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Аннотация: Формулы, которые являются инструментами для описания алгебра-
ических систем, являются формальными выражениями, возникающими из термов,
символов отношений и логических связок. При композиции обобщенной операции су-
перпозиций множество всех термов образует унитарную суперассоциативную алгеб-
ру. Рассматривается построение частичной обобщенной суперпозиции на множестве
всех термов и формул, удовлетворяющих суперассоциативности как слабому тожде-
ству. Приводятся частичные бинарные операции, индуцированные такими частич-
ными обобщенными суперпозициями, и доказывается тот факт, что эти операции
являются слабоассоциативными.
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1. Introduction

Although our paper is contributed to the study of partial algebras as
well as the axiom of superassociativity on partial algebras, we first assume
that it should be helpful to get a brief excursion to partial algebras and
then apply these tools to partial algebras of formulas. See [1;9;15] for more
backgrounds on partial algebras, partial operations and weak identities.
Extensions of partial lattices were described by I. Chajda and H. Langer in
the paper [3]. Recently, a comprehensive monograph on partial algebras is
collected by K. Denecke in [4].

In 2021, partial Menger algebras generalizing Menger algebras were in-
troduced by K. Denecke in [6]. By definition, it is a pair of a nonempty
set and a partial operation of type 𝑛+1 defined on that set which satisfies
the axiom of superassociativity. It is worth noticing that this structure
can be considered as an extension of any partial semigroup, i. e., a partial
Menger algebra of rank 1 and a partial semigroup are the same thing.
One of the most important developments of Menger algebras is the Menger
algebra of terms, a triple consisting of the set of terms of type 𝜏 , generalized
superpositon 𝑆𝑛 and a family of infinitely many nullary operations. This
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is a main tool to classify any algebra into subclasses called strongly solid
varieties. There are many works describing properties of the Menger algebra
of terms, for example, [14; 22].

Following the suggestion of A. I. Malcev in [16], formulas which are
formal expressions extending the concept of both first and second-order
languages are given. To demonstrate an importance of formulas, we con-
sider the formula ∀𝑧[𝑥+ 𝑦 · 𝑧 = 𝑥] of the usual addition and multiplication
on the set N := {1, 2, . . .} of all nutural numbers. It can be calculated
that this formula is true if 𝑥 = 1 and 𝑦 = 0, but false in the case when
𝑥 = 𝑦 = 1. In view of algebrization, structures of formulas with respect to
different operations have been widely studied by many authors [2; 10; 19].
Particularly, in the paper [20], the generalized superposition operation,
denoted by 𝑅𝑛, of type 𝑛+1 defined on the set of all formulas of arbitrary
type is mentioned. The fact that this operation is superassociative is also
proved and characterizations for any element of some algebras induced by
such operation to be idempotent and regular in sense of the theory of
semigroups are presented. Normally, the interaction between formulas and
model theory are given. Algebras of binary formulas in sence of realizations
are mentioned in [11]. The concept of pseudofinite formulas and their
properties are revealed in [12]. Formulas in first order logic over a given
language are also studied in [13].

While a generalized superposition 𝑅𝑛 of formulas has been established,
its computation relies on specific choices of terms of type 𝜏 . In the domain
of 𝑅𝑛 with type 𝑛+1, this implies that the first position derives from the set
of formulas, while other positions in the domain come from the set 𝑊𝜏 (𝑋)
of terms. This leads to the question: Can we define the superposition for
the Cartesian product of the formula set using 𝑆𝑛

𝑔 and 𝑅𝑛
𝑔 ? If so, does

this operation fulfill the property of superassociativity? To address these
questions, this paper primarily aims to establish a partial operation for
the set of formulas, where its domain is defined by the Cartesian product
of the formula set. We demonstrate that this partial operation satisfies
weak superassociativity. Additionally, partial binary operations induced
by this generalized partial superposition are introduced for the set of for-
mulas, and partial semigroups corresponding to these binary operations are
constructed.

2. Some preliminary results

This section provides some essential backgrounds concerning terms, for-
mulas, partial algebras, and related topics that need in the paper. See the
references [1; 3; 9; 17] for more details.
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Normally, a superassociative algebra (a Menger algebra) is a pair of a
nonempty 𝐺 together with one operation of type 𝑛+1 defined on 𝐺 which
satisfies the axiom of superassociativity, i.e.,

𝑜(𝑜(𝑎, 𝑏1, . . . , 𝑏𝑛), 𝑐1, . . . , 𝑐𝑛)= 𝑜(𝑎, 𝑜(𝑏1, 𝑐1, . . . , 𝑐𝑛), . . . , 𝑜(𝑏𝑛, 𝑐1, . . . , 𝑐𝑛))

for all 𝑎, 𝑏𝑗 , 𝑐𝑗 ∈ 𝐺 and 𝑗 = 1, . . . , 𝑛. Furthermore, superassociative algebras
have been investigated in various directions. For example, superassociative
algebras of multiplace functions were deeply considered in the papers [8].
By a unitary superassociative algebra, we mean a superassociative alge-
bra (𝐺, 𝑜) that has special elements such that 𝑜(𝑒, 𝑎1, . . . , 𝑎𝑛) = 𝑒 and
𝑜(𝑎, 𝑒1, . . . , 𝑒𝑛) = 𝑎 for elements 𝑎, 𝑒, 𝑎𝑖, 𝑒𝑖 in 𝐺 and 𝑖 = 1, . . . , 𝑛. In this
case, this algebra has the type (𝑛+1, 0, . . . , 0). An excursion of the theory
of superassociative algebras or algebras of functions can be found in [7].

A term 𝑡 of type 𝜏 is constructed from an alphabet 𝑋𝑛 = {𝑥1, . . . , 𝑥𝑛}
whose elements are called variables for all 𝑛 in N and operation symbols {𝑓𝑖 |
𝑖 ∈ 𝐼} of type 𝜏 indexed by the set 𝐼. The type is the family 𝜏 = (𝑛𝑖)𝑖∈𝐼 of
the natural numbers that correspond to the arities of the operation symbols
𝑓𝑖. In fact, the set 𝑊𝜏 (𝑋𝑛) of all 𝑛-ary terms of type 𝜏 consists of the
following elements: Every variable 𝑥𝑖 ∈ 𝑋𝑛 and 𝑓𝑖(𝑡1, . . . , 𝑡𝑛𝑖) where 𝑛-
ary terms 𝑡1, . . . , 𝑡𝑛𝑖 of type 𝜏 are already known. Indeed, 𝑊𝜏 (𝑋𝑛) is the
smallest set closed under finite application of composition by each operation
symbol 𝑓𝑖. In general, if variables come from an infinite set of alphabets
𝑋 = {𝑥1, 𝑥2, . . .}, we write 𝑊𝜏 (𝑋) instead of 𝑊𝜏 (𝑋𝑛). Moreover, by var(𝑡)
we denote the set of all variables that occur in a term 𝑡. For details, one
can refer the reader to [5; 14;21].

One of the most important operations defined on the set of terms is the
generalized superposition operation [20]. Basically, a new term is obtained
after substituting all variables occuring in a former term by the other terms.
This can be described by the (𝑛+ 1)-generalized superpostion 𝑆𝑛

𝑔 , 𝑛 ≥ 1,

𝑆𝑛
𝑔 :𝑊𝜏 (𝑋)𝑛+1 →𝑊𝜏 (𝑋)

defined inductively by the following steps: for 𝑡, 𝑡1, . . . , 𝑡𝑛 ∈𝑊𝜏 (𝑋)
1. If 𝑡 = 𝑥𝑖; 1 ≤ 𝑖 ≤ 𝑛, then 𝑆𝑛

𝑔 (𝑥𝑖, 𝑡1, . . . , 𝑡𝑛) := 𝑡𝑖.
2. If 𝑡 = 𝑥𝑖; 𝑛 < 𝑖, then 𝑆𝑛

𝑔 (𝑥𝑖, 𝑡1, . . . , 𝑡𝑛) := 𝑥𝑖.
3. If 𝑡 = 𝑓𝑖(𝑠1, . . . , 𝑠𝑛𝑖), then 𝑆

𝑛
𝑔 (𝑡, 𝑡1, . . . , 𝑡𝑛) is equal to

𝑓𝑖(𝑆
𝑛
𝑔 (𝑠1, 𝑡1, . . . , 𝑡𝑛), . . . , 𝑆

𝑛
𝑔 (𝑠𝑛𝑖 , 𝑡1, . . . , 𝑡𝑛)).

We can form the algebra (𝑊𝜏 (𝑋), 𝑆𝑛
𝑔 , (𝑥𝑗)𝑗≥1) of type (𝑛 + 1, 0, 0, 0, . . .)

consisting of the universe 𝑊𝜏 (𝑋) together with one (𝑛 + 1)-ary operation
𝑆𝑛
𝑔 and the variable terms acting as infinitely many nullary operations. We

call this algebra the generalized clone of terms with infinitely many nullary
operations.

Another structure that generalizes algebras is an algebraic system, a
triple of a nonempty set 𝐴 equipped with a family of 𝑛𝑖-ary operations
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defined on 𝐴, and a family of 𝑛𝑗-ary relations on 𝐴. By the type (𝜏, 𝜏 ′), we
refer to the families of the arities of operations and relations, respectively.
See [16;19]. It is obvious that a partially ordered semigroup is an example
of algebraic systems of type ((2), (2)). However, if there is no a family of
relation symbols, thus an algebraic system and an algebra are identical.
Thus, the notion that needs in the investigation of algebraic systems of
type (𝜏, 𝜏 ′) is a formula.

Recall from [5; 16; 17] that for 𝑛 ∈ N an 𝑛-ary formula of type (𝜏, 𝜏 ′) is
defined in the following way:

1. If 𝑡1, 𝑡2 are 𝑛-ary terms of type 𝜏 , then the equation 𝑡1 ≈ 𝑡2 is an 𝑛-ary
formula of type (𝜏, 𝜏 ′).

2. If 𝑗 ∈ 𝐽 and 𝑡1, . . . , 𝑡𝑛𝑗 are 𝑛-ary terms of type 𝜏 and 𝛾𝑗 is an 𝑛𝑗-ary
relation symbol, then 𝛾𝑗(𝑡1, . . . , 𝑡𝑛𝑗 ) is an 𝑛-ary formula of type (𝜏, 𝜏 ′).

3. If 𝐹 is an 𝑛-ary formula of type (𝜏, 𝜏 ′), then ¬𝐹 is an 𝑛-ary formula
of type (𝜏, 𝜏 ′).

4. If 𝐹1 and 𝐹2 are 𝑛-ary formulas of type (𝜏, 𝜏 ′), then 𝐹1∨𝐹2 is an 𝑛-ary
formula of type (𝜏, 𝜏 ′).

5. If 𝐹 is an 𝑛-ary formula of type (𝜏, 𝜏 ′) and 𝑥𝑖 ∈ 𝑋𝑛, then ∃𝑥𝑖(𝐹 ) is an
𝑛-ary formula of type (𝜏, 𝜏 ′).

By atomic formulas of type (𝜏, 𝜏 ′), we refer to the formulas of the form
1. and 2. The formulas of the forms 1. to 4. are called quantifier free
formulas. In this paper, for short, we call a formula 𝐹 in stead of a quantifier
free formula 𝐹 . Thus, the set of all 𝑛-ary formulas of type (𝜏, 𝜏 ′) and
the set of all formulas of type (𝜏, 𝜏 ′) are denoted by ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋𝑛)) and
ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋)) :=

⋃︀
𝑛∈N ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋𝑛)), respectively.

In [18], the operation

𝑅𝑛
𝑔 :
(︀
𝑊𝜏 (𝑋) ∪ ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋))

)︀
× (𝑊𝜏 (𝑋))𝑛 →𝑊𝜏 (𝑋) ∪ ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋))

is defined in the following way:

1. If 𝑡 ∈𝑊𝜏 (𝑋), then 𝑅𝑛
𝑔 (𝑡, 𝑠1, . . . , 𝑠𝑛) is equal to 𝑆

𝑛
𝑔 (𝑡, 𝑠1, . . . , 𝑠𝑛).

2. If 𝑡1 ≈ 𝑡2 ∈ ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋)), then 𝑅𝑛
𝑔 (𝑡1 ≈ 𝑡2, 𝑠1, . . . , 𝑠𝑛) is the formula

𝑅𝑛
𝑔 (𝑡1, 𝑠1, . . . , 𝑠𝑛) ≈ 𝑅𝑛

𝑔 (𝑡2, 𝑠1, . . . , 𝑠𝑛).

3. If 𝛾𝑗(𝑡1, . . . , 𝑡𝑛𝑗 ) ∈ ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋)), then 𝑅𝑛
𝑔 (𝛾𝑗(𝑡1, . . . , 𝑡𝑛𝑗 ), 𝑠1, . . . , 𝑠𝑛)

is the formula 𝛾𝑗(𝑅
𝑛
𝑔 (𝑡1, 𝑠1, . . . , 𝑠𝑛), . . . , 𝑅

𝑛
𝑔 (𝑡𝑛𝑗 , 𝑠1, . . . , 𝑠𝑛)).

4. If 𝐹 ∈ ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋)), then 𝑅𝑛
𝑔 (¬𝐹, 𝑠1, . . . , 𝑠𝑛) equals

¬𝑅𝑛
𝑔 (𝐹, 𝑠1, . . . , 𝑠𝑛).

5. If 𝐹1, 𝐹2 ∈ ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋)), then 𝑅𝑛
𝑔 (𝐹1 ∨ 𝐹2, 𝑠1, . . . , 𝑠𝑛) is the formula

𝑅𝑛
𝑔 (𝐹1, 𝑠1, . . . , 𝑠𝑛) ∨𝑅𝑛

𝑔 (𝐹2, 𝑠1, . . . , 𝑠𝑛).

Известия Иркутского государственного университета.
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Thus, the algebra (𝑊𝜏 (𝑋),ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋)), 𝑆𝑛
𝑔 , 𝑅

𝑛
𝑔 ) is formed. Further-

more, it was shown in [18] that the operations 𝑆𝑛
𝑔 and 𝑅𝑛

𝑔 are superassocia-
tive in sense of many-sorted algebras. Adding a family of variables (𝑥𝑖)𝑖≥1

in this algebra, we obtain a new algebra

(𝑊𝜏 (𝑋),ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋)), 𝑆𝑛
𝑔 , 𝑅

𝑛
𝑔 , (𝑥𝑖)𝑖≥1)

which can be regarded as a unitrary superassociative algebra.

3. Construction of partial unitary algebras of formulas

Let 𝜏 = (𝑛𝑖)𝑖∈𝐼 be a type, (𝐴, {𝑓𝑖 | 𝑖 ∈ 𝐼}) and (𝐵, {𝑓𝑖 | 𝑖 ∈ 𝐼})
partial algebras of type 𝜏 and 𝑝, 𝑞 terms of type 𝜏 . We say that a partial
algebra (𝐴, {𝑓𝑖 | 𝑖 ∈ 𝐼}) satisfies a weak identity 𝑝 ≈ 𝑞 if the following
holds: If 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴 and 𝑝(𝑎1, . . . , 𝑎𝑛) and 𝑞(𝑎1, . . . , 𝑎𝑛) are defined,
then 𝑝(𝑎1, . . . , 𝑎𝑛) = 𝑞(𝑎1, . . . , 𝑎𝑛). Additionally, we say that a partial
algebra (𝐴, {𝑓𝑖 | 𝑖 ∈ 𝐼}) is a weak subalgebra of (𝐵, {𝑓𝑖 | 𝑖 ∈ 𝐼}) if 𝐴 ⊆ 𝐵
and if for all 𝑖 ∈ 𝐼 and all 𝑎1, . . . , 𝑎𝑛𝑖 ∈ 𝐴, if 𝑓𝑖(𝑎1, . . . , 𝑎𝑛𝑖) is defined in
(𝐴, {𝑓𝑖 | 𝑖 ∈ 𝐼}), then it is defined in (𝐵, {𝑓𝑖 | 𝑖 ∈ 𝐼}) and has the same
value.

We begin our study in this section with providing the concept of a
partial operation on the set of all formulas induced by an alphabet 𝑋 =
{𝑥1, 𝑥2, . . .}. In fact, we let

𝑊ℱ(𝜏,𝜏 ′)(𝑋) :=𝑊𝜏 (𝑋) ∪ ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋)).

We now define the partial generalized superposition

𝑅
𝑛
𝑔 : (𝑊ℱ(𝜏,𝜏 ′)(𝑋))𝑛+1 (→𝑊ℱ(𝜏,𝜏 ′)(𝑋)

by

𝑅
𝑛
𝑔 (𝑎, 𝑏1, . . . , 𝑏𝑛) :=⎧⎪⎨⎪⎩

𝑆𝑛
𝑔 (𝑎, 𝑏1, . . . , 𝑏𝑛) if 𝑎, 𝑏1, . . . , 𝑏𝑛 ∈𝑊𝜏 (𝑋),

𝑅𝑛
𝑔 (𝑎, 𝑏1, . . . , 𝑏𝑛) if 𝑎 ∈ ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋)), 𝑏1, . . . , 𝑏𝑛 ∈𝑊𝜏 (𝑋),

not defined otherwise.

To understand this operation in depth, we consider the following ex-
ample. Let |𝐼| = 2, |𝐽 | = 1, and (𝜏, 𝜏 ′) = ((2, 2), (2)) be a type with two
binary operation symbols ⊕ and ⊗ and one binary relation symbol ∇. We
consider the following elements belonging to the set 𝑊ℱ((2,2),(2))(𝑋) : 𝑎1
is a variable 𝑥4, 𝑎2 is a term ⊕(𝑥2, 𝑥5), 𝑎3 is a term ⊗(𝑥2,⊕(𝑥3, 𝑥6)), 𝑏1 is
a formula ⊕(𝑥1, 𝑥5) ≈ 𝑥3, 𝑏2 is a formula ∇(⊗(𝑥1, 𝑥7), 𝑥2), 𝑏3 is a formula
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¬(𝑥2 ≈ ⊗(𝑥8, 𝑥3)), 𝑑1 is a term ⊕(⊕(𝑥2, 𝑥1),⊗(𝑥1, 𝑥3)) and 𝑑2 is a variable
𝑥1. Then we have

𝑅
3
𝑔(𝑎1, 𝑎1, 𝑎2, 𝑎3) = 𝑎1,

𝑅
3
𝑔(𝑎2, 𝑎1, 𝑎2, 𝑎3) = ⊕(⊕(𝑥2, 𝑥5), 𝑥5),

𝑅
3
𝑔(𝑏1, 𝑎1, 𝑎2, 𝑎3) = ⊕(𝑥4, 𝑥5) ≈ ⊗(𝑥2,⊗(𝑥3, 𝑥6)),

𝑅
3
𝑔(𝑏2, 𝑎1, 𝑑2, 𝑎3) = ∇(⊗(𝑥4, 𝑥7), 𝑥1),

𝑅
3
𝑔(𝑏3, 𝑑1, 𝑑2, 𝑎2) = ¬(𝑥1 ≈ ⊗(𝑥8,⊕(𝑥2, 𝑥5))).

On the other hand, 𝑅
3
𝑔(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑏3) and 𝑅

3
𝑔(𝑑2, 𝑏1, 𝑎2, 𝑎3) are not de-

fined.
Hence, on the set 𝑊ℱ(𝜏,𝜏 ′)(𝑋), we can form the following partial alge-

bras:
1. The partial algebra (𝑊ℱ(𝜏,𝜏 ′)(𝑋), (𝑅

𝑛
𝑔 )𝑛∈N) of type (2, 3, 4, . . .),

2. The partial algebra (𝑊ℱ(𝜏,𝜏 ′)(𝑋), (𝑅
𝑛
𝑔 )𝑛∈N, (𝑥𝑖)𝑖∈N) of type

(2, 3, 4, . . . , 0, 0, . . .).
Our next purpose is to show that these two algebras satisfy certain

axioms.

Theorem 1. The partial algebra (𝑊ℱ(𝜏,𝜏 ′)(𝑋), (𝑅
𝑛
𝑔 )𝑛∈N) satisfies, for all

𝑛 ∈ N, the identity

𝑅
𝑛
𝑔 (𝑅

𝑛
𝑔 (𝑎1, 𝑏1, . . . , 𝑏𝑛), 𝑑1, . . . , 𝑑𝑛) = 𝑅

𝑛
𝑔 (𝑎1, ℎ1, . . . , ℎ𝑛)

as a weak identity where ℎ𝑗 = 𝑅
𝑛
𝑔 (𝑏𝑗 , 𝑑1, . . . , 𝑑𝑛) for all 𝑗 = 1, . . . , 𝑛.

Proof. Suppose first that 𝑎1, 𝑏1, . . . , 𝑏𝑛, 𝑑1, . . . , 𝑑𝑛 belong to 𝑊ℱ(𝜏,𝜏 ′)(𝑋).

We aim to prove that each partial operation in a family (𝑅
𝑛
𝑔 )𝑛∈N is su-

perassociative, which means that the following identity:

𝑅
𝑛
𝑔 (𝑅

𝑛
𝑔 (𝑎1, 𝑏1, . . . , 𝑏𝑛), 𝑑1, . . . , 𝑑𝑛) = 𝑅

𝑛
𝑔 (𝑎1, ℎ1, . . . , ℎ𝑛) (3.1)

is weak for ℎ𝑗 = 𝑅
𝑛
𝑔 (𝑏𝑗 , 𝑑1, . . . , 𝑑𝑛) and 𝑗 = 1, . . . , 𝑛. To do this, assume

that the left-hand side of (3.1) is defined. Thus, we have the following
two cases: 𝑎1, 𝑏1, . . . , 𝑏𝑛, 𝑑1, . . . , 𝑑𝑛 are terms of type 𝜏 in the first case
and 𝑎 is a formula of type (𝜏, 𝜏 ′) but 𝑏1, . . . , 𝑏𝑛, 𝑑1, . . . , 𝑑𝑛 are terms of
type 𝜏 in the second case. If 𝑎1, 𝑏1, . . . , 𝑏𝑛, 𝑑1, . . . , 𝑑𝑛 belong to the set
𝑊𝜏 (𝑋), we have that 𝑅

𝑛
𝑔 (𝑎1, 𝑏1, . . . , 𝑏𝑛) is equal to 𝑆𝑛

𝑔 (𝑎1, 𝑏1, . . . , 𝑏𝑛). Be-

sides, for each 𝑗 = 1, . . . , 𝑛,𝑅
𝑛
𝑔 (𝑏𝑗 , 𝑑1, . . . , 𝑑𝑛) is also defined and is equal

to 𝑆𝑛
𝑔 (𝑏𝑗 , 𝑑1, . . . , 𝑑𝑛), which implies that the right-hand side of (3.1) is

defined. Applying the fact that the generalized superposition of terms
satisfies the superassociativity given in [20], we conclude that the equation
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(3.1) is weak. On the other hand, we now consider the case when 𝑎 be-
longs to ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋)) but 𝑏1, . . . , 𝑏𝑛, 𝑑1, . . . , 𝑑𝑛 are in 𝑊𝜏 (𝑋). Clearly,

𝑅
𝑛
𝑔 (𝑅

𝑛
𝑔 (𝑎1, 𝑏1, . . . , 𝑏𝑛), 𝑑1, . . . , 𝑑𝑛) is defined and equals to

𝑅𝑛
𝑔 (𝑅

𝑛
𝑔 (𝑎1, 𝑏1, . . . , 𝑏𝑛), 𝑑1, . . . , 𝑑𝑛). For each 𝑗=1, 2, . . . , 𝑛,𝑅

𝑛
𝑔 (𝑏𝑗 , 𝑑1, . . . , 𝑑𝑛)

is defined and equals to 𝑅𝑛
𝑔 (𝑏𝑗 , 𝑑1, . . . , 𝑑𝑛), which belongs to 𝑊𝜏 (𝑋). It

implies that the right-hand side of (3.1), i.e.,
𝑅

𝑛
𝑔 (𝑎,𝑅

𝑛
𝑔 (𝑏1, 𝑑1, . . . , 𝑑𝑛), . . . , 𝑅

𝑛
𝑔 (𝑏𝑛, 𝑑1, . . . , 𝑑𝑛)) is defined and equals to the

formula 𝑅𝑛
𝑔 (𝑎,𝑅

𝑛
𝑔 (𝑏1, 𝑑1, . . . , 𝑑𝑛), . . . , 𝑅

𝑛
𝑔 (𝑏𝑛, 𝑑1, . . . , 𝑑𝑛)). By the definition

of generalized superposition 𝑅𝑛
𝑔 of formulas, it was proved in [18] that 𝑅𝑛

𝑔

is superassociative. As a consequence, the identity (3.1) is weak for this
case.

The following theorem shows that the partial algebra

(𝑊ℱ(𝜏,𝜏 ′)(𝑋), (𝑅
𝑛
𝑔 )𝑛∈N, (𝑥𝑖)𝑖∈N)

satisfies certain identities which are more complicated than the axiom in
Theorem 1.

Theorem 2. (𝑊ℱ(𝜏,𝜏 ′)(𝑋), (𝑅
𝑛
𝑔 )𝑛∈N, (𝑥𝑖)𝑖∈N) is a generalized unitary par-

tial superassociative system.

Proof. It is left to show that the satisfaction of superassociativity of each
partial operation in (𝑅

𝑛
𝑔 )𝑛∈N due to a direct verification of Theorem 1. Now

we show that for 1 ≤ 𝑗 ≤ 𝑛, the equation 𝑅
𝑛
𝑔 (𝑥𝑗 , 𝑏1, . . . , 𝑏𝑛) = 𝑏𝑗 is a weak

identity. Assume that the left hand-side of this equation is defined. We
obtain that 𝑏1, . . . , 𝑏𝑛 are terms of type 𝜏 and thus 𝑅

𝑛
𝑔 (𝑥𝑗 , 𝑏1, . . . , 𝑏𝑛) =

𝑆𝑛
𝑔 (𝑥𝑗 , 𝑏1, . . . , 𝑏𝑛) = 𝑏𝑗 , consequently, our claimed is obtained. For 𝑗 > 𝑛,

we now show that 𝑅
𝑛
𝑔 (𝑥𝑗 , 𝑏1, . . . , 𝑏𝑛) = 𝑥𝑗 is a weak identity. Suppose that

𝑅
𝑛
𝑔 (𝑥𝑗 , 𝑏1, . . . , 𝑏𝑛) is defined. Then all of 𝑏1, . . . , 𝑏𝑛 belong to the set𝑊𝜏 (𝑋).

As a result, 𝑅
𝑛
𝑔 (𝑥𝑗 , 𝑏1, . . . , 𝑏𝑛) = 𝑆𝑛

𝑔 (𝑥𝑗 , 𝑏1, . . . , 𝑏𝑛) = 𝑥𝑗 . Finally, we prove

that for 𝑎 in 𝑊ℱ(𝜏,𝜏 ′)(𝑋) the weak identity 𝑅
𝑛
𝑔 (𝑎, 𝑥1, . . . , 𝑥𝑛) = 𝑎 holds.

Obviously, 𝑅
𝑛
𝑔 (𝑎, 𝑥1, . . . , 𝑥𝑛) is defined and equal 𝑆𝑛

𝑔 (𝑎, 𝑥1, . . . , 𝑥𝑛) if 𝑎 is a
term of type 𝜏 . Otherwise, 𝑅𝑛

𝑔 (𝑎, 𝑥1, . . . , 𝑥𝑛) if 𝑎 is a formula of type (𝜏, 𝜏 ′).
It was shown in [20] that if 𝑎 is a term of type 𝜏 , 𝑆𝑛

𝑔 (𝑎, 𝑥1, . . . , 𝑥𝑛) = 𝑎. For
a formula 𝑎, we give a proof by the following step. If 𝑎 is an equation 𝑠 ≈ 𝑡,
then 𝑅𝑛

𝑔 (𝑠 ≈ 𝑡, 𝑥1, . . . , 𝑥𝑛) is equal to 𝑆
𝑛
𝑔 (𝑠, 𝑥1, . . . , 𝑥𝑛) ≈ 𝑆𝑛

𝑔 (𝑡, 𝑥1, . . . , 𝑥𝑛),
subsequently, 𝑠 ≈ 𝑡. If 𝑎 has a form 𝛾𝑗(𝑡1, . . . , 𝑡𝑛𝑗 ), then by the definition of
the operation 𝑆𝑛

𝑔 , we obtain 𝑅
𝑛
𝑔 (𝛾𝑗(𝑡1, . . . , 𝑡𝑛𝑗 ), 𝑥1, . . . , 𝑥𝑛) = 𝛾𝑗(𝑡1, . . . , 𝑡𝑛𝑗 ).

Assume that 𝑎 is satisfied as a weak identity already. Then we obtain
𝑅𝑛

𝑔 (¬𝑎, 𝑥1, . . . , 𝑥𝑛) = ¬𝑅𝑛
𝑔 (𝑎, 𝑥1, . . . , 𝑥𝑛) = ¬𝑎. Suppose that 𝐹1 and 𝐹2

are satisfied. Then we have 𝑅𝑛
𝑔 (𝐹1 ∨ 𝐹2, 𝑥1, . . . , 𝑥𝑛) = 𝑅𝑛

𝑔 (𝐹1, 𝑥1, . . . , 𝑥𝑛) ∨
𝑅𝑛

𝑔 (𝐹2, 𝑥1, . . . , 𝑥𝑛) = 𝐹1 ∨ 𝐹2. Therefore, the proof is completed.
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We now discuss some subsets of 𝑊ℱ(𝜏,𝜏 ′)(𝑋). Recall from [21] that
a term 𝑡 of type 𝜏 is called a term with a fixed variable if 𝑡 constructed
from only one variable from 𝑋, which means that in an inductive step, if
𝑡1, . . . , 𝑡𝑛𝑖 are terms with a fixed variable of type 𝜏 and var(𝑡𝑗) = var(𝑡𝑘)
for 1 ≤ 𝑗 < 𝑘 ≤ 𝑛𝑖, then 𝑓𝑖(𝑡1, . . . , 𝑡𝑛𝑖) is term with a fixed variable of type

𝜏 . The set of all terms with a fixed variable is denoted by 𝑊 𝑓𝑖𝑥
𝜏 (𝑋). For

example, let 𝜏 = (3) be a type with a ternary operation symbol 𝑓 . Thus,
the following lists are examples of terms with a fixed variable of type (3):
𝑥1, 𝑥10,𝑓(𝑥1, 𝑥1, 𝑥1),𝑓(𝑥5,𝑓(𝑥5, 𝑥5, 𝑥5), 𝑥5), 𝑓(𝑓(𝑥9, 𝑥9, 𝑥9),𝑓(𝑥9, 𝑥9, 𝑥9), 𝑥9).
Nevertheless, terms 𝑓(𝑥3, 𝑥2, 𝑥11), 𝑓(𝑥5, 𝑥5, 𝑥6), 𝑓(𝑥1, 𝑓(𝑥4, 𝑥4, 𝑥4), 𝑥4) are
not terms with a fixed variable.

Applying terms with a fixed variable, formulas with a fixed variable are
considered, which are familiar with equation with one variable in our real-
life. In fact, an equation 𝑥2 + 𝑥 = 5𝑥 − 𝑥3 can be viewed as a formula
with a fixed variable because both sides of such equation are terms with a
fixed variable. However, an equation 2𝑥+ 𝑦 = 𝑥2− 𝑦2 with two variables is
not a formula with a fixed variable. By definition, a formula 𝐹 is called a

formula with a fixed variable. The symbol ℱ𝑓𝑖𝑥
(𝜏,𝜏 ′)(𝑊

𝑓𝑖𝑥
𝜏 (𝑋)) stands for the

set of all formulas with a fixed variable.
Thus, we prove the following result.

Theorem 3. The set 𝑊ℱ𝑓𝑖𝑥
(𝜏,𝜏 ′)(𝑊

𝑓𝑖𝑥
𝜏 (𝑋)) of all formulas with a fixed

variable is a partial subalgebra of (𝑊ℱ(𝜏,𝜏 ′)(𝑋), (𝑅
𝑛
𝑔 )𝑛∈N, (𝑥𝑖)𝑖∈N).

Proof. Clearly, 𝑊ℱ𝑓𝑖𝑥
(𝜏,𝜏 ′)(𝑊

𝑓𝑖𝑥
𝜏 (𝑋)) ⊆ 𝑊ℱ(𝜏,𝜏 ′)(𝑋). Assume now that for

𝑎, 𝑏1, . . . , 𝑏𝑛 are elements in 𝑊ℱ𝑓𝑖𝑥
(𝜏,𝜏 ′)(𝑊

𝑓𝑖𝑥
𝜏 (𝑋)), 𝑅

𝑛
𝑔 (𝑎, 𝑏1, . . . , 𝑏𝑛) is de-

fined. We separate our proof into two cases. If 𝑅
𝑛
𝑔 (𝑎, 𝑏1, . . . , 𝑏𝑛) equals

to the term 𝑆𝑛
𝑔 (𝑎, 𝑏1, . . . , 𝑏𝑛), then by Lemma 1.3 given in [21] we have

that 𝑆𝑛
𝑔 (𝑎, 𝑏1, . . . , 𝑏𝑛) is a term with a fixed variable and hence belongs to

𝑊ℱ(𝜏,𝜏 ′)(𝑋) and has the same term. On the other hand, if 𝑅
𝑛
𝑔 (𝑎, 𝑏1, . . . , 𝑏𝑛)

is equal to 𝑅𝑛
𝑔 (𝑎, 𝑏1, . . . , 𝑏𝑛), then by [18], 𝑅𝑛

𝑔 (𝑎, 𝑏1, . . . , 𝑏𝑛) is a formula with
a fixed variable, as a result, 𝑊ℱ(𝜏,𝜏 ′)(𝑋) contains this formula.

4. Partial semigroups of formulas

The goals of this section are to define three partial binary operations
induced by the partial operation 𝑅

𝑛
𝑔 on the set 𝑊ℱ(𝜏,𝜏 ′)(𝑋) and prove that

these operations are associative.
Let 𝑎 and 𝑏 be elements in 𝑊ℱ(𝜏,𝜏 ′)(𝑋). The partial binary operation

+𝑛
𝐹 :𝑊ℱ(𝜏,𝜏 ′)(𝑋)×𝑊ℱ(𝜏,𝜏 ′)(𝑋) (→𝑊ℱ(𝜏,𝜏 ′)(𝑋)

Известия Иркутского государственного университета.
Серия «Математика». 2025. Т. 54. С. 160–175



PARTIAL ALGEBRAS OF FORMULAS UNDER GENERALIZED ... 169

can be defined by
𝑎+𝑛

𝐹 𝑏 = 𝑅
𝑛
𝑔 (𝑎, 𝑏, . . . , 𝑏⏟  ⏞  

𝑛 times

).

Thus, we prove the following result.

Theorem 4. A tuple (𝑊ℱ(𝜏,𝜏 ′)(𝑋),+𝑛
𝐹 ) is a partial semigroup.

Proof. Let 𝑎, 𝑏 and 𝑑 be arbitrary elements in 𝑊ℱ(𝜏,𝜏 ′)(𝑋). We aim to
show that (𝑎+𝑛

𝐹 𝑏) +
𝑛
𝐹 𝑑 = 𝑎+𝑛

𝐹 (𝑏 +𝑛
𝐹 𝑑) is a weak identity. Assume that

(𝑎+𝑛
𝐹 𝑏) +

𝑛
𝐹 𝑑 is defined. Then we have that 𝑎 belongs to 𝑊ℱ(𝜏,𝜏 ′)(𝑋) and

both 𝑏 and 𝑑 are terms of type 𝜏 . It implies that 𝑎+𝑛
𝐹 (𝑏+

𝑛
𝐹 𝑑) is also defined.

In order to show that both sides are equal, we devide our consideration
into a few cases. If 𝑎 and 𝑏 are in 𝑊𝜏 (𝑋), then we have (𝑎 +𝑛

𝐹 𝑏) +𝑛
𝐹

𝑑 = 𝑆𝑛
𝑔 (𝑎 +𝑛

𝐹 𝑏, 𝑑, . . . , 𝑑) = 𝑆𝑛
𝑔 (𝑆

𝑛
𝑔 (𝑎, 𝑏, . . . , 𝑏), 𝑑, 𝑑, . . . , 𝑑) and 𝑎 +𝑛

𝐹 (𝑏 +𝑛
𝐹

𝑑) = 𝑆𝑛
𝑔 (𝑎, 𝑏 +

𝑛
𝐹 𝑑, . . . , 𝑏 +

𝑛
𝐹 𝑑) = 𝑆𝑛

𝑔 (𝑎, 𝑆
𝑛
𝑔 (𝑏, 𝑑, . . . , 𝑑), . . . , 𝑆

𝑛
𝑔 (𝑏, 𝑑, . . . , 𝑑)).

Due to the satisfaction of 𝑆𝑛
𝑔 with the superassociativity, we conclude that

(𝑎+𝑛
𝐹 𝑏) +

𝑛
𝐹 𝑑 = 𝑎+𝑛

𝐹 (𝑏+𝑛
𝐹 𝑑). In the second case, we mean the conditions

when 𝑎 is formula of type (𝜏, 𝜏 ′) but both 𝑏 and 𝑑 belong to the set 𝑊𝜏 (𝑋).
It follows from the definition of +𝑛

𝐹 that (𝑎 +𝑛
𝐹 𝑏) +𝑛

𝐹 𝑑 equals 𝑅𝑛
𝑔 (𝑎 +𝑛

𝐹
𝑏, 𝑑, . . . , 𝑑) and thus 𝑅𝑛

𝑔 (𝑅
𝑛
𝑔 (𝑎, 𝑏, . . . , 𝑏), 𝑑, . . . , 𝑑). On the other hand, we

also have that 𝑎+𝑛
𝐹 (𝑏+𝑛

𝐹 𝑑) is equal to 𝑅
𝑛
𝑔 (𝑎, 𝑏+

𝑛
𝐹 𝑑, . . . , 𝑏+

𝑛
𝐹 𝑑) and that

𝑅𝑛
𝑔 (𝑎,𝑅

𝑛
𝑔 (𝑏, 𝑑, . . . , 𝑑), . . . , 𝑅

𝑛
𝑔 (𝑏, 𝑑, . . . , 𝑑)). Again by the superassociativity

of 𝑅𝑛
𝑔 proved in [18], as a consequence, (𝑎+𝑛

𝐹 𝑏) +
𝑛
𝐹 𝑑 = 𝑎+𝑛

𝐹 (𝑏+𝑛
𝐹 𝑑).

Example 1. Consider the type (𝜏, 𝜏 ′) = ((2), (2)) with one binary opera-
tion symbol 𝑓 , one binary relation symbol Δ and a subset

𝐴 = {𝑥2, 𝑓(𝑥3, 𝑥3),¬(𝑥3 ≈ 𝑥4),Δ(𝑓(𝑥4, 𝑥3), 𝑥5)}

of 𝑊ℱ((2),(2))(𝑋) with respect to a partial binary operation +2
𝐹 which is

defined by the following table.

+2
𝐹 𝑥2 𝑓(𝑥3, 𝑥3) ¬(𝑥3 ≈ 𝑥4) Δ(𝑓(𝑥4, 𝑥3), 𝑥5)

𝑥2 𝑥2 𝑓(𝑥3, 𝑥3) not defined not defined

𝑓(𝑥3, 𝑥3) 𝑓(𝑥3, 𝑥3) 𝑓(𝑥3, 𝑥3) not defined not defined

¬(𝑥3 ≈ 𝑥4) ¬(𝑥3 ≈ 𝑥4) ¬(𝑥3 ≈ 𝑥4) not defined not defined

Δ(𝑓(𝑥4, 𝑥3), 𝑥5) Δ(𝑓(𝑥4, 𝑥3), 𝑥5) Δ(𝑓(𝑥4, 𝑥3), 𝑥5) not defined not defined

It is not difficult to show that the partial binary operation +2
𝐹 defined

on 𝐴 satisfies an associative law as a weak identity. To illustrate some
examples, we consider elements 𝑥2, 𝑓(𝑥3, 𝑥3) and Δ(𝑓(𝑥4, 𝑥3), 𝑥5) in 𝐴. In
order to show that an equation (Δ(𝑓(𝑥4, 𝑥3), 𝑥5) +

2
𝐹 𝑥2) +

2
𝐹 𝑓(𝑥3, 𝑥3) ≈

Δ(𝑓(𝑥4, 𝑥3), 𝑥5) +
2
𝐹 (𝑥2 +

2
𝐹 𝑓(𝑥3, 𝑥3)) is a weak identity, assume first that

the left-hand side is defined. Hence, we get (Δ(𝑓(𝑥4, 𝑥3), 𝑥5) +
2
𝐹 𝑥2) +

2
𝐹

𝑓(𝑥3, 𝑥3) = Δ(𝑓(𝑥4, 𝑥3), 𝑥5) +
2
𝐹 𝑓(𝑥3, 𝑥3) = Δ(𝑓(𝑥4, 𝑥3), 𝑥5). Then the
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right-hand side is defined and equals Δ(𝑓(𝑥4, 𝑥3), 𝑥5) +
2
𝐹 𝑥2, subsequently,

Δ(𝑓(𝑥4, 𝑥3), 𝑥5). This shows that the above equation satisfies an associative
law as a weak identity. Consequently, (𝐴,+2

𝐹 ) forms a partial semigroup.
Furthermore, it is also a weak subsemigroup of (𝑊ℱ((2),(2))(𝑋),+2

𝐹 ).

It was mentioned in [9] that an element 𝑎 of a partial semigroup (𝑆, ·)
is said to be idempotent if a weak identity 𝑎 · 𝑎 = 𝑎 holds. We now
apply this concept to characterize any element in the partial semigroup
(𝑊ℱ(𝜏,𝜏 ′)(𝑋),+𝑛

𝐹 ) to be idempotent.

Theorem 5. An element 𝑎 in the partial semigroup (𝑊ℱ(𝜏,𝜏 ′)(𝑋),+𝑛
𝐹 ) is

idempotent if and only if it is a term of type 𝜏 for which one of the following
conditions is satisfied:

1. var(𝑎) ⊆ 𝑋 ∖𝑋𝑛,
2. 𝑎 = 𝑥𝑖 for some 1 ≤ 𝑖 ≤ 𝑛.

Proof. For 𝑎 in 𝑆, suppose first that 𝑎 is not a term of type 𝜏 under which
it does not satisfy both conditions of the theorem. We aim to show that if
𝑎+𝑛

𝐹 𝑎 and 𝑎 are defined, then 𝑎+𝑛
𝐹 𝑎 ̸= 𝑎. Assume that 𝑎+𝑛

𝐹 𝑎 is defined.

Form this, we have two cases: 𝑅
𝑛
𝑔 (𝑎, 𝑎, . . . , 𝑎) is the term 𝑆𝑛

𝑔 (𝑎, 𝑎, . . . , 𝑎)

of type 𝜏 and 𝑅
𝑛
𝑔 (𝑎, 𝑎, . . . , 𝑎) is the formula 𝑅𝑛

𝑔 (𝑎, 𝑎, . . . , 𝑎) of type (𝜏, 𝜏 ′).
It is impossible to see that 𝑅𝑛

𝑔 (𝑎, 𝑎, . . . , 𝑎) = 𝑎 because the operation 𝑅𝑛
𝑔

does not allow a formula 𝑎 in other places of the domain except the first
position. Thus, 𝑎 is a term in 𝑊𝜏 (𝑋) ∖ 𝑋 satisfying var(𝑎) ∩ 𝑋𝑛 ̸= ∅.
Without loss of generality, we may assume that 𝑎 = 𝑓𝑖(𝑡1, . . . , 𝑡𝑛𝑖) and
var(𝑡1) ⊂ 𝑋𝑛. It can be seen that if var(𝑡1) ⊂ 𝑋𝑛, then 𝑆

𝑛
𝑔 (𝑎, 𝑎, . . . , 𝑎) ̸= 𝑎

because there are at least one variable from 𝑋𝑛 occurring in 𝑡1 and by the
process of computation the resulting term has a term 𝑎 inside the position
of 𝑡1, which proves that a weak identity of idempotency does not true. As
a result, 𝑎 is not idempotent in 𝑊ℱ(𝜏,𝜏 ′)(𝑋) with respect to +𝑛

𝐹 . Following
Corollary 2.8 in the paper [7], we can conclude that our claim is obtained.
The converse is obvious.

According to Example 1 and Theorem 5, it can be seen that elements
𝑥2 and 𝑓(𝑥3, 𝑥3) are examples of idempotent elements under the binary op-
eration +2

𝐹 . On the other hand, 𝑓(𝑥1, 𝑥3), 𝑥2 ≈ 𝑓(𝑥2, 𝑥3),Δ(𝑥1, 𝑓(𝑥3, 𝑥1))
are some examples of elements in 𝑊ℱ(2,2)(𝑋) which are not idempotent.

For each 𝑖 = 1, . . . , 𝑛, we define the partial binary operation

·𝑛,𝑖𝐹 :𝑊ℱ(𝜏,𝜏 ′)(𝑋)×𝑊ℱ(𝜏,𝜏 ′)(𝑋) (→𝑊ℱ(𝜏,𝜏 ′)(𝑋) (4.1)

by
𝑎 ·𝑛,𝑖𝐹 𝑏 = 𝑅

𝑛
𝑔 (𝑎, 𝑥1, . . . , 𝑥𝑖−1, 𝑏, 𝑥𝑖+1, . . . , 𝑥𝑛)

for every 𝑎, 𝑏 ∈𝑊ℱ(𝜏,𝜏 ′)(𝑋). Alternatively, for short, we may write

𝑎 ·𝑛,𝑖𝐹 𝑏 = 𝑅
𝑛
𝑔 (𝑎, 𝑥

𝑖−1
1 , 𝑏, 𝑥𝑛𝑖+1)

Известия Иркутского государственного университета.
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instead of the equation (4.1).

Theorem 6. The set 𝑊ℱ(𝜏,𝜏 ′)(𝑋) forms a partial semigroup with respect

to the partial operation ·𝑛,𝑖𝐹 .

Proof. Let 𝑎, 𝑏 and 𝑑 be elements in 𝑊ℱ(𝜏,𝜏 ′)(𝑋). To prove that ·𝑛,𝑖𝐹 sat-
isfies an associative law as a weak identity, we need to show that for each
𝑖 = 1, . . . , 𝑛, if (𝑎 ·𝑛,𝑖𝐹 𝑏) ·𝑛,𝑖𝐹 𝑑 is defined, then 𝑎 ·𝑛,𝑖𝐹 (𝑏 ·𝑛,𝑖𝐹 𝑑) is defined and

(𝑎 ·𝑛,𝑖𝐹 𝑏) ·𝑛,𝑖𝐹 𝑑 = 𝑎 ·𝑛,𝑖𝐹 (𝑏 ·𝑛,𝑖𝐹 𝑑). Assume that (𝑎 ·𝑛,𝑖𝐹 𝑏) ·𝑛,𝑖𝐹 𝑑 is defined. Then
we obtain that 𝑎 belongs to 𝑊ℱ(𝜏,𝜏 ′)(𝑋) but 𝑏 and 𝑑 are in 𝑊𝜏 (𝑋). From

this assumption, 𝑎 ·𝑛,𝑖𝐹 (𝑏 ·𝑛,𝑖𝐹 𝑑) is also defined. To show that (𝑎 ·𝑛,𝑖𝐹 𝑏) ·𝑛,𝑖𝐹 𝑑

and 𝑎 ·𝑛,𝑖𝐹 (𝑏 ·𝑛,𝑖𝐹 𝑑) are equal, some cases are considered. We start with

the case when all 𝑎, 𝑏 and 𝑑 are terms of type 𝜏 . Then (𝑎 ·𝑛,𝑖𝐹 𝑏) ·𝑛,𝑖𝐹 𝑑

is equal to 𝑆𝑛
𝑔 (𝑆

𝑛
𝑔 (𝑎, 𝑥

𝑖−1
1 , 𝑏, 𝑥𝑖+1

𝑛 ), 𝑥𝑖−1
1 , 𝑑, 𝑥𝑖+1

𝑛 ) and 𝑎 ·𝐹𝑔 (𝑏 ·𝐹𝑔 𝑑) equals

𝑆𝑛
𝑔 (𝑎, 𝑥

𝑖−1
1 , 𝑆𝑛

𝑔 (𝑏, 𝑥
𝑖−1
1 , 𝑏, 𝑥𝑖+1

𝑛 ), 𝑥𝑖+1
𝑛 ). As a result, by the fact that 𝑆𝑛

𝑔 is

superassociative, we conclude that (𝑎 ·𝑛,𝑖𝐹 𝑏) ·𝑛,𝑖𝐹 𝑑 = 𝑎 ·𝑛,𝑖𝐹 (𝑏 ·𝑛,𝑖𝐹 𝑑). For

another case, we also have that (𝑎 ·𝑛,𝑖𝐹 𝑏) ·𝑛,𝑖𝐹 𝑑 = 𝑅𝑛
𝑔 (𝑎, 𝑥

𝑖−1
1 , 𝑏, 𝑥𝑖+1

𝑛 ) ·𝑛,𝑖𝐹 𝑑 =

𝑅𝑛
𝑔 (𝑅

𝑛
𝑔 (𝑎, 𝑥

𝑖−1
1 , 𝑏, 𝑥𝑖+1

𝑛 ), 𝑥𝑖−1
1 , 𝑑, 𝑥𝑖+1

𝑛 ) and in another side 𝑎 ·𝐹𝑔 (𝑏 ·𝐹𝑔 𝑑) =

𝑅𝑛
𝑔 (𝑎, 𝑥1, . . . , 𝑥𝑖−1, 𝑏 ·𝐹𝑔 𝑑, 𝑥𝑖+1, . . . , 𝑥𝑛), which is equal to

𝑅𝑛
𝑔 (𝑎, 𝑥1, . . . , 𝑥𝑖−1, 𝑅

𝑛
𝑔 (𝑏, 𝑥

𝑖−1
1 , 𝑑, 𝑥𝑖+1

𝑛 ), 𝑥𝑖+1, . . . , 𝑥𝑛). Due to the superasso-

ciativity of 𝑅𝑛
𝑔 , in this case, (𝑎 ·𝑛,𝑖𝐹 𝑏) ·𝑛,𝑖𝐹 𝑑 and 𝑎 ·𝑛,𝑖𝐹 (𝑏 ·𝑛,𝑖𝐹 𝑑) are equal.

The symbol (𝑎𝑗)
𝑛
𝑗=1 denotes an 𝑛-tuple of the form (𝑎1, . . . , 𝑎𝑛). On

the Cartesian product (𝑊ℱ(𝜏,𝜏 ′)(𝑋))𝑛 of 𝑊ℱ(𝜏,𝜏 ′)(𝑋), the partial binary
operation

*𝑛𝐹 : (𝑊ℱ(𝜏,𝜏 ′)(𝑋))𝑛 × (𝑊ℱ(𝜏,𝜏 ′)(𝑋))𝑛 (→𝑊ℱ(𝜏,𝜏 ′)(𝑋)

is defined by

(𝑎𝑗)
𝑛
𝑗=1 *𝑛𝐹 (𝑏𝑗)

𝑛
𝑗=1 = (𝑅

𝑛
𝑔 (𝑎𝑗 , 𝑏1, . . . , 𝑏𝑛))

𝑛
𝑗=1

for every (𝑎𝑗)
𝑛
𝑗=1, (𝑏𝑗)

𝑛
𝑗=1 ∈ (𝑊ℱ(𝜏,𝜏 ′)(𝑋))𝑛.

Theorem 7. A system ((𝑊ℱ(𝜏,𝜏 ′)(𝑋))𝑛, *𝑛𝐹 ) is a partial semigroup.

Proof. Assume that (𝑎𝑗)
𝑛
𝑗=1, (𝑏𝑗)

𝑛
𝑗=1 and (𝑑𝑗)

𝑛
𝑗=1 are elements in

(𝑊ℱ(𝜏,𝜏 ′)(𝑋))𝑛.

To show that an associativity, i.e.,

((𝑎𝑗)
𝑛
𝑗=1 *𝑛𝐹 (𝑏𝑗)

𝑛
𝑗=1) *𝑛𝐹 (𝑑𝑗)

𝑛
𝑗=1 = (𝑎𝑗)

𝑛
𝑗=1 *𝑛𝐹 ((𝑏𝑗)

𝑛
𝑗=1 *𝑛𝐹 (𝑑𝑗)

𝑛
𝑗=1) (4.2)

is weak, suppose that the left-hand side of (4.2) is defined. Thus, we have
that (𝑎𝑗)

𝑛
𝑗=1 belongs to the set (𝑊ℱ(𝜏,𝜏 ′)(𝑋))𝑛 but a pair of (𝑏𝑗)

𝑛
𝑗=1 and
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(𝑑𝑗)
𝑛
𝑗=1 belongs to the set (𝑊𝜏 (𝑋))𝑛. From this, obviously, the right-hand

side of (4.2) is also defined. In order to show that both sides of (4.2) are
equal, we devide our consideration into some cases. If tuples (𝑎𝑗)

𝑛
𝑗=1, (𝑏𝑗)

𝑛
𝑗=1

and (𝑑𝑗)
𝑛
𝑗=1 come from the product of terms of type 𝜏 , we have that left

hand-side of equation (4.2) equals 𝑆𝑛
𝑔 (𝑆

𝑛
𝑔 (𝑎𝑗 , 𝑏1, . . . , 𝑏𝑛), 𝑑1, . . . , 𝑑𝑛)

𝑛
𝑗=1 and

the right hand-side of (4.2) is equal to

(𝑆𝑛
𝑔 (𝑎𝑗 , 𝑆

𝑛
𝑔 (𝑏1, 𝑑1, . . . , 𝑑𝑛), . . . , 𝑆

𝑛
𝑔 (𝑏𝑛, 𝑑1, . . . , 𝑑𝑛)))

𝑛
𝑗=1.

Because the superposition 𝑆𝑛
𝑔 on the set 𝑊𝜏 (𝑋) satisfies the superassocia-

tive law, we conclude that, in this case, both side of the equation (4.2)
are equal. For the case when (𝑎𝑗)

𝑛
𝑗=1 is an 𝑛-tuple of formulas of type

(𝜏, 𝜏 ′) while (𝑏𝑗)
𝑛
𝑗=1 and (𝑑𝑗)

𝑛
𝑗=1 are 𝑛-tuples of terms of type 𝜏 , we get that

((𝑎𝑗)
𝑛
𝑗=1 *𝑛𝐹 (𝑏𝑗)

𝑛
𝑗=1)*𝑛𝐹 (𝑑𝑗)

𝑛
𝑗=1 equals (𝑅𝑛

𝑔 (𝑅
𝑛
𝑔 (𝑎𝑗 , 𝑏1, . . . , 𝑏𝑛), 𝑑1, . . . , 𝑑𝑛))

𝑛
𝑗=1

and (𝑎𝑗)
𝑛
𝑗=1 *𝑛𝐹 ((𝑏𝑗)

𝑛
𝑗=1 *𝑛𝐹 (𝑑𝑗)

𝑛
𝑗=1) is equal to

(𝑅𝑛
𝑔 (𝑎𝑗 , 𝑅

𝑛
𝑔 (𝑏1, 𝑑1, . . . , 𝑑𝑛), . . . , 𝑅

𝑛
𝑔 (𝑏𝑛, 𝑑1, . . . , 𝑑𝑛)))

𝑛
𝑗=1.

It follows from [18] that (𝑅𝑛
𝑔 (𝑅

𝑛
𝑔 (𝑎𝑗 , 𝑏1, . . . , 𝑏𝑛), 𝑑1, . . . , 𝑑𝑛))

𝑛
𝑗=1 and

(𝑅𝑛
𝑔 (𝑎𝑗 , 𝑅

𝑛
𝑔 (𝑏1, 𝑑1, . . . , 𝑑𝑛), . . . , 𝑅

𝑛
𝑔 (𝑏𝑛, 𝑑1, . . . , 𝑑𝑛)))

𝑛
𝑗=1

are coincide.
Finally, suppose that there are two subsets {𝑖1, . . . , 𝑖𝑘} and {𝑖′1, . . . , 𝑖′𝑘}

of an infinite set {1, 2, . . .} such that
1. {𝑖1, . . . , 𝑖𝑘} ∩ {𝑖′1, . . . , 𝑖′𝑘} = ∅,
2. 𝑎𝑖𝑙 ∈𝑊𝜏 (𝑋), for all 𝑙 = 1, . . . , 𝑘,
3. 𝑎𝑖′𝑙 ∈ ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋𝑛)), for all 𝑙 = 1, . . . , 𝑘.

Thus, we consider in the case when 𝑎𝑖𝑙 belongs to 𝑊𝜏 (𝑋𝑛) and 𝑎′𝑖𝑙 is a
formula in ℱ(𝜏,𝜏 ′)(𝑊𝜏 (𝑋𝑛)) and both (𝑏𝑗)

𝑛
𝑗=1, (𝑑𝑗)

𝑛
𝑗=1 are 𝑛-tuples in

(𝑊𝜏 (𝑋𝑛))
𝑛.

From the left-hand side of the equation (4.2), we obtain that ((𝑎𝑗)
𝑛
𝑗=1 *𝐹

(𝑏𝑗)
𝑛
𝑗=1) *𝐹 (𝑑𝑗)

𝑛
𝑗=1 is equal to (𝑒𝑗)

𝑛
𝑗=1 *𝐹 (𝑑𝑗)

𝑛
𝑗=1 where

𝑒𝑖𝑙 = 𝑆𝑛
𝑔 (𝑎𝑖𝑙 , 𝑏1, . . . , 𝑏𝑛) and 𝑒𝑖′𝑙 = 𝑅𝑛

𝑔 (𝑎𝑖′𝑙 , 𝑏1, . . . , 𝑏𝑛)

for all 𝑙 = 1, . . . , 𝑘, consequently, (𝑝𝑗)
𝑛
𝑗=1 where

𝑝𝑖𝑙 = 𝑆𝑛
𝑔 (𝑆

𝑛
𝑔 (𝑎𝑖𝑙 , 𝑏1, . . . , 𝑏𝑛), 𝑑1, . . . , 𝑑𝑛)

and
𝑝𝑖′𝑙 = 𝑅𝑛(𝑅𝑛(𝑎𝑖′𝑙 , 𝑏1, . . . , 𝑏𝑛), 𝑑1, . . . , 𝑑𝑛

for all 𝑙 = 1, . . . , 𝑘. For the right-hand side of the equation (4.2), we have
that (𝑎𝑗)

𝑛
𝑗=1 *𝐹 ((𝑏𝑗)

𝑛
𝑗=1 *𝐹 (𝑑𝑗)

𝑛
𝑗=1) is equal to

(𝑎𝑗)
𝑛
𝑗=1 *𝐹 (𝑆𝑛(𝑏𝑗 , 𝑑1, . . . , 𝑑𝑛))

𝑛
𝑗=1,
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subsequently, (𝑝𝑗)
𝑛
𝑗=1 where for all 𝑙 = 1, . . . , 𝑘,

𝑝𝑖𝑙 = 𝑆𝑛(𝑎𝑖𝑙 , 𝑆
𝑛(𝑏1, 𝑑1, . . . , 𝑑𝑛), . . . , 𝑆

𝑛(𝑏𝑛, 𝑑1, . . . , 𝑑𝑛))

and 𝑝𝑖′𝑙
= 𝑅𝑛(𝑎𝑖′𝑙 , 𝑆

𝑛(𝑏1, 𝑑1, . . . , 𝑑𝑛), . . . , 𝑆
𝑛(𝑏𝑛, 𝑑1, . . . , 𝑑𝑛)). Therefore, we

have (𝑝𝑗)
𝑛
𝑗=1 = (𝑝𝑗)

𝑛
𝑗=1 where 𝑝𝑖𝑙 = 𝑝𝑖𝑙 and 𝑝𝑖′𝑙 = 𝑝𝑖′𝑙

for all 𝑙 = 1, . . . , 𝑘. This

shows that the equation (4.2) of associativity holds as a weak identity.

This section is closed with a discussion of connections between par-
tial semigroups (𝑊ℱ(𝜏,𝜏 ′)(𝑋),+𝑛

𝐹 ) and ((𝑊ℱ(𝜏,𝜏 ′)(𝑋))𝑛, *𝑛𝐹 ) through the
concept of an embedding theorem. To attain this, the notion of weak
homomorphisms is required. Normally, a function 𝜓 from a partial semi-
group (𝑆, ·) to (𝐻,⊙) is called a weak homomorphism if 𝑎 · 𝑏 is defined,
then 𝜓(𝑎) ⊙ 𝜓(𝑏) is also defined, and then 𝜓(𝑎 · 𝑏) = 𝜓(𝑎) ⊙ 𝜓(𝑏) for
all 𝑎, 𝑏 ∈ 𝑆. If a weak homomorphism 𝜓 is injective, we call 𝜓 a weak
monomorphism. Alternatively, we say that a partial semigroup (𝑆, ·) can
be weakly embedded into (𝐻,⊙).

Theorem 8. The partial semigroup (𝑊ℱ(𝜏,𝜏 ′)(𝑋),+𝑛
𝐹 ) is weakly embed-

dable into ((𝑊ℱ(𝜏,𝜏 ′)(𝑋))𝑛, *𝑛𝐹 ).

Proof. For every 𝑎 ∈𝑊ℱ(𝜏,𝜏 ′)(𝑋), we define the function

𝜓 :𝑊ℱ(𝜏,𝜏 ′)(𝑋) → (𝑊ℱ(𝜏,𝜏 ′)(𝑋))𝑛

by 𝜓(𝑎) = (𝑎, . . . , 𝑎). Clearly, 𝜓 is an injection. To show that 𝜓 is a
weak homomorphism, let 𝑎 and 𝑏 be two elements in the set 𝑊ℱ(𝜏,𝜏 ′)(𝑋).

Suppose that 𝑎+𝑛
𝐹 𝑏 is defined, which means that 𝑅

𝑛
𝑔 (𝑎, 𝑏, . . . , 𝑏) is defined,

and equals 𝑆𝑛
𝑔 (𝑎, 𝑏, . . . , 𝑏) for terms 𝑎, 𝑏 and 𝑅𝑛

𝑔 (𝑎, 𝑏, . . . , 𝑏) for a formula 𝑎
and a term 𝑏. If 𝑎, 𝑏 ∈ 𝑊𝜏 (𝑋), then 𝑆𝑛

𝑔 (𝑎, 𝑏, . . . , 𝑏) ∈ 𝑊𝜏 (𝑋), and then
𝜓(𝑎) *𝑛𝐹 𝜓(𝑏) is also defined and equals (𝑎, . . . , 𝑎) *𝑛𝐹 (𝑏, . . . , 𝑏). It follows
that 𝜓(𝑎+𝑛

𝐹 𝑏) = 𝜓(𝑆𝑛
𝑔 (𝑎, 𝑏, . . . , 𝑏)) = (𝑆𝑛

𝑔 (𝑎, 𝑏, . . . , 𝑏), . . . , 𝑆
𝑛
𝑔 (𝑎, 𝑏, . . . , 𝑏)) =

(𝑎, . . . , 𝑎) *𝑛𝐹 (𝑏, . . . , 𝑏) = 𝜓(𝑎) *𝑛𝐹 𝜓(𝑏). Otherwise, we have 𝜓(𝑎 +𝑛
𝐹 𝑏) =

𝜓(𝑅𝑛
𝑔 (𝑎, 𝑏, . . . , 𝑏)) = (𝑅𝑛

𝑔 (𝑎, 𝑏, . . . , 𝑏), . . . , 𝑅
𝑛
𝑔 (𝑎, 𝑏, . . . , 𝑏)) = 𝜓(𝑎) *𝑛𝐹 𝜓(𝑏).

From these preparations, we conclude that an injective mapping 𝜓 is a
weak homomorphism.

5. Conclusion

The paper addresses the construction of a partial superassociative al-
gebra of formulas under generalized superpositions, where formulas are
generated by terms from an infinite set of alphabets, logical connectives,
and relation symbols. The method employs weak identities and partial
algebras. Three associative binary operations on the union set of terms
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and formulas, induced by the partial operation 𝑅
𝑛
for every 𝑛 ∈ N are

discussed.
For future work, the concept of many-sorted algebras associated with

partial algebras could be explored. Alternatively, representations of these
partial structures through partial functions offer an interesting direction.
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