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Abstract: The study and description of possibilities of expansions and restrictions of
structures and their theories is used to obtain a structural information both in general
and for various natural algebraic, geometric, ordered theories and models. The origins
for the description are based on known model-theoretic operations of Morleyzation, or
Atomization, and Skolemization, allowing to preserve or naturally extend formulaically
definable sets of a given structure, and obtain a level of quantifier elimination, where
formulaically definable sets are represented as Boolean combinations of definable sets
specified by quantifier-free formulae. The operations of Shelahizations, or Namizations,
produce both extensions and expansions of a structure giving names or labels for definable
sets. In the paper, we introduce and study some general principles and hierarchical
properties of expansions and restrictions of structures and their theories. These prin-
ciples are based on upper and lower cones, lattices, and permutations. The general
approach is applied to describe these properties for classes of 𝜔-categorical theories and
structures, Ehrenfeucht theories and their models, strongly minimal, 𝜔1-categorical, and
stable ones. Here all these classes are closed under permutations. It is proved that any
fusions of strongly minimal structures are strongly minimal, too, whereas the properties
of 𝜔-categoricity, Ehrenfeuchtness, 𝜔1-categoricity, and stability can fail under fusions.
It is also shown that the classes of 𝜔-categorical, strongly minimal and stable regular
structures are closed under lower cones of all their elements, whereas the classes of
Ehrenfeucht and 𝜔1-categorical structures do not have that property, with some infinite
chains of expansions alternating Ehrenfeuchtness and non-Ehrenfeuchtness, and other
infinite chains alternating 𝜔1-categoricity and non-𝜔1-categoricity.
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Научная статья

Обогащения и обеднения структур и теорий, их иерархии
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Аннотация: Изучение и описание возможностей обогащений и обеднений структур
и их теорий используется для получения структурной информации как в целом,
так и для различных естественных алгебраических, геометрических, упорядочен-
ных теорий и моделей. Истоки такого описания основаны на известных теоретико-
модельных операциях морлизации, или атомизации, и сколемизации, позволяющих
сохранять или естественным образом расширять систему формульно определимых
множеств данной структуры и получать уровень элиминации кванторов, при ко-
тором формульно определимые множества представлены как булевы комбинации
определимых множеств, заданных формулами без кванторов. Операции шелахи-
зации, или неймизации, производят как обогащения, так и расширения структу-
ры, при которых задаются имена или метки для определимых множеств. Вводятся
и изучаются некоторые общие принципы и иерархические свойства обогащений и
обеднений структур и их теорий. Эти принципы основаны на верхних и нижних
конусах, решетках и перестановках. Общий подход применяется для описания этих
свойств для классов 𝜔-категоричных теорий и структур, эренфойхтовых теорий и
их моделей, сильно минимальных, 𝜔1-категоричных и стабильных теорий и струк-
тур. При этом все эти классы замкнуты относительно перестановок. Доказано, что
любые слияния сильно минимальных структур также являются сильно минималь-
ными, тогда как свойства 𝜔-категоричности, эренфойхтовости, 𝜔1-категоричности
и стабильности могут нарушаться при слияниях. Также показано, что классы 𝜔-
категоричных, сильно минимальных и стабильных регулярных структур замкнуты
относительно нижних конусов всех их элементов, тогда как классы эренфойхтовых
и 𝜔1-категоричных структур этим свойством не обладают, причем некоторые бес-
конечные цепочки расширений чередуют эренфойхтовость и неэренфойхтовость, а
другие бесконечные цепочки чередуют 𝜔1-категоричность и не 𝜔1-категоричность.

Ключевые слова: иерархия, свойство, обогащение структуры, обеднение структу-
ры, теория
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1. Introduction

The study and description of possibilities of distributions of expansions
and restrictions of structures and their theories is of interest both in general
and for various natural algebraic, geometric, ordered theories and mod-
els. The prerequisites for the description are the original operations of
Morleyzation, or Atomization [7; 14], and Skolemization [4; 7; 14], allowing
to preserve or non-radically include formulaically defined sets of a given
structure, and upon receipt of this elimination of quantifiers, according to
which formulaically defined levels arise in the form of Boolean combinations
of definable sets specified by quantifier-free formulae. The operations of
Shelahizations [2;13], or Namizations, produce both extensions and expan-
sions of a structure giving names or labels for definable sets. In addition,
main types of combinations of theories based on 𝐸-combinations and 𝑃 -
combinations of their models are used for various expansions preserving a
series of properties [17]. These data allow to introduce topological approx-
imations and develop methods of approximations [18], rank characteristics
of a family of theories [19] introduced and studied within the framework of
approximating formulae [20] and, in particular, pseudo-finite formulas [9].
In addition, the effects associated with the preservation and violation of
properties during expansions and restrictions, with significant formulaicity
or non-formulaicity of these properties is investigated. The formulaic prop-
erties include known theories with the stability property [12], according to
which a theory is stable if each its formula is stable, i.e. it does not have the
order property, and a non-formulaic property, for example, is the property
of the theory of normality [11], which, as the author’s examples show [15],
may not be preserved when taking restrictions. Other formulaic proper-
ties include the properties of total transcendence and superstability [12]
based on the monotonicity of ranks when passing to restricted theories.
A semantic characteristic is the value of the number of non-isomorphic
countable models of these theories, which can both decrease and increase
when the theory is restricted. Using these tools, it is possible to describe
the conditions for the preservation and violation of significant properties
when constructing theories and their models, both in general and for series
of known classes of algebraic, geometric, ordered theories and their models.

The paper is organized as follows. In Section 2, we introduce the notion
of regular structure, Boolean algebras for regular expansions and restric-
tions based on a given universe both for structures and their theories, and
characterize these Boolean algebras up to an isomorphism in terms of car-
dinalities of universes. Kinds of properties on these Boolean algebras with
respect to upper and lower cones, lattices, and permutations are studied in
Sections 3, 4, 5, respectively. We apply these divisions of properties to the
classes of 𝜔-categorical theories and structures, Ehrenfeucht theories and
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structures (Section 6), strongly minimal ones (Section 7), 𝜔1-theories and
structures (Section 8), stable ones (Section 9). In particular, it is shown
that any fusions of strongly minimal structures are strongly minimal, too
(Theorem 6), whereas the properties of 𝜔-categoricity, Ehrenfeuchtness,
𝜔1-categoricity, and stability can fail under fusions.

2. Regular structures, their expansions, restrictions
and Boolean algebras

For convenience we consider regular structures, i.e. relational structures
without repetitions of interpretations of signature symbols. There is no
loss of generality with this assumption, since operations can be replaced
by their graphs, and multiple names for the same relations are reduced to
one of them. The procedure transforming an arbitrary structure ℳ to a
regular one 𝒩 is called the regularization, and the structure 𝒩 is called
regularized, with respect to ℳ. And the converse procedure transforming
𝒩 to the initial ℳ is called deregularization, and ℳ is called deregularized,
with respect to 𝒩 .

Remark 1. Clearly, regularizations and deregularizations are multi-valued
with respect to signatures, in general, but they always preserve families of
definable sets on the given universe.

Let ℳ be a regular structure, ℳ be a maximal regular expansion of ℳ
preserving the universe 𝑀 . We have⃒⃒

Σ(ℳ)
⃒⃒
= max{2|𝑀 |, 𝜔}, (2.1)

where Σ(ℳ) denotes the signature of ℳ. Now we denote by 𝐵(ℳ) the
set of all restrictions of ℳ preserving the universe 𝑀 . Clearly, all these
restrictions are regular, too. Since each signature relation of ℳ can be

independently preserved or removed there are 2|Σ(ℳ)| = 2max{2|𝑀|,𝜔} possi-

bilities for these restrictions, i.e. |𝐵(ℳ)| = 2max{2|𝑀|,𝜔}. Since each element
of 𝐵(ℳ) is uniquely defined by a subset Σ ⊆ Σ(ℳ), the set-theoretic
operations on the Boolean 𝒫(Σ(ℳ)), forming its Cantor algebra, induce
the regular atomic Boolean algebra ℬ(ℳ) on a universe 𝐵(ℳ), with the
greatest element ℳ having a complete, i.e. maximal signature, the least
element ℳ0 having the empty signature, and |Σ(ℳ)| atoms each of which
has exactly one signature symbol. Here unions 𝒩1 ∪ 𝒩2 and intersections
𝒩1∩𝒩2, for𝒩1,𝒩2 ∈ 𝐵(ℳ), preserve the universe𝑀 and consists of unions
of their signature relations, common signature symbols, respectively. The
unions can be considered both as combinations [17] and fusions [6], in a
broad sense, of structures.
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The algebra ℬ(ℳ) includes possibilities of regular structures on the
universe 𝑀 , and contains all restrictions of the structure ℳ. This algebra
is uniquely defined up to the names of signature symbols, and it reflects a
hierarchy of regular expansions and restrictions of structures with respect
to the names of relational symbols. Moreover, the following theorem gives
a characterization of existence of an isomorphism between regular Boolean
algebras.

Theorem 1. For any regular structures ℳ and 𝒩 the following conditions
are equivalent:

(1) ℬ(ℳ) ≃ ℬ(𝒩 ),
(2) there is a bijection between sets of atoms for ℬ(ℳ) and ℬ(𝒩 ),
(3) max{|𝑀 |, 𝜔} = max{|𝑁 |, 𝜔}.

Proof. (1) ⇒ (2). Let ℬ(ℳ) ≃ ℬ(𝒩 ) witnessed by an isomorphism 𝑓 .
Then the restriction of 𝑓 to the set of atoms produces a bijection between
sets of atoms for ℬ(ℳ) and ℬ(𝒩 ).

(2) ⇒ (1). Since ℬ(ℳ) and ℬ(𝒩 ) are uniquely defined by their atoms
and there is a bijection 𝑓𝑎 between sets of atoms for ℬ(ℳ) and ℬ(𝒩 ), this
bijection 𝑓𝑎 has a unique extension till an isomorphism between ℬ(ℳ) and
ℬ(𝒩 ).

(2) ⇒ (3). Since each atom for ℬ(ℳ) and for ℬ(𝒩 ) is uniquely defined
by a signature symbol in Σ(ℳ) and in Σ(𝒩 ), respectively, the bijec-
tion between sets of atoms for ℬ(ℳ) and ℬ(𝒩 ) implies max{|𝑀 |, 𝜔} =
max{|𝑁 |, 𝜔}.

(3) ⇒ (2). Since the equality max{|𝑀 |, 𝜔} = max{|𝑁 |, 𝜔} implies⃒⃒
Σ(ℳ)

⃒⃒
=
⃒⃒
Σ(𝒩 )

⃒⃒
in view of (2.1), there is a bijection between sets of

atoms for ℬ(ℳ) and ℬ(𝒩 ).

Theorem 1 immediately implies:

Corollary 1. For any at most countable regular structures ℳ and 𝒩 their
Boolean algebras ℬ(ℳ) and ℬ(𝒩 ) are isomorphic.

Since each algebra ℬ(ℳ) consists of structures with pairwise distinct
signatures all these structures ℳ′ have pairwise distinct theories Th(ℳ′).
Thus all structures in ℬ(ℳ) can be replaced by their theories obtaining an
isomorphic Boolean algebra ℬ(Th(ℳ)), which is defined by a partial order
≤ with 𝑇1 ≤ 𝑇2 iff a theory 𝑇2 ∈ 𝐵(Th(ℳ)) is an expansion of theory
𝑇1 ∈ 𝐵(Th(ℳ)). Here the algebra ℬ(ℳ) is composed by semantic objects
ℳ′ whereas ℬ(Th(ℳ)) consists of syntactic ones: Th(ℳ′).

Notice that ℬ(Th(ℳ)) depends on the cardinality 𝜆 = |𝑀 | and, since
models of their theory are uniquely defined up to an isomorphism iff these
models are finite, one can reconstruct elements of ℬ(ℳ) by elements of
ℬ(Th(ℳ)), up to the bijection of the universe 𝑀 , iff 𝑀 is finite. So we
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denote ℬ(Th(ℳ)) by ℬ𝜆(𝑇 ), where 𝑇 = Th(ℳ) and 𝜆 = |ℳ|. Here a
finite cardinality 𝜆 can be replaced by countable one by Theorem 1.

In view of Theorem 1 we have the following:

Theorem 2. For any regular theories 𝑇1 and 𝑇2 the following conditions
are equivalent:

(1) ℬ𝜆(𝑇1) ≃ ℬ𝜇(𝑇2),
(2) there is a bijection between sets of atoms for ℬ𝜆(𝑇1) and ℬ𝜇(𝑇2),
(3) max{𝜆, 𝜔} = max{𝜇, 𝜔}.

Corollary 2. For any countable regular theories 𝑇1 and 𝑇2 their Boolean
algebras ℬ𝜔(𝑇1) and ℬ𝜔(𝑇2) are isomorphic.

Remark 2. The procedures of (de)regularizations can be naturally trans-
formed from structures to their theories. So by the definition any complete
theory is a deregularization of a theory 𝑇 in appropriate ℬ𝜆(𝑇 ).

3. Kinds of properties with respect to Boolean algebras

Recall that for a lattice ℒ and its element 𝑎 the upper cone, denoted by
O(𝑎) and O𝑎, consists of all elements 𝑏 in 𝐿 with 𝑎 ≤ 𝑏, and the lower cone,
denoted by △(𝑎) and △𝑎, consists of all elements 𝑏 in 𝐿 with 𝑏 ≤ 𝑎.

Take a Boolean algebra ℬ(ℳ) and a property 𝑃 ⊆ 𝐵(ℳ). The property
𝑃 is closed under expansions in ℬ(ℳ), or with respect to ℬ(ℳ), or briefly
the 𝐸ℬ(ℳ)-property, if all expansions, in ℬ(ℳ), of any structure 𝒩 ∈ 𝑃
belong to 𝑃 . Accordingly, the property 𝑃 is closed under restrictions
in ℬ(ℳ), or with respect to ℬ(ℳ), or briefly the 𝑅ℬ(ℳ)-property, if all
restrictions, in ℬ(ℳ), of any structure 𝒩 ∈ 𝑃 belong to 𝑃 .

A property 𝑃 on the class of regular structures is closed under expan-
sions, or briefly the 𝐸-property, if all expansions of any structure 𝒩 ∈ 𝑃
belong to 𝑃 . Accordingly, the property 𝑃 is closed under restrictions, or
briefly the 𝑅–property, if all restrictions of any structure 𝒩 ∈ 𝑃 belong to
𝑃 .

Remark 3. If a property 𝑃 ⊆ 𝐵(ℳ) is closed both under expansions
and restrictions in 𝐵(ℳ) then either 𝑃 = ∅ or 𝑃 = 𝐵(ℳ).

Remark 4. Using regularizations and deregularizations the notions of 𝐸-
property and 𝑅-property can be naturally spread for arbitrary structures
and for theories, not necessary regular.

Remark 5. A series of non-elementary properties separates the closeness
under expansions (restrictions) with respect to given Boolean algebras and
in general. For instance, if ℳ is a countable structure without constant
symbols then it is expansible by countably many constants and does not
expansible in ℬ(ℳ) by uncountably many constants whereas ℳ can be
arbitrarily many repeated constants.
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By the definition we have the following:

Proposition 1. For any Boolean algebra ℬ(ℳ) and a property 𝑃 ⊆
𝐵(ℳ), 𝑃 is closed under expansions (restrictions) in ℬ(ℳ) iff for any

𝒩 ∈ 𝑃 , O𝒩 ⊆ 𝑃 (△𝒩 ⊆ 𝑃 ), i.e. 𝑃 =
⋃︀

𝒩∈𝑃
O𝒩

(︂
𝑃 =

⋃︀
𝒩∈𝑃

△𝒩

)︂
.

Corollary 3. Let 𝑃 be a property on the class of structures closed under
regularizations and deregularizations. Then 𝑃 is closed under expansions
(restrictions) iff for any regular ℳ ∈ 𝑃 , Oℳ ⊆ 𝑃 (△ℳ ⊆ 𝑃 ) in any

ℬ(ℳ), i.e. 𝑃 is the deregularization of
⋃︀

ℳ∈𝑃
Oℳ

(︂ ⋃︀
ℳ∈𝑃

△ℳ

)︂
.

Remark 6. Since elements of △𝒩 are obtained from 𝒩 just loosing some
signature symbols of 𝒩 then △𝒩 does not depend on choice of Boolean
algebra ℬ(ℳ) containing 𝒩 . Similarly O𝒩 does not depend on choice of
Boolean algebra ℬ(ℳ) containing 𝒩 , since it is obtained from 𝒩 by adding
arbitrary new signature symbols for relations preserving the regularity. So
the assertion of Corollary 3 differs from Proposition 1 just by possibilities
of deregularization.

By Proposition 1 any complement 𝑃 of a property 𝑃 ⊆ 𝐵(ℳ), which
is closed under expansions (restrictions) in ℬ(ℳ), is represented by some⋂︀
𝒩
O𝒩

(︂⋂︀
𝒩
△𝒩

)︂
. At the same time, by the duality principle, it is closed

under restrictions (expansions). Indeed, let 𝑃 be not closed under restric-
tions (expansions). Then ℬ(ℳ) has elements 𝒩1 and 𝒩2 with 𝒩1 ∈ 𝑃 ,
𝒩2 ∈ 𝑃 , 𝒩2 ∈ △(𝒩1) (𝒩2 ∈ O(𝒩1)). But then 𝒩1 ∈ O(𝒩2) (𝒩1 ∈
△(𝒩2)) contradicting the conditions that 𝑃 is closed under expansions
(restrictions).

Thus, applying Proposition 1 we have the following:

Theorem 3. For any property 𝑃 ⊆ 𝐵(ℳ) the following conditions are
equivalent:

(1) 𝑃 is closed under expansions (restrictions) in ℬ(ℳ);

(2) 𝑃 =
⋃︀

𝒩∈𝑃
O𝒩

(︂
𝑃 =

⋃︀
𝒩∈𝑃

△𝒩

)︂
;

(3) 𝑃 =
⋃︀

𝒩∈𝑃
△𝒩

(︃
𝑃 =

⋃︀
𝒩∈𝑃

O𝒩

)︃
.

Transforming structures to their theories we obtain the following:

Corollary 4. For any property 𝑃 ⊆ 𝐵𝜆(𝑇 ) the following conditions are
equivalent:

(1) 𝑃 is closed under expansions (restrictions) in ℬ𝜆(𝑇 );
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(2) 𝑃 =
⋃︀

𝑇 ′∈𝑃
O𝑇 ′

(︂
𝑃 =

⋃︀
𝑇 ′∈𝑃

△𝑇 ′

)︂
;

(3) 𝑃 =
⋃︀

𝑇 ′∈𝑃
△𝑇 ′

(︃
𝑃 =

⋃︀
𝑌 ′∈𝑃

O𝑇 ′

)︃
.

4. Properties forming lattices

Definition. A property 𝑃 ⊆ 𝐵(ℳ) is called a lattice property, or 𝐿-
property, if 𝑃 is the universe of a sublattice of the lattice restriction of
ℬ(ℳ).

Since 𝐵(ℳ) is distributive, any 𝐿-property is distributive, too.
By the definition a nonempty property 𝑃 ⊆ 𝐵(ℳ) is a 𝐿-property iff for

any𝒩1,𝒩2 ∈ 𝑃 , 𝒩1∩𝒩2 ∈ 𝑃 and𝒩1∪𝒩2 ∈ 𝑃 . Besides lower cones△𝒩 and
upper cones O𝒩 are closed under intersections and under unions, therefore
they are 𝐿-properties. Since 𝐿-properties preserve the distributivity, we
have the following:

Proposition 2. If ∅ ̸= 𝑃 ⊆ 𝐵(ℳ) is closed under lower (upper) cones
then the following conditions are equivalent:

(1) 𝑃 is a 𝐿-property,
(2) 𝑃 is a distributive 𝐿-property,
(3) 𝑃 is closed under unions (intersections).

Corollary 5. If ∅ ̸= 𝑃 ⊆ 𝐵(ℳ) is closed under lower (upper) cones and
it is a 𝐿-property then the following conditions are equivalent:

(1) 𝑃 is a finite union of lower (upper) cones;
(2) 𝑃 is a lower (upper) cone.

Proof. Clearly, a lower (upper) cone is a finite union of lower (upper)
cones, i.e. (2) ⇒ (1) obviously holds. So it suffices to show, using (1) and
the 𝐿-property for 𝑃 , that two lower (upper) cones are reduced to one lower
(upper) cone. Indeed, if △(𝒩1) ⊆ 𝑃 and △(𝒩2) ⊆ 𝑃 then 𝒩1 ∪ 𝒩2 ∈ 𝑃
by Proposition 2, with △(𝒩1) ∪ △(𝒩2) ⊆ △(𝒩1 ∪ 𝒩2) ⊆ 𝑃 . Similarly, if
O(𝒩1) ⊆ 𝑃 and O(𝒩2) ⊆ 𝑃 then 𝒩1 ∪ 𝒩2 ∈ 𝑃 by Proposition 2, with
O(𝒩1) ∪ O(𝒩2) ⊆ O(𝒩1 ∪𝒩2) ⊆ 𝑃 completing the proof of (1) ⇒ (2).

Remark 7. Clearly, there are many 𝐿-properties which are not repre-
sented as unions of cones. For instance, closures in ℳ with respect to
unions and intersections of sets of finitely many structures 𝒩1, . . . ,𝒩𝑘 ∈
𝐵(ℳ) form finite lattices, moreover, Boolean algebras, as any finitely gen-
erated, i.e. finite lattices here. If signatures Σ1, . . . ,Σ𝑘 of 𝒩1, . . . ,𝒩𝑘,
respectively, are infinite and co-infinite and their unions and intersections
are infinite and co-infinite, too, then these Boolean algebras do not contain
cones at all.
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At the same time, if signatures Σ1, . . . ,Σ𝑘 are (co)finite then they can be
extended by finitely many ones forming cones of the form △𝒩 (respectively,
O𝒩 ), where 𝒩 has the signature Σ1 ∪ . . . ∪ Σ𝑘 (Σ1 ∩ . . . ∩ Σ𝑘).

5. Structures and properties closed under permutations

Definition. We say that a property 𝑃 ⊆ 𝐵(ℳ) is closed or invariant
under permutations if for any permutation 𝑓 on 𝑀 and for any 𝒩 ∈ 𝐵(ℳ)
the image 𝑓(𝒩 ), with signature relations 𝑓(𝑄) = {𝑓(𝑎) | 𝑎 ∈ 𝑄} for all
given signature relations 𝑄 on 𝒩 , belongs to 𝑃 . Here the names 𝑄 for
signature predicates are preserved with respect to 𝑓 iff 𝑓(𝑄) = 𝑄.

A structure 𝒩 is closed or invariant under permutations if the property
𝑃 = {𝒩} is closed under permutations, i.e. each permutation of the
universe of 𝒩 is a permutation of all signature relations.

Example 1. If 𝒩 consists of all signature singletons {𝑎}, 𝑎 ∈ 𝑁 , then
𝒩 is closed under permutations. Moreover, if 𝒩 consists of all 𝑛-element
unary relations, where 𝑛 is some natural number, then 𝒩 is closed under
permutations, too. We observe the same effect for relations with 𝑛-element
complements. In particular, if a structure 𝒩 consists of either empty or
complete signature relations then 𝒩 is closed under permutations.

Proposition 3. If 𝑃 = △𝒩 (𝑃 = O𝒩 ) then the following conditions are
equivalent:

(1) 𝑃 is closed under permutations;
(2) 𝒩 is closed under permutations.

Proof. (1) ⇒ (2). Since 𝑃 = △𝒩 (𝑃 = O𝒩 ) and 𝑃 is closed under
permutations, any permutation 𝑓 on 𝑀 preserves the relation “to be a
restriction (an expansion)”. Then more rich (poor) structures with respect
to the signature are transformed to more rich (poor). In particular, the
most rich (poor) structure 𝒩 in 𝑃 is transformed to itself, i.e. 𝒩 is closed
under permutations.

(2) ⇒ (1). If 𝒩 is closed under permutations then any permutation 𝑓 of
𝑀 moves any subsignature (supersignature) in 𝒩 again to a subsignature
(supersignature) in 𝒩 . Then 𝑓(△𝒩 ) ⊆ △𝒩 (𝑓(O𝒩 ) ⊆ O𝒩 ). Since 𝑓−1 is
again a permutation, we have 𝑓(△𝒩 ) ⊇ △𝒩 (𝑓(Oℳ) ⊇ O𝒩 ). Thus 𝑃 is
preserved under permutations.

Remark 8. If a property 𝑃 on a family 𝐵(ℳ) of structures is defined
by interactions of definable sets and it is preserved under replacements of
universes then 𝑃 is closed under permutations. We observe the same effect
for classes of all models of theories in a given family. These classes are
preserved by isomorphisms, in particular, by permutations transforming
signature relations.
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Example 2. Let ℳ𝑛 be a structure consisting of all predicate relations
with 𝑛-element complements, say of given family of arities. Then both ℳ𝑛

and △(ℳ𝑛) are invariant under permutations, with respect to any Boolean
algebra ℬ(𝒩 ), containing ℳ𝑛.

The same effect holds in expansions (restrictions) of ℳ𝑛 by (to) empty
and/or complete predicates. We always have this invariance for one-element
regular structures.

6. The families of 𝜔-categorical and Ehrenfeucht structures in
ℬ(ℳ)

Let 𝑃 = 𝑃𝜔-cat ⊆ 𝐵(ℳ) be the property of 𝜔-categoricity. Recall that
it is characterized, in view of Ryll-Nardzewski theorem, by finitely many
𝑛-types over the empty set, for any natural 𝑛. Then this property 𝑃𝜔-cat is
invariant under permutations.

Since restrictions of theories preserve the finiteness of number of types,
𝑃 is closed under lower cones: if 𝒩 ∈ 𝑃 then △𝒩 ⊆ 𝑃 . Thus we have

𝑃 =
⋃︁

𝒩∈𝑃
△𝒩 . (6.1)

The following two examples show that 𝑃 is not closed under fusions.

Example 3. Let 𝒩𝑖 = ⟨𝑀 ;𝑄𝑖⟩, 𝑖 = 1, 2, be two infinite graphs whose
each connected component consists of unique edge. Clearly each 𝒩𝑖 is
𝜔-categorical with finitely many 𝑛-types and these types are defined by
families of formulae of forms 𝑥 ≈ 𝑥, (𝑥 ≈ 𝑦)𝛿, 𝑄𝛿(𝑥, 𝑦), 𝛿 ∈ {0, 1}. The
structure 𝒩1 ∪ 𝒩2 = ⟨𝑀 ;𝑄1, 𝑄2⟩ consists of vertices each of which is inci-
dent to exactly two edges, of distinct colors 𝑄1 and 𝑄2. These edges belong
to either cycles of even lengths or to infinite chains, depending on relation-
ship of the relations 𝑄1 and 𝑄2. In a case of presence of unbounded lengths
of cycles or an infinite chain the fusion 𝒩1 ∪𝒩2 looses the 𝜔-categoricity.

Example 4. Let 𝒩1 = ⟨𝑀 ;≤⟩ be a countable densely ordered set, 𝒩2 =
⟨𝑀 ;𝑅⟩ be a structure with a unary predicate 𝑅. Obviously, both these
structures are 𝜔-categorical. Their fusion 𝒩1 ∪ 𝒩2 = ⟨𝑀 ;≤, 𝑅⟩ can pre-
serve or loose the 𝜔-categoricity depending on ≤-ordering of elements in
𝑅. Indeed, if 𝑅 is a finite union of ≤-convex sets the structure is again
𝜔-categorical with densely ordered convex parts. And if 𝑅 has an infinite
≤-discretely ordered part then 𝒩1 ∪𝒩2 is not 𝜔-categorical.

Notice that here 𝒩1∪𝒩2 can be Ehrenfeucht, i.e. with finitely many (>
1) pairwise non-isomorphic elementary equivalent countable structures, if
𝑅 has finitely many (≥ 1) ≤-accumulation points in some saturated elemen-
tary extension of 𝒩1 ∪ 𝒩2, and continuum many pairwise non-isomorphic
elementary equivalent countable structures, if 𝑅 has infinitely many ≤-
accumulation points in some saturated elementary extension of 𝒩1 ∪𝒩2.
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In view of Examples 3 and 4 the family 𝑃 does not form a lattice. Be-
sides, it does not have maximal elements since each 𝜔-categorical structure
has an 𝜔-categorical proper expansion by new signature singleton. Thus 𝑃
is formed as a union of infinite increasing chains of lower cones.

Summarizing the arguments above we have the following:

Theorem 4. The family 𝑃𝜔-cat ⊆ 𝐵(ℳ) of countably categorical struc-
tures is represented as the union of lower cones of all their elements and all
these elements are not maximal. This family is closed under permutations
and not closed under unions.

Remark 9. In [16], a machinery described allowing to obtain Ehren-
feucht expansions of some given non-Ehrenfeucht theories, then loosing
the Ehrenfeucht property by a suitable expansion, returning it, etc. Thus
there is a sequence of expansions of structures in ℬ(ℳ), with countable
ℳ, alternating the Ehrenfeucht property and its complement.

Remind that the Ehrenfeucht property can fail under inessential expan-
sions and restrictions, i.e. under expansions and restrictions by constants
[10]. It means that the Ehrenfeucht property is rather different in ℬ(ℳ)
than the property of 𝜔-categoricity.

Let 𝑃 = 𝑃Ehr ⊆ 𝐵(ℳ) be the property of Ehrenfeuchtness, where 𝑀
is countable. Clearly, 𝑃 is closed under permutations of structures, and
both the least and the greatest elements of ℬ(ℳ) are not Ehrenfeucht.
Therefore 𝑃 does not contain cones at all. At the same time the property
𝑃 has atomic elements in the Boolean algebra ℬ(ℳ), i.e. Ehrenfeucht
structures with exactly one signature symbol.

For instance, the classical Ehrenfeucht theory 𝑇 = Th(⟨Q;≤, 𝑐𝑛⟩𝑖∈𝜔),
𝑐𝑛 < 𝑐𝑛+1, 𝑛 ∈ 𝜔, [16], with exactly three countable models can be replaced
by the theory 𝑇 ′ of the binary structure

⟨(Q ∖ {𝑐𝑛 | 𝑛 ∈ 𝜔} × 𝜔) ∪ {(𝑐𝑛, 𝑘) | 𝑘 < 𝑛, 𝑘, 𝑛 ∈ 𝜔};

{((𝑞, 0), (𝑟, 0)) | 𝑞, 𝑟 ∈ Q, 𝑞 ≤ 𝑟} ∪ {((𝑞, 0), (𝑞, 𝑘)) | 𝑞 ∈ Q, 𝑘 ∈ 𝜔 ∖ {0}}⟩.
Here finitely many arcs ((𝑞, 0), (𝑞, 𝑘)), where 𝑞 = 𝑐𝑛, code the position of the
element 𝑐𝑛 among other elements in the linearly ordered part {(𝑞, 0) | 𝑞 ∈ Q}
and produce exactly three non-isomorphic possibilities for countable models
of 𝑇 ′.

Summarizing the arguments above we have the following:

Theorem 5. Any Boolean algebra ℬ(ℳ) with a countable universe 𝑀
contains structures with the property 𝑃Ehr without the least and the greatest
elements of ℬ(ℳ). This property is closed under permutations and can fail
under restrictions and expansions. There are infinite chains alternating the
Ehrenfeuchtness and the complement of this property. There are atomic
structures 𝒩 ∈ 𝐵(ℳ) belonging to 𝑃Ehr.
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7. The family of strongly minimal structures in ℬ(ℳ)

Recall [1] that a structure𝒩 is called strongly minimal if for any𝒩 ′ ≡ 𝒩
and any formula 𝜙(𝑥, 𝑎) in the language of 𝒩 with parameters 𝑎 ∈ 𝑁 ′ the
set 𝜙(𝒩 ′, 𝑎) = {𝑏 | 𝒩 ′ |= 𝜙(𝑏, 𝑎)} is either finite or cofinite in 𝑁 .

A theory 𝑇 is called strongly minimal if 𝑇 = Th(𝒩 ) for a strongly
minimal structure 𝒩 .

Let 𝑃 = 𝑃sm ⊆ 𝐵(ℳ) be the property of strong minimality.

Remark 10. By the definition the property 𝑃 is closed under per-
mutations and intersections of structures, via intersections of signatures,
and under naming of new elements by unary singletons. Moreover, unary
predicates of finite cardinalities can be added preserving the regularity and
the strong minimality, whereas some equivalence relations can be added
with finite bounded equivalence classes only, for instance, with unique non-
one-element class, since unbounded cardinalities imply infinite ones which
is forbidden for strongly minimal structures. The latter condition implies
that 𝑃 does not have maximal elements in ℬ(ℳ) allowing to add new
equivalence classes with 𝑛+ 1 instead of the bound 𝑛.

Thus 𝑃 forms a lower semilattice represented by the equality (6.1).
At the same time 𝑃 admits unions of chains of expansions, where these
expansions are obtained by unary predicates with the finiteness condition
and by equivalence relations with the bounded finiteness condition. Hence
a natural question arises on the existence of a regular strongly minimal
structure whose all regular expansions are not strongly minimal. Below we
give an answer to this question.

Now we argue to show that any fusion of strongly minimal structures
𝒩1,𝒩2 ∈ 𝐵(ℳ) is again strongly minimal.

Theorem 6. If structures 𝒩1,𝒩2 ∈ 𝐵(ℳ) are strongly minimal then
𝒩1 ∪𝒩2 is strongly minimal, too.

Proof. By the conjecture any formula 𝜙(𝑥, 𝑎) of a theory 𝑇𝑖 = Th(𝒩𝑖),
𝑖 ∈ {1, 2}, with parameters 𝑎 ∈ 𝑀 , has either finitely many or cofinitely
many solutions. Now we take a formula 𝜓(𝑥, 𝑏) of the signature Σ(𝒩1 ∪
𝒩2), with parameters 𝑏 ∈ 𝑀 . Assume that the set 𝑍 = 𝜓(𝒩1 ∪ 𝒩2, 𝑏)
is both infinite and co-infinite. Since 𝑍 can not be obtained by Boolean
combinations of finite and cofinite sets, we may assume that 𝜓(𝑥, 𝑏) has the
form ∃𝑦𝜒(𝑥, 𝑦, 𝑏) and this formula has the minimal length among formulae
with that property. Therefore 𝜒(𝑥, 𝑦, 𝑏) witnesses the strong minimality
with finite or cofinite sets of solutions for 𝜒(𝑥, 𝑐, 𝑏) and 𝜒(𝑐, 𝑦, 𝑏), 𝑐 ∈ 𝑀 .
It implies that 𝜒(𝑥, 𝑐, 𝑏) has finitely many solutions for any 𝑐 ∈ 𝑀 , since
otherwise, if some 𝑑 produces cofinite 𝜒(𝒩1 ∪𝒩2, 𝑑, 𝑏), then by

𝜓(𝒩1 ∪𝒩2, 𝑏) =
⋃︁

𝑑′∈𝑀
𝜒(𝒩1 ∪𝒩2, 𝑑

′, 𝑏) ⊇ 𝜒(𝒩1 ∪𝒩2, 𝑑, 𝑏)
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the set 𝜓(𝒩1 ∪ 𝒩2, 𝑏) is cofinite, too, contradicting the assumption of its
co-infinity. Similarly for each 𝑒 ∈𝑀 the set 𝜒(𝑒,𝒩1 ∪𝒩2, 𝑏) is finite. Then
there are cofinitely many elements 𝑑, 𝑒 ∈𝑀 with nonempty 𝜒(𝒩1∪𝒩2, 𝑑, 𝑏)
and 𝜒(𝑒,𝒩1 ∪ 𝒩2, 𝑏) producing the co-finiteness of 𝜓(𝒩1 ∪ 𝒩2, 𝑏) which
contradicts the assumption.

The arguments for the proof of Theorem 6 show that any finite fam-
ily of regular strongly minimal structures has a strongly minimal theory.
Since the property of strong minimality is reduced to formulae with special
properties and reduced to the family of finite signatures, any family of
regular strongly minimal structures 𝒩𝑖 ∈ 𝐵(ℳ), 𝑖 ∈ 𝐼, has a strongly
minimal union, too. In particular, there is the greatest strongly minimal
structure 𝒮ℳ in 𝐵(ℳ), where subsignatures of Σ(𝒮ℳ) form strongly
minimal restrictions of 𝒮ℳ, including the least element 𝒩0 of ℬ(ℳ) having
the empty signature. Here, 𝑃sm = △(𝒮ℳ). Moreover, any restriction
𝒩 of 𝒮ℳ is strongly minimal, with strongly minimal co-structure of the
signature Σ(𝒮ℳ) ∖Σ(𝒩 ). Thus, the family 𝐵sm(ℳ) = 𝑃sm of all strongly
minimal structures forms a Boolean algebra whose universe is a proper
subset of 𝐵(ℳ) which is equal to the lower cone of 𝒮ℳ. Hence we have
the following:

Theorem 7. Any Boolean algebra ℬ(ℳ) with an infinite universe 𝑀
contains a distributive sublattice ℬsm(ℳ) of all strongly minimal structures
𝒩 ∈ 𝐵(ℳ). This sublattice closed under permutations and forms a Boolean
algebra with the least element 𝒩0 and the greatest element 𝒮ℳ forming
△(𝒮ℳ) which is equal to 𝐵sm(ℳ).

8. The family of 𝜔1-categorical structures in ℬ(ℳ)

Let 𝑃 = 𝑃𝜔1-cat be the family of infinite structures in ℬ(ℳ), with
countable languages and which are 𝜔1-categorical, i.e. categorical in some,
i.e. any uncountable cardinality. It is known [1; 3; 8] that a countable
complete theory 𝑇 without finite models is 𝜔1-categorical iff it contains a
1-cardinal formula 𝜙(𝑥, 𝑎) which is strongly minimal, i.e. both |𝜙(𝒩 , 𝑎)| =
|𝒩 | for any 𝒩 |= 𝑇 and each its definable subset, with parameters, of
𝜙(𝒩 , 𝑎) is either finite or cofinite.

Clearly, the property 𝑃 is closed under permutations, contains the least
element of ℬ(ℳ) iff 𝑀 is infinite, and can fail under expansions. Indeed, if
𝒩 ∈ 𝐵(ℳ) is an arbitrary 𝜔1-categorical structure having infinitely many
realizations of a non-algebraic complete type, then its expansion dividing
this set of realizations, by new unary predicate, into two infinite parts is
already not 𝜔1-categorical.

The following example shows that restrictions of structures also can
violate the 𝜔1-categoricity.
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Example 5. Let𝑄 and 𝑅 be disjoint infinite unary predicates whose union
forms the universe of a structure 𝒩 of the signature ⟨𝑄,𝑅, 𝑓⟩, where 𝑓 is s
bijection between 𝑄 and 𝑅. The formulae 𝑄(𝑥) and 𝑅(𝑥) are 1-cardinal and
strongly minimal, i.e. 𝒩 is 𝜔1-categorical. At the same time restrictions
of 𝒩 till one or two unary predicates are already not 𝜔1-categorical since
the formulae 𝑄(𝑥) and 𝑅(𝑥) in these restrictions do not remain 1-cardinal
under these restrictions.

Any expansion of 𝒩 by an infinite and co-infinite unary predicate 𝑆 ⊂ 𝑄
is not 𝜔1-categorical.

Remark 11. Notice that the behavior of the property 𝑃𝜔1-cat with respect
to its non-preservation can be realized by families of unary predicates and
bijections responsible for the 1-cardinality and obtaining an infinite chain of
expansions alternating the 𝜔1-categoricity and its negation. For instance,
an expansion of the structure 𝒩 by the countable and co-countable pred-
icate 𝑆 is not 𝜔1-categorical but any expansion of ⟨𝒩 , 𝑆⟩ by a bijection
𝑔 between 𝑆 and 𝑄 ∖ 𝑆 restores the 𝜔1-categoricity. An appropriate new
unary predicate again violates the 𝜔1-categoricity, a suitable new bijection
restores it, etc.

Since the 𝜔1-categoricity excludes infinite linear orders there are count-
able structures 𝒩 ′ of finite signatures with O(𝒩 ′) ∩ 𝑃𝜔1-cat = ∅.

Summarizing the arguments above we obtain the following:

Theorem 8. Any Boolean algebra ℬ(ℳ) with an infinite universe 𝑀
contains structures with the property 𝑃𝜔1-cat including the least element
of ℬ(ℳ). This property is closed under permutations and can fail under
restrictions and expansions. There are infinite chains alternating the 𝜔1-
categoricity and the complement of this property. There are structures
𝒩 ∈ 𝐵(ℳ) of finite signatures with O𝒩 ∩ 𝑃𝜔1-cat = ∅.

9. The family of stable structures in ℬ(ℳ)

Recall [12] that a formula 𝜙(𝑥, 𝑦) of a theory 𝑇 is called stable if there
are no tuples 𝑎𝑖, 𝑏𝑖 ∈ 𝑁 , where 𝑖 ∈ 𝜔, 𝒩 |= 𝑇 , such that

𝒩 |= 𝜙(𝑎𝑖, 𝑏𝑗) ⇔ 𝑖 ≤ 𝑗.

The theory 𝑇 is called stable if all its formulae are stable. Models of a
stable theory are called stable, too. If a formula/theory/structure is not
stable, it is called unstable or having the order property.

Following [12] it is said that a formula 𝜙(𝑥, 𝑦) has the strict order prop-
erty if there are parameters 𝑎𝑖 ∈ 𝑁 , 𝑖 ∈ 𝜔, such that the sets 𝜙(𝑎𝑖,𝒩 ),
𝑖 ∈ 𝜔, form a strictly descending chain with 𝜙(𝑎𝑖,𝒩 ) % 𝜙(𝑎𝑖+1,𝒩 ), 𝑖 ∈ 𝜔.
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Again following [12] it is said that an unstable formula 𝜙(𝑥, 𝑦) has the
independence property if in every/some model 𝒩 of 𝑇 there is, for each
𝑛 ∈ 𝜔, a family of tuples 𝑎𝑖, 𝑖 ∈ 𝑛, such that for each of the 2𝑛 subsets 𝑋
of 𝑛 there is a tuple 𝑏 ∈ 𝑁 for which

𝒩 |= 𝜙(𝑎𝑖, 𝑏) ⇔ 𝑖 ∈ 𝑋.

It is well known that a formula 𝜙(𝑥, 𝑦) is unstable iff it has the strict
order property or the independence property.

Let 𝑃 = 𝑃st ⊆ 𝐵(ℳ) be the property of stability of a structure.

Remark 12. By the definition, similarly to the strongly minimal case,
the property 𝑃 is closed under intersections of structures, via intersections
of signatures, and under marking of subsets of 𝑀 by unary predicates.

Thus 𝑃 forms a lower semilattice represented by the equality (6.1). At
the same time 𝑃 admits unions of chains of regular expansions by new
unary predicates preserving the regularity of structures.

Remind [5] that Boolean combinations of stable formulae stay stable. So
the violations of stability for fusions of stable structures can be obtained via
quantifiers only. The following example illustrates this violation showing
that indeed fusions of stable structures can fail the property of stability.

Example 6. Let 𝑅1 = {⟨𝑎𝑖, 𝑐𝑖𝑘⟩ | 𝑖, 𝑘 ∈ 𝜔}, 𝑅2 = {⟨𝑑𝑙𝑗 , 𝑏𝑗⟩ | 𝑙, 𝑗 ∈
𝜔} be binary relations with pairwise distinct elements 𝑎𝑖, 𝑏𝑖, 𝑐𝑖𝑘, 𝑑𝑙𝑗 . We
identify some elements 𝑐𝑖𝑘 and 𝑑𝑙𝑗 as follows: 𝑐𝑖𝑘 = 𝑑𝑙𝑗 ⇔ 𝑖 ≤ 𝑘 = 𝑙 ≤ 𝑗.
The obtained structure 𝒩 = ⟨𝑀 ;𝑅1, 𝑅2⟩, with the universe consisting of
the elements 𝑎𝑖, 𝑏𝑖, 𝑐𝑖𝑘, 𝑑𝑙𝑗 having the identifications above only, is unstable
since the formula 𝜙(𝑥, 𝑦) = ∃𝑧(𝑅1(𝑥, 𝑧) ∧ 𝑅2(𝑧, 𝑦)) witnesses the strict
order property by the sequences 𝑎𝑖, 𝑏𝑗 , 𝑖, 𝑗 ∈ 𝜔. At the same time the
restrictions 𝒩𝑖 = 𝒩|𝑅𝑖 , 𝑖 = 1, 2, are stable consisting of countably many
pairwise isomorphic countable acyclic connected components of diameter 2
and countably many isolated elements. Here 𝒩 = 𝒩1 ∪𝒩2.

Besides this example again confirms that 𝜔-categorical structures 𝒩1,𝒩2

can have a fusion 𝒩1 ∪𝒩2 which is not 𝜔-categorical.

Example 7. Example 6 can be easily modified to the random bipartite
graph with the relation 𝑅 defined by the same formula 𝜙(𝑥, 𝑦) as follows.
We enumerate the family 𝑍 of all pairs of finite disjoint sets 𝑋,𝑌 ⊂ 𝜔:
𝜈: 𝜔 → 𝑍. Now for each 𝑖 ∈ 𝜔 and 𝜈(𝑖) = ⟨𝑋,𝑌 ⟩, we identify the elements
𝑐𝑖𝑘 and 𝑑𝑙𝑗 iff 𝑘 = 𝑙 = 𝑗 and 𝑗 ∈ 𝑋. Thus after this identification we obtain
the structure 𝒩 = ⟨𝑀 ;𝑅1, 𝑅2⟩ with 𝜙(𝑎𝑖,𝒩 ) = {𝑏𝑗 | 𝑗 ∈ 𝑋}. It implies
that each finite subset of {𝑏𝑗 | 𝑗 ∈ 𝜔} is defined by a copy of the formula
𝜙(𝑥, 𝑦), producing the random bipartite graph having the independence
property.
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The restrictions𝒩𝑖 = 𝒩|𝑅𝑖 , 𝑖 = 1, 2, are again stable consisting of count-
ably many pairwise isomorphic countable acyclic connected components of
diameter 2 and countably many isolated elements. Here again𝒩 = 𝒩1∪𝒩2.

Theorem 9. The family 𝑃st ⊆ 𝐵(ℳ) of stable structures is represented as
the union of lower cones of all their elements. This family is closed under
permutations and not closed under unions, and these unions can produce
both the strict order property and the independence property.

10. Conclusion

We considered hierarchies of properties on a Boolean algebra of regular
expansions and restrictions based on the universe of an arbitrary regular
structure. Some general properties of these hierarchies are studied with
respect to elementary theories of structures, lower and upper cones, lattices,
permutations. A general approach is applied for several natural classes of
structures and their theories including the 𝜔-categoricity, Ehrenfeuchtness,
strong minimality, 𝜔1-categoricity, stability. Properties of these classes in
a Boolean algebra are described. It would be interesting to spread this
approach describing properties of further natural classes in these Boolean
algebras.
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