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1. Introduction

Although our paper is contributed to the study of partial algebras as
well as the axiom of superassociativity on partial algebras, we first assume
that it should be helpful to get a brief excursion to partial algebras and
then apply these tools to partial algebras of formulas. See [1;9;15] for more
backgrounds on partial algebras, partial operations and weak identities.
Extensions of partial lattices were described by I. Chajda and H. Langer in
the paper [3]. Recently, a comprehensive monograph on partial algebras is
collected by K. Denecke in [4].

In 2021, partial Menger algebras generalizing Menger algebras were in-
troduced by K. Denecke in [6]. By definition, it is a pair of a nonempty
set and a partial operation of type n + 1 defined on that set which satisfies
the axiom of superassociativity. It is worth noticing that this structure
can be considered as an extension of any partial semigroup, i. e., a partial
Menger algebra of rank 1 and a partial semigroup are the same thing.
One of the most important developments of Menger algebras is the Menger
algebra of terms, a triple consisting of the set of terms of type 7, generalized
superpositon S™ and a family of infinitely many nullary operations. This
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is a main tool to classify any algebra into subclasses called strongly solid
varieties. There are many works describing properties of the Menger algebra
of terms, for example, [14;22].

Following the suggestion of A. I. Malcev in [16], formulas which are
formal expressions extending the concept of both first and second-order
languages are given. To demonstrate an importance of formulas, we con-
sider the formula Vz[x + y - z = 2] of the usual addition and multiplication
on the set N := {1,2,...} of all nutural numbers. It can be calculated
that this formula is true if x = 1 and y = 0, but false in the case when
x =y = 1. In view of algebrization, structures of formulas with respect to
different operations have been widely studied by many authors [2;10;19].
Particularly, in the paper [20], the generalized superposition operation,
denoted by R™, of type n + 1 defined on the set of all formulas of arbitrary
type is mentioned. The fact that this operation is superassociative is also
proved and characterizations for any element of some algebras induced by
such operation to be idempotent and regular in sense of the theory of
semigroups are presented. Normally, the interaction between formulas and
model theory are given. Algebras of binary formulas in sence of realizations
are mentioned in [11]. The concept of pseudofinite formulas and their
properties are revealed in [12]. Formulas in first order logic over a given
language are also studied in [13].

While a generalized superposition R" of formulas has been established,
its computation relies on specific choices of terms of type 7. In the domain
of R™ with type n+1, this implies that the first position derives from the set
of formulas, while other positions in the domain come from the set W, (X)
of terms. This leads to the question: Can we define the superposition for
the Cartesian product of the formula set using Sg and Ry? If so, does
this operation fulfill the property of superassociativity? To address these
questions, this paper primarily aims to establish a partial operation for
the set of formulas, where its domain is defined by the Cartesian product
of the formula set. We demonstrate that this partial operation satisfies
weak superassociativity. Additionally, partial binary operations induced
by this generalized partial superposition are introduced for the set of for-
mulas, and partial semigroups corresponding to these binary operations are
constructed.

2. Some preliminary results

This section provides some essential backgrounds concerning terms, for-
mulas, partial algebras, and related topics that need in the paper. See the
references [1;3;9;17] for more details.

Ussectust VIpkyTCKOro roCyIapCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukas. 2025. T. 54. C. 160-175
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Normally, a superassociative algebra (a Menger algebra) is a pair of a
nonempty G together with one operation of type n + 1 defined on G which
satisfies the axiom of superassociativity, i.e.,

o(o(a,br,...,bn),c1,-..,cn)=o0(a,o(bi,c1,...,¢n)y. .. 0(bp,c1,...,¢n))

foralla,bj,c; € Gand j = 1,...,n. Furthermore, superassociative algebras
have been investigated in various directions. For example, superassociative
algebras of multiplace functions were deeply considered in the papers [8].
By a unitary superassociative algebra, we mean a superassociative alge-
bra (G,o) that has special elements such that o(e,ai,...,a,) = e and
o(a,e1,...,e,) = a for elements a,e,a;,e; in G and i = 1,...,n. In this
case, this algebra has the type (n+1,0,...,0). An excursion of the theory
of superassociative algebras or algebras of functions can be found in [7].

A term t of type 7 is constructed from an alphabet X,, = {z1,...,z,}
whose elements are called variables for all n in N and operation symbols { f; |
i € I} of type 7 indexed by the set I. The type is the family 7 = (n;);er of
the natural numbers that correspond to the arities of the operation symbols
fi- In fact, the set W, (X,,) of all n-ary terms of type 7 consists of the
following elements: Every variable x; € X, and f;(t1,...,t,,) where n-
ary terms ti,...,t,, of type 7 are already known. Indeed, W, (X,,) is the
smallest set closed under finite application of composition by each operation
symbol f;. In general, if variables come from an infinite set of alphabets
X ={z1,z2,...}, we write W,(X) instead of W,(X,,). Moreover, by var(t)
we denote the set of all variables that occur in a term ¢. For details, one
can refer the reader to [5;14;21].

One of the most important operations defined on the set of terms is the
generalized superposition operation [20]. Basically, a new term is obtained
after substituting all variables occuring in a former term by the other terms.
This can be described by the (n + 1)-generalized superpostion Sy, n > 1,

Sps W (X)"H = Wi (X)

defined inductively by the following steps: for ¢,t1,...,t, € W (X)

L. Ift=umx; 1 <i<mn,then Sy(z;t1,...,tn) =t

2. Ift =x;; n <1, then Sg(xi,tl, ceyty) = .

3. Ift = fi(s1,...,5n,), then S;‘(t,tl, ..., ty) is equal to

fi(S;L(Sl, tl, ce ,tn), ey S;(Sni,tl, ce ,tn))‘

We can form the algebra (Wr(X), Sy, (z;);>1) of type (n + 1,0,0,0,...)
consisting of the universe W, (X) together with one (n + 1)-ary operation
Sg and the variable terms acting as infinitely many nullary operations. We
call this algebra the generalized clone of terms with infinitely many nullary
operations.

Another structure that generalizes algebras is an algebraic system, a
triple of a nonempty set A equipped with a family of n;-ary operations
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defined on A, and a family of nj-ary relations on A. By the type (7,7’), we
refer to the families of the arities of operations and relations, respectively.
See [16;19]. It is obvious that a partially ordered semigroup is an example
of algebraic systems of type ((2),(2)). However, if there is no a family of
relation symbols, thus an algebraic system and an algebra are identical.
Thus, the notion that needs in the investigation of algebraic systems of
type (7,7') is a formula.
Recall from [5;16;17] that for n € N an n-ary formula of type (1,7') is
defined in the following way:
1. If t1,to are n-ary terms of type 7, then the equation ¢1 ~ t9 is an n-ary
formula of type (7,7").
2. Ifj € Jandty,...,t,, are n-ary terms of type 7 and v; is an nj-ary
relation symbol, then 7;(t1,...,ty;) is an n-ary formula of type (7, 7).
3. If F is an n-ary formula of type (7,7’), then —F is an n-ary formula
of type (1,7").
4. If Fy and Fy are n-ary formulas of type (7,7'), then F} V Fy is an n-ary
formula of type (7, 7).
5. If F is an n-ary formula of type (7,7') and z; € X,,, then 3z;(F) is an
n-ary formula of type (7,7").
By atomic formulas of type (7,7'), we refer to the formulas of the form
1. and 2. The formulas of the forms 1. to 4. are called quantifier free
formulas. In this paper, for short, we call a formula F in stead of a quantifier
free formula F. Thus, the set of all n-ary formulas of type (7,7’) and
the set of all formulas of type (7,7') are denoted by F(, y(W>(X,)) and
Frmy W (X)) == Upen Frr)(Wr(Xn)), respectively.
In [18], the operation
Ry« (W (X) U Fr oy (Wr(X))) x (Wr (X)) = Wr(X) U Fr oy (Wr (X))
is defined in the following way:
1. Ift € Wr(X), then Ry(¢,s1,...,55,) is equal to Sg(t,s1,...,8n).
2. If th mta € F7 ) (Wr(X)), then Ry (t1 = t2,51,...,5,) is the formula

Ry(t1,s1,...,8n) = Ry(ta, s1,. .., 8n).
3. If ’Y](tla--- tn ) S .F(TT/)(W (X)), then RZ(’Yj(tl,...,tnj),Sl,.‘.,Sn)
1stheformula'y]( o (1,81, 80), s Ry (tny, 81,005 80)).
4. I F € Frm(Wr(X )) then Ry (—F,s1,...,s,) equals
Ry (F,s1,...,8n).
5. If Iy, Fy € F7)(Wr(X)), then Ry (F1V F,s1,...,8y,) is the formula
R;L(Fl,sl,...,sn)\/RZ(FQ,Sl,...,Sn).

Ussectust IpKyTCKOro roCyIapCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2025. T. 54. C. 160-175
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Thus, the algebra (W7 (X), F(r(Wr(X)), Sy, Ry) is formed. Further-
more, it was shown in [18] that the operations S; and Ry are superassocia-
tive in sense of many-sorted algebras. Adding a family of variables (x;);>1
in this algebra, we obtain a new algebra

(W (X), Firry(Wr(X)), S, Ry, (xi)i>1)

which can be regarded as a unitrary superassociative algebra.

3. Construction of partial unitary algebras of formulas

Let 7 = (n;)ier be a type, (A,{fi | i € I}) and (B,{f; | i € I})
partial algebras of type 7 and p, ¢ terms of type 7. We say that a partial
algebra (A,{f; | i € I}) satisfies a weak identity p ~ ¢ if the following
holds: If aq,...,a, € A and p(aq,...,a,) and g(aq,...,a,) are defined,
then p(ai,...,a,) = q(ai,...,ay). Additionally, we say that a partial
algebra (A,{fi | i € I}) is a weak subalgebra of (B,{f; |t €I})if ACB
and if for all ¢ € I and all ay,...,a,, € A, if fi(ai,...,an,) is defined in
(A,{fi | i € I}), then it is defined in (B,{f; | i € I}) and has the same
value.

We begin our study in this section with providing the concept of a
partial operation on the set of all formulas induced by an alphabet X =
{z1,z9,...}. In fact, we let

W]:(T,T/) (X) =W (X)U ]:(7—,7—’) (W-(X)).
We now define the partial generalized superposition

EZ : (W]:(T,T/) (X))n+1 —o— W’F(T,T/)(X)
by

N

Rg(a, bi,...,by) =
S;‘(a,bl,...,bn) if a,by,...,b, € Wr(X),
Rg(a, bl,...,bn) if a Ef(TJ/)(WT(X)), 1,-
not defined otherwise.

., by € WH(X),

To understand this operation in depth, we consider the following ex-
ample. Let |I| = 2,|J| = 1, and (7,7") = ((2,2),(2)) be a type with two
binary operation symbols €& and ® and one binary relation symbol V. We
consider the following elements belonging to the set W.F (2 9) (2))(X) : a1
is a variable x4, a2 is a term @®(x2,5), a3 is a term ®(x2, B(x3,x6)), b1 is
a formula @®(x1,z5) ~ x3,bs is a formula V(®(x1,x7),22),bs is a formula
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(22 = ®(xs,23)),d; is a term (D (z2, 1), ®(x1,23)) and dy is a variable
z1. Then we have

=

3
g(ala ai,az, as

) = ai,
EZ(a ay,as,a3z) = &(®(xe,5),75),
R (b,a1,az,a5) = ®(aa,75) ~ (2, © (a3, 70),
Ry (b,a1,dy, a5) = V(®(a4,27), 1),
Ry (b, di,da,a0) = —(21 = ®(zs, B(22,75))).

On the other hand, Ry(ai,az, by, ba,bs) and R, (da, by, as,a3) are not de-
fined.
Hence, on the set W.F(; . (X), we can form the following partial alge-
bras:
1. The partial algebra (W F(; (X)), (is)"EN) of type (2,3,4,...),
2. The partial algebra (WF(, . (X), (Ry)neN, (zi)ien) of type
(2,3,4,...,0,0,...).
Our next purpose is to show that these two algebras satisfy certain
axioms.

Theorem 1. The partial algebra (W F(; 1 (X), (EZ)WEN) satisfies, for all
n € N, the identity

Ry (Ry(a1,b1,...,by),d1,...,dn) = Ry(a1,h,... hy)

as a weak identity where h; = Rg(bj,dl, coydy) forallj=1,....n

Proof. Suppose first that ai,b1,...,b,,d1,...,d, belong to W]-"(T ) (X).

We aim to prove that each partial operation in a family (R JneN 1S su-
perassociative, which means that the following identity:

Ry (Ry(a1,by,...,bp),d1, ... dn) = Ry(a1,h1,... hy) (3.1)

is weak for h; = RZ(bj,dl,...,dn) and j = 1,...,n. To do this, assume
that the left-hand side of (3.1) is defined. Thus, we have the following
two cases: ai,b1,...,b,,d1,...,d, are terms of type 7 in the first case
and a is a formula of type (r,7') but by,...,b,,d1,...,d, are terms of
type 7 in the second case. If ai,by,...,b,,d1,...,d, belong to the set
W.(X), we have that Rg(al,bl, ..., bp) is equal to Sg(al,bl,...,bn). Be-
sides, for each j = 1,... ,n,ﬁg(bj,dl, ...,dy) is also defined and is equal
to Sy (bj,di,...,dy), which implies that the right-hand side of (3.1) is
defined. Applying the fact that the generalized superposition of terms
satisfies the superassociativity given in [20], we conclude that the equation

Ussectust IpkyTCKOro rocyIapCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2025. T. 54. C. 160-175
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(3.1) is weak. On the other hand, we now consider the case when a be-
longs to F(; ) (W-(X)) but by,...,by,d1,...,d, are in W;(X). Clearly,
Ry (R, (a1,b1,...,bp),d1,. .., dy) is defined and equals to
RY(RMay, b, ..., by),dy, ..., dy). Foreach j=1,2,....n,R,(bj,di,. .., dn)
is defined and equals to Rj(bj,d1,...,d,), which belongs to Wr(X). It
implies that the right-hand side of (3.1), i.e.,

Ry (a,Ry(bi,dy,...,dn),...,Ry(bn,d1,...,dy)) is defined and equals to the
formula Ry (a, Ry (b1, dy, ... dn), ..., Ry (bn,di, ..., dy)). By the definition
of generalized superposition Ry of formulas, it was proved in [18] that R}
is superassociative. As a consequence, the identity (3.1) is weak for this
case. 0

The following theorem shows that the partial algebra

(W‘F(T,T/) (X), (RZ)’VLENu («Tz’)iEN)

satisfies certain identities which are more complicated than the axiom in
Theorem 1.

Theorem 2. (WF . (X), (E;)NEN, (x)ieN) is a generalized unitary par-
tial superassociative system.

Proof. 1t is left to show that the satisfaction of superassociativity of each
partial operation in (Rg)neN due to a direct verification of Theorem 1. Now
we show that for 1 < j < n, the equation EZ(acj, bi,...,b,) = b; is a weak
identity. Assume that the left hand-side of this equation is defined. We
obtain that bq,...,b, are terms of type 7 and thus EZ(xj,bl, cobp) =
Sy (wj,b1,...,bn) = bj, consequently, our claimed is obtained. For j > n,
we now show that Eg(wj, bi,...,b,) = x; is a weak identity. Suppose that
EZ(a;j, bi,...,by) is defined. Then all of by, ..., b, belong to the set W, (X).

As a result, Fg(:vj,bl, ceeybp) = S¢(x5,b1,. .., by) = ;. Finally, we prove

that for a in WF y(X) the weak identity Rg(a,azl, ..., Tp) = a holds.
Obviously, RZ(CL, T1,...,%y) is defined and equal S (a,r1,...,7,) if ais a
term of type 7. Otherwise, R} (a,r1,...,,) if a is a formula of type (7,7').
It was shown in [20] that if a is a term of type 7, S¢'(a,z1,...,2,) = a. For
a formula a, we give a proof by the following step. If a is an equation s ~ ¢,
then Ry(s ~t,x1,...,2y) is equal to Sg(s,x1,...,2n) = Sg(t,71,...,70),
subsequently, s ~ t. If a has a form ~;(t1, .. .,t,;), then by the definition of
the operation ¢, we obtain Ry (v;(t1, ..., tn; ), T1,. .-, @) = Vi(t1, ., tn;)-
Assume that a is satisfied as a weak identity already. Then we obtain
Ry(—a,z1,...,2,) = =Ry(a,z1,...,2,) = —a. Suppose that Fy and Fy
are satisfied. Then we have Ry (F1V Fa,x1,...,2n) = Ry (F1,21,...,2Zn) V
Ry(Fy,z1,...,2,) = F1 V Fy. Therefore, the proof is completed. O
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We now discuss some subsets of W.F(; ./ (X). Recall from [21] that
a term t of type 7 is called a term with a fixed variable if t constructed
from only one variable from X, which means that in an inductive step, if
t1,...,tn, are terms with a fixed variable of type 7 and var(t;) = var(ty)
for 1 < j <k <my, then f;(t1,...,t,,) is term with a fixed variable of type
7. The set of all terms with a fixed variable is denoted by W} (X). For
example, let 7 = (3) be a type with a ternary operation symbol f. Thus,
the following lists are examples of terms with a fixed variable of type (3):
x1, 210,f (@1, 21, 21), f (@5, f (5, x5, 5), 5), f(f(29, 9, X9), f(x9, X9, 9), X9).
Nevertheless, terms f(x3,x2,211), f(x5, 5, 26), f(z1, f(x4,24,24),24) are
not terms with a fixed variable.

Applying terms with a fixed variable, formulas with a fixed variable are
considered, which are familiar with equation with one variable in our real-
life. In fact, an equation z? + z = 5z — 2> can be viewed as a formula
with a fixed variable because both sides of such equation are terms with a
fixed variable. However, an equation 2z +vy = 22 — 42 with two variables is
not a formula with a fixed variable. By definition, a formula F is called a
formula with a fized variable. The symbol ]_-(sz f;,)(WT (X)) stands for the
set of all formulas with a fixed variable.

Thus, we prove the following result.

Theorem 3. The set Wf{;ﬁ,)(me(X)) of all formulas with a fized

variable is a partial subalgebra of (W F (X)), (Rg)neNa (xi)ieN)-

Proof. Clearly, WF/™, (Wi (X)) C WF( 1 (X). Assume now that for

(r7)
a,bi,...,b, are elements in W.F(f:,ﬁ,)(WTfm(X)), Rg(a, bi,...,b,) is de-
fined. We separate our proof into two cases. If EZ(a, b1,...,bn) equals
to the term Sp(a,by,...,by), then by Lemma 1.3 given in [21] we have
that Sj(a,b1,...,b,) is a term with a fixed variable and hence belongs to
W F(7.(X) and has the same term. On the other hand, ifﬁ:(a, bi,...,bn)
is equal to Ry (a, b1, ..., by), then by [18], Rj(a, b1, ..., by) is a formula with
a fixed variable, as a result, W, )(X) contains this formula. O

4. Partial semigroups of formulas

The goals of this section are to define three partial binary operations
induced by the partial operation EZ on the set W F(; ;)(X) and prove that
these operations are associative.

Let a and b be elements in W}"(T’T/)(X ). The partial binary operation

—i—?r : WJT"(.,.’T/)(X) X W.F(TJ/) (X) —o0— Wf(Tﬂ./)(X)

Ussectust IpKyTCKOro rocyIapCTBEHHOTO YHUBEPCUTETA.
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can be defined by

a+pb=Ry(ab,...b).
N —

n times

Thus, we prove the following result.
Theorem 4. A tuple (WF. ) (X),+}) is a partial semigroup.

Proof. Let a,b and d be arbitrary elements in WF(, . (X). We aim to
show that (a +% b) +% d = a +% (b +'% d) is a weak identity. Assume that
(a+%b) +' d is defined. Then we have that a belongs to W F(; )(X) and
both b and d are terms of type 7. It implies that a+'%(b+%d) is also defined.
In order to show that both sides are equal, we devide our consideration
into a few cases. If a and b are in W,(X), then we have (a +% b) +7
d = Sj(a+%b,d,...,d) = S;(Sy(a,b,...,b),d,d,...,d) and a +% (b +}
d) = Sg(a,b+rd,....b+%d) = S)(a,S;(b,d,...,d),...,S5(b.d,...,d)).
Due to the satisfaction of S; with the superassociativity, we conclude that
(a+'%b) +%d=a+"% (b+'%d). In the second case, we mean the conditions
when a is formula of type (7, 7') but both b and d belong to the set W, (X).
It follows from the definition of +% that (a +% b) +% d equals Rj(a +%
b,d,...,d) and thus Rj(Rj(a,b,...,b),d,...,d). On the other hand, we
also have that a +7. (b +} d) is equal to Rj(a,b+}d,...,b+} d) and that
Ry(a, Ry(b,d,...,d),...,R;(b,d,...,d)). Again by the superassociativity
of Ry proved in [18], as a consequence, (a +1 b) +5d =a+% (b+5d). O

Example 1. Consider the type (7,7') = ((2), (2)) with one binary opera-
tion symbol f, one binary relation symbol A and a subset

A = {x2, f(z3,23), ~(23 = 24), A(f (24, 23),75) }

of W]-"((Q)’(g))(X) with respect to a partial binary operation —i—% which is
defined by the following table.

+% | 9 flas,xs)  —(ws = aa) A(f(z4,23),25)
T9 T9 f(xs,x3) not defined not defined
f(zs, x3) f(xs, x3) f(xs,x3) not defined  not defined
—(x3 & x4) —(z3 ~ 14) —(z3 ~x4) not defined  not defined

A(f(xg,23),25) | A(f(x4,23),05) A(f(w4,23),75) not defined  not defined

It is not difficult to show that the partial binary operation +2F defined
on A satisfies an associative law as a weak identity. To illustrate some
examples, we consider elements xg, f(x3,x3) and A(f(z4,x3),25) in A. In
order to show that an equation (A(f(z4,x3),75) +% x2) +% f(x3,73) ~
A(f(z4,73),25) +% (v2 +% f(z3,73)) is a weak identity, assume first that
the left-hand side is defined. Hence, we get (A(f(z4,23),75) +% T2) +%
f(zs,m3) = A(f(4,23),25) +% f(x3,23) = A(f(24,23),25). Then the
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right-hand side is defined and equals A(f(z4,23),75) +% T2, subsequently,
A(f(z4,23), z5). This shows that the above equation satisfies an associative
law as a weak identity. Consequently, (A, +%) forms a partial semigroup.
Furthermore, it is also a weak subsemigroup of (W.F2) 2))(X), +%).

It was mentioned in [9] that an element a of a partial semigroup (.5, -)
is said to be idempotent if a weak identity a - a = a holds. We now
apply this concept to characterize any element in the partial semigroup
(WF(7,(X),+%) to be idempotent.

Theorem 5. An element a in the partial semigroup (W F(; (X), +%) is
idempotent if and only if it is a term of type T for which one of the following
conditions is satisfied:

1. var(a) C X \ X,

2. a = x; for some 1 <i<n.

Proof. For a in S, suppose first that a is not a term of type 7 under which
it does not satisfy both conditions of the theorem. We aim to show that if
a+'% a and a are defined, then a +% a # a. Assume that a +% a is defined.
Form this, we have two cases: Rg(a,a, ...,a) is the term S} (a,a,...,a)
of type 7 and Rg(a, a,...,a) is the formula Rj(a,a,...,a) of type (,7').
It is impossible to see that Rg(a, a,...,a) = a because the operation Ry
does not allow a formula a in other places of the domain except the first
position. Thus, a is a term in W,(X) \ X satisfying var(a) N X,, # 0.
Without loss of generality, we may assume that a = f;(t1,...,t,,) and
var(t;) C Xp. It can be seen that if var(t1) C X, then Si(a,qa,...,a) # a
because there are at least one variable from X,, occurring in ¢; and by the
process of computation the resulting term has a term a inside the position
of t1, which proves that a weak identity of idempotency does not true. As
a result, a is not idempotent in W, . (X) with respect to +%.. Following
Corollary 2.8 in the paper [7], we can conclude that our claim is obtained.
The converse is obvious. O

According to Example 1 and Theorem 5, it can be seen that elements
x9 and f(x3,x3) are examples of idempotent elements under the binary op-
eration +%. On the other hand, f(z1,z3), 22 ~ f(z2,23), A(z1, f(z3,71))
are some examples of elements in W (5 2)(X) which are not idempotent.

For each ¢ = 1,...,n, we define the partial binary operation
'T}?Z : WJ:(TJ’)<X) X WF(T,T’)(X) —o— W]:(T,T’)(X) (4'1)
by L
a-7'b= Rg(a,xl, ey L1, b, T, e, Ty)

for every a,b € Wf(TJ/)(X ). Alternatively, for short, we may write
a 711772 b= EZ(Q7 xil_lv b, IL’?+1)
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instead of the equation (4.1).

Theorem 6. The set W F(, .(X) forms a partial semigroup with respect

. . n,i
to the partial operation -5".

Proof. Let a,b and d be elements in W.F, . (X). To prove that 7}1 sat-
isfies an associative law as a weak identity, we need to show that for each
i=1,....nif (a Zf b) Zf d is defined, then a Zf (b "Iff d) is defined and
(a-7'b) - Rd=a-g" (b-%"d). Assume that (a ' b) -%" d is defined. Then
we obtain that a belongs to W F(; )(X) but b and d are in W-(X). From
this assumption, a 7" (b-}z" d) is also defined. To show that (a 3" b) " d
and a 7" (b %" d) are equal, some cases are considered. We start with
the case when all a,b and d are terms of type 7. Then (a -’ b) -3" d
is equal to S7(Sy(a, 2t b, it 2 d 2l and a -gF (b -5 d) equals
S;(a,:nlfl,Sg(b, :Blfl,b, i) 2 As a result, by the fact that Sy is
superassociative, we conclude that (a 3" ) -%"'d = a 3" (b-%" d). For
another case, we also have that (a -}’ b) ' d = RI'(a, 2", b,a8) 3’ d =
R (RMa, 24", b, ait), 247 d,2%) and in another side a -F' (b-F d) =

Ry(a,z1,...,2i-1,b -5 d,Tit1,...,%y,), which is equal to
Ry(a,z1,..., 21, Ry (b, x’l_l, d, x5 241, ..,2,). Due to the superasso-

ciativity of Ry, in this case, (a %Z b) %Z d and a Zf (b Tlff d) are equal. [

The symbol (a;)7_; denotes an n-tuple of the form (ai,...,a,). On
the Cartesian product (WF(;,)(X))" of WF, y(X), the partial binary
operation

*% : (W]:(T,T/)(X))n X (WF(T,T/)(X))n —o— W‘F(T,T/)(X)
is defined by

(aj)?:l o (bj)?:l = (EZ(%V bi,. .. >bn))?:1
for every (), (b;)y € (W-Fgp) (X))
Theorem 7. A system ((WF; . (X))", *%) is a partial semigroup.
Proof. Assume that (a;)}_;, (bj)7_; and (d;)}_; are elements in
(W F ) (X))".

To show that an associativity, i.e.,

((ag)j=1 ¥F (b5)j=1) ¥k (dj)j=1 = (a5)j=1 ¥p ((05)f=1 ¥k (dj)j=1)  (4.2)

is weak, suppose that the left-hand side of (4.2) is defined. Thus, we have

that (a;)7_; belongs to the set (WF(; . (X))" but a pair of (b;)7_; and
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(dj)7—, belongs to the set (W-(X))". From this, obviously, the right-hand
side of (4.2) is also defined. In order to show that both sides of (4.2) are
equal, we devide our consideration into some cases. If tuples (a;)7_;, (bj)7—;
and (d;)’}_; come from the product of terms of type 7, we have that left
hand-side of equation (4.2) equals S (S (aj, b1, .. ,bn),d1,. .. ,dn);‘:1 and
the right hand-side of (4.2) is equal to

(Sg(aj, S;L(bl, dl, ey dn), ey S;(bn, dl, ceey dn)))?:l

Because the superposition Sg on the set W, (X) satisfies the superassocia-
tive law, we conclude that, in this case, both side of the equation (4.2)
are equal. For the case when (a;)7_; is an n-tuple of formulas of type
(7,7") while (bj)?zl and (dj)?zl are n-tuples of terms of type 7, we get that
((aj)j=1 %% (b5)7=1) ¥ (dj)j—1 equals (Ry(Rg(aj,br,...,bn) d1,. .. dn))j_;
and (a;)j_; ¥ ((b;)7—1 *% (d;)7—1) is equal to

(R (ag, RE(br,diy .y, R (bnydiy oy )y

It follows from [18] that (Rj(Ry(aj,b1,...,bn), d1,. .. ,dn))?:1 and

(Rg(aj, R;(bl, diy....dp)y. .., Rg(bn, di,..., dn)))’;:1
are coincide.

Finally, suppose that there are two subsets {i1,...,4;} and {3},... i}
of an infinite set {1,2,...} such that

1. {21,,Zk}ﬂ{l/l,,l;€} =0,

2. a;, e Wr(X), foralll=1,...,k,

3. g S J—"(T’.,./)(WT(XN)), foralll=1,... k.
Thus, we consider in the case when a;, belongs to W (X,) and a;l is a
formula in F; - (W7 (X5)) and both (b;)7_;, (d;)’}_; are n-tuples in

(W (Xn))".

From the left-hand side of the equation (4.2), we obtain that ((a;)}_, *
(b5)7=1) - (dj)7—y is equal to (e;)7_, 1 (dj)j—, where

€ = S;(ail,bl, .. .,bn) and eig = Rg(aig,bl, .. .,bn)

for all I =1,...,k, consequently, (pj)?zl where
i, = S;(S’;(ail,bl, e ,bn), dl, ey dn)

and
pip = Rn(Rn(ai;,bl, .. .,bn),dl, ey dp

for all = 1,..., k. For the right-hand side of the equation (4.2), we have
that (a;)7_, s ((6;)74 - (d;)7-1) is equal to

(a’j)?:l *F (Sn(ij d17 cee 7dn))§'l:17
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subsequently, (p;)7_; where for all [ =1,... Fk,
Di, = S"(ail, S"(b1,dy, ... dy),y ..., S (b, dy, ... ,dn))

and Py = R”(ai;, S™(b1,di, ... dp), ..., S™(by,d1,...,dy)). Therefore, we
have (p;)7_; = (P;)j—1 where p;, = p;, and p;; = Py foralll =1,... k. This
shows that the equation (4.2) of associativity holds as a weak identity. [J

This section is closed with a discussion of connections between par-
tial semigroups (W F(; ) (X), +%) and (W F; (X)), *}) through the
concept of an embedding theorem. To attain this, the notion of weak
homomorphisms is required. Normally, a function 1 from a partial semi-
group (S,-) to (H,®) is called a weak homomorphism if a - b is defined,
then ¥ (a) ® ¥(b) is also defined, and then ¥ (a - b) = ¢(a) ® ¥(b) for
all a,b € S. If a weak homomorphism 1 is injective, we call ¥ a weak
monomorphism. Alternatively, we say that a partial semigroup (S,-) can
be weakly embedded into (H,®).

Theorem 8. The partial semigroup (W F(. (X)), +%) is weakly embed-
dable into (W F(r 1 (X))", *).

Proof. For every a € WF(, 1(X), we define the function

§: WFen(X) = (WFe ) (X))

by ¥(a) = (a,...,a). Clearly, ¢ is an injection. To show that 1 is a
weak homomorphism, let a and b be two elements in the set W.F(; /)(X).

Suppose that a +% b is defined, which means that En(a b,...,b) is defined,
and equals Sg(a,b,...,b) for terms a,b and Ry(a, b ,b) for a formula a
and a term b. If a,b € W-(X), then Sg(a,b,..., ) € W-(X), and then
P(a) *% 1(b) is also defined and equals (a,...,a) %} (b,...,b). It follows
that w(a—i—p b) = w(S”(a by...,b)) = (Sg(a,b,..., ) ceSg(a by b)) =
(a,...,a) *% (b,.. ) = zp( ) % (). Otherwise, we have T/J(a +5b) =
V(R (a,b,...,b)) = (Ry(a,b,...,b),..., Ry(a,b,...,b)) = ¥(a) *% (D).
From these preparations, we conclude that an injective mapping v is a
weak homomorphism. O

5. Conclusion

The paper addresses the construction of a partial superassociative al-
gebra of formulas under generalized superpositions, where formulas are
generated by terms from an infinite set of alphabets, logical connectives,
and relation symbols. The method employs weak identities and partial
algebras. Three associative binary operations on the union set of terms



174 T. KUMDUANG, K. WATTANATRIPOP

and formulas, induced by the partial operation R" for every n € N are
discussed.

For future work, the concept of many-sorted algebras associated with
partial algebras could be explored. Alternatively, representations of these
partial structures through partial functions offer an interesting direction.
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