptiness
of the core[9].

The paper is organized as follows. In the next section we present the
model and definitions and indicate the non-existence of a stable partition.
In Section 3 we introduce the notion of federal structures and show the
existence of a stable federal structure under the same assumptions that
yield the nonexistence result in Section 2. Section 4 concludes.

2. The Model

Consider a model with a finite set N = {1, . . . , n} of regions, which
can either constitute one (unified) country or be partitioned into several
countries. Each country chooses a public policy, and we assume that the set
of feasible policies is given by a multi-dimensional Euclidean space P = Rk,
where k ≥ 1.

If a country S ⊂ N forms it must choose a policy p in P . The policy
implementation incurs monetary costs, denoted by g(S). We naturally as-
sume that the costs are positive for every S and are weakly increasing with
respect to inclusion:

A.1 – Cost Monotonicity: If the set of regions S is contained in a larger
set S′ then g(S′) ≥ g(S).

Every region r ∈ N has an ideal point pr ∈ P and the choice of any other
policy p ∈ P would generate a disutility for r, represented by the Euclidean
distance ||pr − p|| between its ideal policy pr and the policy p.

We assume that every region r ∈ N has an initial endowment yr > 0, a
part of which is spent on the implementation of the public policy chosen in
the country of region r. That is, if country S chooses a policy p ∈ P then
every region r ∈ S is assigned the monetary contribution tr. We assume
the total contributions of the regions cover the cost of public projects they
participate in:

A.2 – Budget-balancedness:
∑
r∈S

tr = g(S).

To simplify the matters, we assume separability and linearity of the regions’
preferences:
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A.3 – Utilities: The utility of region r assigned to a monetary contribu-
tion tr in the country with a public policy p, is given by

u(yr, tr, p
r, p) = yr − tr − ||pr − p||.

In order to proceed with our results we make further assumptions on
policy choices and allocation of their costs across regions. We assume that
the policy choice in the country is determined through the majority voting
mechanism. If the policy set P is unidimensional, for every country S ⊂ N
consider the set of its median locations. It is easy to see that every median
location minimizes the aggregate cost of regions in S, and is, in fact, a
solution to the following minimization problem:

min
p∈P

∑
r∈S

||pr − p||. (2.1)

We denote the set of solutions to (2.1) by M(S). If the policy set P is
multidimensional and the set of ideal points pr is not located along a straight
line, a solution to (2.1), denoted bym(S), is unique.1 In the uni-dimensional
case, M(S) could be an interval, and in this case m(S) will stand for the
middle point of M(S). We impose the efficiency requirement:

A.4 – Efficiency: Every country S chooses its public policy at m(S).

Following Alesina and Spolaore [1], Casella [4], Jéhiel and Scotchmer [7],
Haimanko et al. [6], Bogomolnaia et al. [3] we assume, for simplicity, that
all regions of the same country make an equal contribution towards the
policy cost. The regions are hold responsible for their preferences, and are
not compensated for their disutility of location of the chosen policy in the
policy space P :2

A.5 – Equal Share: If the country S is created, every region in S makes

the same monetary contribution: tr =
g(S)

|S| for every r ∈ S.

The assumptions we impose allow us to reduce a country formation
problem described above to determination of countries’ composition; once
formed, their policy actions and cost contributions are prescribed as above.
We will denote by v(r, S) the indirect utility (or payoff) of the region r ∈ S

when country S forms: v(r, S) = yr − g(S)

|S| − ||pr −m(S)||.
We will examine partitions which are stable under secession threats. In

other words, no group of regions could reduce their costs (or equivalently,
increase their payoffs) by forming a new country. Formally,

1 In the mathematical programming literature, the value of the problem (2.1) is called
Minimal Aggregate Transportation Cost of the set S.

2 We could have assumed that each region contributes proportionally to its population,
without altering the paper’s main result.
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Definition 1: A collection π = {S1, . . . , SK} of pairwise disjoint subsets of

N is called a partition if
K⋃
k=1

Sk = N . The set of all partitions of N is

denoted by Π.

Consider a partition π of N and denote by Sr(π) ∈ π the country in
π that contains r. Then, the utility of the region r is given by v(r, π) =
v(r, Sr(π)).

We now offer the standard definition of (core) stability:

Definition 2: A partition π = {S1, . . . , SK} of N is called stable if there is
no group of regions S ⊂ N such that v(r, S) > v(r, π) for every r ∈ S.

A stable partition may however fail to exist:

Proposition 1 [3]: There exists a set of regions N , satisfying assumptions
A1 – A5, which does not admit a stable partition.

3. Federal Structures

Note that the definition of partitions introduced in the previous section
rules out situations where different facets of public policy are carried out
under different group structures. For example, defense or foreign policy can
be implemented by the grand coalition of regions, while education or health
fall into jurisdiction of local authorities. A natural framework to incorporate
this possibility would be allowing the regions to enter several unions, each
responsible for a certain facet of public policy. A union does not necessarily
include all regions, as one could easily imagine the case where only a group
of regions is keen on developing of a public policy on, say, environment or
migration, while other (possibly distant) regions may have a limited interest
in those issues. In line with this comment we allow unions of regions to
pursue different aspects of public policy. A degrees of participation intensity
may vary across unions but is the same for all members of the same “rigid”
(in terminology of Alesina [2]) union. Some “disinterested” regions may even
decide to forego their participation in certain parts of the public project,
and, following Makarov [8], we allow for an opt-out option. Formally, we
consider a notion of federal structure, which consists of unions of regions
formed to pursue different facets of public projects. Each union is assigned
a participation weight and we only require that the sum of the participation
weights over the unions a region belongs to, is equal to one for all regions:

Definition 3: A federal structure is a function Λ : 2N \ ∅ → [0, 1] that
assigns every nonempty subset S ofN a nonnegative value such that the
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equality
∑
S∈Sr

Λ(S) = 1 holds for all r ∈ N , where Sr is the collection

of subsets of N that contain r.3

Note that every partition π ∈ Π induces a federal structure Λπ by
assigning the value of one to every S from π and zero to all other subsets.

We will now introduce a secession requirement. First, for every federal
structure Λ define the set of essential unions S with a positive degree of
participation: SΛ = {S ⊂ N |Λ(S) > 0}.

Then the utility level derived by region r, given Λ would be defined as
follows:

vm(r,Λ) = min
S∈SΛ∩Sr

v(r, S). (3.1)

Now a secession threat by a group of regions S would simply require that S
can guarantee to every region r ∈ S a payoff which is higher than at least
in one of effective unions r belongs to. Formally,

Definition 4: A group of regions S poses a threat of secession to the federal
structure Λ if v(r, S) > vm(r,Λ) for every r ∈ S. A federal structure Λ
is called stable if no group of regions poses a threat of secession to Λ.

Now, we state our main result.

Proposition 2: Under Assumptions A.1 –A.5, there exists a stable federal
structure Λ.

Proof of Proposition 2: To prove this result we will use Danilov [5].
For every nonempty S ⊂ N denote by �S the projection of the set �n on
coordinates in S. For every vector y = (y1, . . . , yn) ∈ �n let yS ∈ �S be a
natural projection of y, that is, ySr = yr for every r ∈ S. A non-cooperative
NTU-game V is a correspondence that assigns to each S a subset V (S) of
�S . Danilov [5] proves the following variant of the Scarf’s result:

D-Theorem: Consider a non-cooperative NTU-game V , where for every
S ⊂ N the set V (S) is closed, bounded from above and satisfies the free
disposal condition. Then there exists a vector y ∈ �n, and a balanced
collection (federal structure) Λ, satisfying two requirements:

(i) There is no S ⊂ N such that yS ∈ int{V (S)}, where int{V (S)}
stands for the interior of V (S);

(ii) If ΛS > 0 then yS ∈ V (S).

3 Note that in the cooperative game theory, a collection {ΛS}S⊂N satisfying this
equality is called balanced.
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Now, for every nonempty S ⊂ N define the set V̂ (S) ⊂ �S as follows:

V̂ (S) = {yS ∈ �S : v(r, S) ≥ ySr ∀r ∈ S}. (3.2)

Clearly, the game V̂ satisfies the conditions of the D-theorem. Thus, there
exist vector y ∈ �n and a balanced collection Λ which satisfy the require-
ments of D-Theorem. We claim that Λ is a stable mixed federal structure.

Indeed, suppose a group of regions S poses a threat of secession to Λ.
That is, for each region r ∈ S there exists T (r) ∈ SΛ ∩ Sr such that
v(r, S) > v(r, T (r)).

Since ΛT (r) > 0, the assertion (ii) of the D-theorem implies that yT (r) ∈
V̂ (T (r)), and, therefore, v(r, T (r)) ≥ yT (r)r = yr for every r ∈ S. The
last two inequalities guarantee that v(r, S) > yr for all r ∈ S. But then
yS ∈ int{V̂ (S)}, a contradiction to assertion (i) of the D-theorem. �

4. Conclusions

In this paper we consider a model of the “world” with multiple regions.
The world is partitioned into countries, each consisting of one or several
regions. The regions have distinct preferences over public policies chosen
in their country and finance the cost of public projects through the equal
share mechanism. Bogomolnaia et al. [3] have shown that stable partitions,
that are immune against threats of secession by groups of regions, do not
necessarily exist. In order to rectify this problem and to examine a more
flexible distribution of power and responsibility within countries, we allow
every regions to belong to several unions, assigned to different facets of
the public good project. This so-called federal structure consists of unions
of regions, where each union is assigned a participation weight so that for
every region the sum of the participation weights over the unions a region
belongs to is equal to one. By using the Danilov variant (1999) of the Scarf
theorem (1967) on nonemptiness of the core of a balanced game without
side payments, we show that under our assumptions there always exists a
stable federal structure.

There are two natural questions related to the result of this paper that
remain open and are left for future research. What are conditions on the
distribution of regions’ preferences that guarantee the existence of stable
partitions? Could one characterize the set of stable federal structures, espe-
cially in the environments that do not admit stable partitions?
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Ш. Вебер, В. Л. Макаров, А. В. Савватеев
Равновесие в модели формирования дробных коалиционных

структур

Аннотация. В статье ставится и решается задача об удовлетворении неэластич-
ного спроса на общественное благо клубного типа внутри экономической системы,
состоящей из конечного числа действующих лиц (агентов). Как и в других исследо-
ваниях данного направления, предполагается, что существует конфликт интересов
относительно выбора конкретных параметров блага. Этот конфликт, однако, в на-
стоящей работе предполагается многомерным, то есть включающим произвольное
число параметров разногласия.
Математически, задача может быть сформулирована следующим образом. Дано

конечное число точек-игроков x1, . . . , xn в многомерном евклидовом пространстве.
Нужно их разбить на конечное (но не фиксированное!) число групп S1, . . . , Sk с
соблюдением следующего свойства: не существует подмножества игроков S, любой
участник которого получает в группе S больший выигрыш, чем в той группе Sj , к
которой был исходно приписан.
Входящие в выигрыш со знаком минус издержки суммируются из монетарной

составляющей, обратно пропорциональной размеру группы, к которой прибавляет-
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ся расстояние до центра группы (то есть до точки, минимизирующей суммарную
транспортировку внутри группы).
В этих условиях нельзя рассчитывать на общую теорему существования коа-

лиционно устойчивого решения задачи, как показывает ряд примеров даже для
одномерных постановок. Однако если допустить формирование дробных групповых
структур, то теорему о существовании коалиционно устойчивого решения задачи
можно установить в самой большой степени общности. Под дробной структурой
понимается здесь набор интенсивностей λS функционирования для всевозможных
непустых подмножеств множества игроков — набор, удовлетворяющий формализу-
емым в работе условиям сбалансированности.

Ключевые слова: равновесие, регионы, федерализм, функция выигрыша, прин-
цип равнодолевого участия.
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