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1. Introduction

The Rota-Baxter operator is a formal generalization of the integration by
parts formula [3]. In the work [18] Rota-Baxter operators of nonzero weight
appeared independently as solutions of the modified Yang-Baxter equation.
At present, applications of Rota-Baxter operators to various areas of alge-
bra are known. In [1] and [2] a connection between Rota-Baxter operators
and pre-Lie algebras has been researched. In [8] a connection between
Rota-Baxter operators and double Lie algebras has been researched.

We are interested in the problem of classifying Rota-Baxter operators
on various algebras, especially simple finite-dimensional ones. Descriptions
of Rota-Baxter operators of weight zero are known on My(F') over an al-
gebraically closed field [4], the simple Lie algebra sla(C) [14;16], the simple
Jordan superalgebra D; over an algebraically closed field of characteristic
0 [5], K3 [4].

WsBectus VpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2025. T. 54. C. 113-128
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Descriptions of Rota-Baxter operators of nonzero weight are known on
a simple Jordan algebra of a bilinear form of odd dimension, My (F), K3 (all
n [4]), M3(C) [7;9;12]. Let us notice that classifications of RB-operators of
zero weight and RB-operators of non-zero weight typically use significantly
different techniques. For example, every decomposition of an algebra into a
direct sum of two subalgebras induces a Rota-Baxter operator of non-zero
weight.

Composition algebras arose within the framework of a generalized for-
mulation of the Hurwitz problem [20]. They can be of two types: split
and division algebras. In the paper [4] it is proved that all Rota-Baxter
operators on a division quadratic algebra are trivial. Each composition
algebra is quadratic. Over a fixed field F' of characteristic not 2 there
exist only three split composition algebras: the direct sum of two fields
F, the matrix algebra Ms(F'), and the split octonions over F. In the arti-
cle [2] Rota—Baxter operators on the direct sum of two fields were described
(later, the description was generalized to the direct sum of a finite number
of fields, [11]). In [4], Rota-Baxter operators on the algebra of second-
order matrices over an algebraically closed field were described. Thus, the
problem of classification of Rota—Baxter operators on composition algebras
was reduced to the problem of describing Rota—Baxter operators on split
octonions.

Octonions are one of the most famous and well-studied non-associative
algebraic systems. Octonions have many mathematical ( [19]) and physical
( [6]) applications. A brief introduction to octonions can be found in ( [20],
Chapter 2).

In the recent paper [13], all subalgebras of octonions were described up to
automorphism. This description forms the basis for our work. All classifica-
tions in this paper are made up to automorphisms and antiautomorphisms
of split octonions.

In this paper we complete the classification of Rota-Baxter operators of
weight zero on split octonions over a field of characteristic not 2 with a
condition that images of these operators can be embedded im Ms(F'). The
paper is organized as follows. In Section 2 we define several automorphisms
and antiautomorphisms on split octonions. In addition, we refine the de-
scription of RB-operators on the algebra of second-order matrices from [4],
extending the restriction to any field of characteristic not 2. In Section
3 we describe RB-operators of weight zero on split octonions with one-
dimensional image. In Section 4 we describe RB-operators of weight zero
on split octonions with two-dimensional idempotent image. In Section 5 we
collect the auxiliary results of the previous sections into a final result. We
formulate two versions of the result: for an arbitrary field of characteristic
not 2 and for a quadratically closed field of characteristic not 2.

The results of this work were previously presented in a preprint [15].
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2. Preliminaries

In this article we fix a field I’ with characteristic # 2.

An antiautomorphism ¢ : A — A of an algebra A is called an involution
if p? =id|a.

Let O = Ms(F) + vMs(F) be the split Cayley-Dickson algebra. It has
the following multiplication table:

a-b=ab, a-vb=wv(ab), wva-b=wv(ba), wva-vb=ba,

where x -y is a multiplication in O for any x,y € O, ab is a multiplication in
M (F) for any a,b € My(F), a is an image of an element a by a symplectic
involution in Ms(F), i.e.

ail a2\ a22 —ai12
as] a92 —a21 ail

An involution r — T, a +vb — @ —vb in O is called standard involution.
An algebra O has the following basis

€11, €12, €21, €22, V€11, V€12, V€21, VEQQ.

If ¢ : My(F) — Ms(F) is (anti)automorphism then it can be extended
to (anti)automorphism @ : O — O by ( [13], Lemma 4.1). The construction
is as follows. If ¢ : Ma(F') — My(F') is an automorphism on Ma(F') then
Pla + bv) = p(a) + e(b)v for a,b € Mo(F). If ¢ : Ma(F) — Ms(F) is

an antiautomorphism on Ms(F') then a map, B(a + bv) = p(a) + p(b)v
for a,b € My(F), where y = ¢(b) is an image of ¢(b) under an action of
symplectic involution and 7o is an image of yv under an action of standard
involution. We will use this fact without further mentions.

If B is a subalgebra in O then we will call B a unital subalgebra if B
contains a unit of O.

The proofs of the following examples are straightforward.

Example 1. Let ¢ : O — O be a linear map such that ©* = id, p(veis) =

—vegr, p(verr) = vegs, p(e11) = e11, p(e12) = ea1, p(ear) = ean. Then ¢
1 an involution on the algebra O.

Example 2. Let ¢ : O — O be a linear map such that p(e;;) = ei; for
any i,j € {1,2}, p(veia) = veia, p(veaa) = veaa, p(veir) = verr + aveis,
p(vear) = vegr + awegs for some a € F. Then ¢ is an automorphism on
the algebra O.

Example 3. Let ¢ : O — O be a linear map such that ¢(e;;) = e;; for
any i,j € {1,2}, p(ver1) = verr, p(vear) = vear, p(veia) = vers + avery,
p(vegr) = vegg + awveay for some o € F. Then ¢ is an automorphism on
the algebra O.

WsBectus UpkyTcKoro rocy1apcTBEHHOTO YHUBEPCUTETA.
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Example 4. Let ¢ : O — O be a linear map such that p(e;j) = eij

for any i,j € {1,2}, p(veia) = —verr, p(veir) = veia, p(vesr) = veas,
p(vegr) = —vear. Then ¢ is an automorphism on the algebra O.

Example 5. Let ¢ : O — O be a linear map such that p(e11) = eaa,

vle12) = veaa, plear) = verr, ¢(ear) = e and ©? = id. Then ¢ is
an involution on the algebra O.

Example 6. Let ¢ : O — O be a linear map such that o(e;;) = ey,
p(vey) = vey for any i € {1,2}, ¢(e12) = ez, p(vern) = avers, ¢(ear) =
éegl, p(vear) = évegl for some 0 £ o € F. Then ¢ is an automorphism
on the algebra O.

Example 7. Let ¢ : O — O be a linear map such that ¢(e;;) = ey, for
any i € {1,2}, p(e12) = aera, p(verr) = averr, plear) = Lear, p(vex) =
év€22, p(vern) = veis, p(vear) = vegy for some 0 # « € F. Then ¢ is

an automorphism on the algebra O.

Example 8. Let ¢ : O — O be a linear map such that p(e;;) = eij,
for any i,j € {1,2}, p(vei1) = averr, p(vea) = avesr, p(vexr) = Svea,
p(vers) = évelg for some 0 #£ a € F. Then ¢ is an automorphism on the
algebra O.

Example 9. Let ¢ : O — O be a linear map such that ¢(e;) = e,
@(612) = €12 — Qve, 90(621) = €21, 90(622) = €22, 90(1)611) = vejl + e,
p(verz) = veia, p(vear) = vear, p(veas) = vegs for some aw € F. Then ¢
1s an automorphism on the algebra O.

Example 10. Let ¢ : O — O be a linear map such that ¢(e;;) = e,
p(e12) = e12, p(e21) = ear+averr, p(eaz) = e, p(verr) = veir, p(verz) =
veya, p(vear) = vear, p(vexr) = veay — aera for some o € F. Then ¢ is
an automorphism on the algebra O.

Example 11. Let ¢ : O — O be a linear map such that p(e11) =
e — avels, p(ei2) = e, plear) = ear + avesr, @(ear) = ez + avers,
R(ve11) = veyr — aeja, R(veia) = veia, @(vear) = vea — ey + e +
a’veqs, p(vegs) = vegs for some o € F. Then ¢ is an automorphism on
the algebra O.

Example 12. Let ¢ : O — O be a linear map such that p(e11) = e11 +
aelz, p(e12) = e12, p(ea1) = ea1 —aerr +aeor —042612, @(ex2) = ez —aeqa,
R(vey1) = veqr, R(veiz) = veya, ¢(vear) = vea) — awerr, p(vegy) = vegg —
avey for some a € F. Then ¢ is an automorphism on the algebra O.

When we want to prove that ¢ is an automorphism, we need to check
that p(zy) = p(x)p(y) for all pairs of basis elements z,y. Although the
calculations can easily be carried out in a computer algebra system, let
us demonstrate this method with Example 2. Since the subspace B =
My (F)+ Fveja+ Fuvegs is a subalgebra and ¢|p = id, it suffices to check the
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equality ¢(zy) = ¢(x)p(y) provided that x or y lies in {vej1,vea }. For ex-
ample, let x = vey;. If y € My(F), then p(veg1)p(eij) = (ver+avega)ei; =
d;k(vesn + avegn). At the same time, p(vegiei;) = d;pp(vein) = 0;k(vei +
avejp). If y € vMy(F), then ¢(vegi)p(vei;) = (vepr + aveks)(ve; +
dj1ave;p). Note that for j = 1 this expression is zero, so it equals to
dj2(verr + avega)vein = Jj2vep1vesn. At the same time, @(vegive;j) =
05200k 1€i2 — Ok 2€i1) = 052(0k,1€i2 — O 2€41) = 0j2ver1ve;n. Thus, p(xy) =
e()e(y).

If A is an algebra over F' and R: A — A is a linear (over F') map, then
R is called Rota-Baxter operator (RB-operator) of a weight X if for
any z,y € A we have the following identity

R(x)R(y) = R(R(z)y + zR(y) + Azy).

In this article we are interested only in RB-operators of zero weight,
A=0.

An image of R is a subalgebra B of an algebra A and Ker(R) is a Im(R)-
bimodule.

Everywhere below for a linear operator R on an algebra A we will use a
notation Gr(z,y) = R(x)R(y) — R(R(z)y + xR(y)) for any z,y € A. We
will omit the index and write G(z,y) if we have some operator, denoted
by R.

In [4] RB-operators on the algebra My (F') for algebraically closed F were
described. We will need this description for any field with characteristic

£2.

Proposition 1. Let R : My(F) — My(F) be a Rota-Bazter operator
on My(F') of weight zero. Then, up to conjugation by automorphism, an-
tiautomorphism and up to multiplication by a scalar, R acts in one of the
following ways:

=e11, R(e1n)= R(e12) = R(ea2) =0;

=e12, R(ei1) = R(ei2) = R(ezr) =0;

3) R(eg1) = e11, R(ex) =e12, R(e11)= R(e12) =0;
= —e11, R(e11) =e12, R(ei2) = R(ez)=0.

Proof. In ( [10], Lemma 1), it is shown that on a simple unital finite-
dimensional non-one-dimensional algebra the kernel of any Rota-Baxter
operator of weight 0 has dimension at least two, moreover, the unit does
not lie in the image of this operator. Thus, by the theorem on the dimension
of the kernel and the image of the linear map, dim(Im(R)) < 2, and Im(R)
does not contain the identity matrix.

WsBectus pkyTcKoro rocy1apCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2025. T. 54. C. 113-128
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The results of paper [13] imply that any one-dimensional non-unital
subalgebra in O has the form Fei; or Fejo up to automorphism and antiau-
tomorphism. Thus, subalgebras in My (F') also have the form Fej; or Fejs
up to automorphism and antiautomorphism. The results of paper [13] im-
ply that, up to automorphism and antiautomorphism, any two-dimensional
non-unital subalgebra in O either has the form Fej;+ Fejs or has zero multi-
plication. However, Ms(F') does not have two-dimensional subalgebras with
zero multiplication. Thus, the only two-dimensional subalgebra in My (F')
(up to automorphism and antiautomorphism) has the form Fej; + Fejs.

Since Im(R) is a subalgebra, the following cases are possible.

1) Im(R) = Fey. Let R(ej;) = ayjeqr for any 4,j. Then G(eir,en) =
—a%len, whence a1 = 0. Further, G(eag, €22) = —a%QeH, whence agy = 0.
Further G(e12,€21) = —ai20i91€11, whence ajaas; = 0. Up to an antiauto-
morphism (transpose), we can assume that ajo = 0. Up to multiplication
by a scalar, we can assume that R(e21) = eq1.

2) Im(R) = Feia. Let R(e;;) = ayjern for any i,j. Then G(ei2,e2) =
—a3ye12, whence aje = 0. Further, G(e11, e21) = —a?;e12, whence aq; = 0.
Further, G(ea1,e22) = —a3,e12, whence ags = 0.

Up to multiplication by a scalar, we can assume that R(e2;) = e12.

3) Im(R) = Feyy + Feja. Let x = aeqy + Pera + vear + degs € Ker(R).
Since e11,e12 € Im(R) and Ker(R) is a Im(R)-bimodule, then ejjx =
ae1+Pers € Ker(R), whence ej1ze17 = aeq; € Ker(R), so ejjx—ejixe;; =
Beia € Ker(R). Similarly aeq; + yeo1 € Ker(R) and ~vyes; € Ker(R),
whence degs € Ker(R). Thus, if aey; + Beiz + year + desa € Ker(R),
then «aeqq, 5612, Yeéal, degy € Ker(R).

Suppose that ej; € Ker(R). Then e15 = e11-€12 € Ker(R) and Ker(R) =
Fei1 + Feia. Let R(ea) = &ae11 + maer2, R(e21) = &3eir + nzerz. Then
G(e22, e20) = E2eq1+Eamae12, whence & = 0. Further, we have G(ea1,e21) =
—n3nae12, whence ngny = 0. Finally, G(ea1, e22) = (§3m4 — 13)e12, whence
na(ns — &) = 0. Since dim(Im(R)) = 2, then n4 # 0 and, up to multiplica-
tion by a scalar, R(e21) = e11, R(e22) = e12.

Suppose that e;; ¢ Ker(R). Then ey ¢ Ker(R) (otherwise ej; = ejg -
e91 € Ker(R)). Above we prove that if aeq; + Beia + vea1 + dean € Ker(R),
then aejp,vea; € Ker(R). It means that « =y = 0 and Ker(R) = Fejo +
Feos. Let R(ell) = £1e11+meno, R(€21) = £3e11+n3e12. Then G(ell, 611) =
—5%611 — &1mie1a, whence & = 0. Further, G(ea1, e21) = —n3n1e12, whence
n3n = 0. Since dim(Im(R)) = 2, then n; # 0 and 73 = 0. Finally,
G(er1,e21) = —(n1 + &3)merz. Since 1 # 0, then, up to multiplication by
a scalar, R(e11) = e12, R(ea1) = —eyj1. The proposition is proven.
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3. RB-Operators with one-dimensional image

In [13] it was proved that there are only two one-dimensional non-unital
subalgebras B in O, up to action of automorphism: nilpotent Fejs and
idempotent Fej;. Let us describe the Rota-Baxter operators of zero weight
on O with these images.

Lemma 1. Let R be a Rota-Bazter operator of zero weight on the split
Cayley-Dickson algebra O and Im(R) = Feja. Then, up to conjugation by
automorphism, antiautomorphism and up to multiplication by a scalar, an
operator R acts in one of the following ways (an operator R is zero on
unspecified basic elements ej;, vej;):

1) R(e21) = e12;
2) R(Uegg) = €e12.

Proof. Since Im(R) C My(F), then R[y,(ry is the Rota-Baxter oper-
ator on the subalgebra My(F'). According to the Proposition 1, we can
assume that R(ej1) = R(e12) = R(ea2) = 0.

Note that (Im(R))? = 0, so e12R(y) = R(x)e1a = R(x)R(y) = 0 for any
x,y € 0. Let R(veis) = aeia, then G(veas, veis) = —a’ejs, whence a = 0
and R(ves) = 0. Let R(vei1) = Bers, then G(vei,vear) = B%e1a, whence
B =0 and R(ve11) =0. Let R(vea1) = agerz and R(veas) = anero.

If ap # 0, then there exists ¢ € F such that ves; + cvegs € Ker(R).
According to the Example 2, we can assume that ¢ = 0, that is, a1 = 0.
Thus, we can assume that either o = 0 or a3 = 0. According to the
Example 4, we can assume that oy = 0. Thus, R(vess) = agejs and
R(e21) = azeia.

Let ag = 0. Then we can assume that R(es1) = e12.

Let ag = 0. Then we can assume that R(vegs) = eqo.

Let g # 0 and ag # 0. Up to multiplication by 0%2, we can assume
that R(vegs) = e12, R(e21) = aseiz. Conjugation by automorphism from
Example 6 with « = ai?) gives us R(vegg) = a%elg, R(ea1) = a%elg, which
after multiplication by a3 gives R(vegs) = e12, R(e21) = e12. Example 11
with a scalar & = 1 allows us to assume that R(e21) = 0 and R(vegs) = e12.
The lemma is proven.

Lemma 2. Let R be a Rota-Bazter operator of zero weight on the split
Cayley-Dickson algebra O and Im(R) = Fey1. Then, up to conjugation by
automorphism, antiautomorphism and up to multiplication by a scalar, an
operator R acts in the following way (an operator R is zero on unspecified
basic elements e;j, ve;j):

R(e21) = e11.

WsBectus VpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
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Proof. Since Im(R) C My(F'), then R is the Rota-Baxter operator on
the subalgebra Ms(F'). According to the Proposition 1, we can assume
that R(e1n1) = R(ei2) = R(ea2) = 0. Let us introduce the notation
R(ve;j) = Bijern. Then G(veiz,vezs) = —fB12f22€11, whence Bi2f82 =
0. Further, G(veai,ve1s) = [i12f21€11, whence (12821 = 0. Further,
G(vezg,vell) == ,311,322611, whence ﬂllﬁQQ = 0. Further, G(vell,vegl) =
—B11621€11, whence 311821 = 0. Let R(egl) = aeqy. Then for any j € {1, 2}
we have G(vegj,e21) = afjerr, whence afla; = aflss = 0. Thus, either
R(e21) = R(ve11) = R(vei2) = 0 or R(vea;) = R(vegz) = 0. The involution
from Example 1 allows us to assume that R(vea;) = R(veaz) = 0.

If B12 # 0, then there exists €1 € F' such that vej; + ejvejn € Ker(R).
By Example 2 we can assume that e; = 0, so ve;; € Ker(R). Thus, in
any case, either f1; = 0 or f12 = 0. By Example 4 we can assume that
B12 = 0. Conjugation by automorphism from Example 6, as above, allows
us to assume that either R(ea1) = e and R(vej;) = ej1, or R(vei;) =0
and R(e21) = e11, or R(ea1) = 0 and R(vey;) = e1. The composition of
the standard involution and the involution from Example 5 allows us to
consider that the second and third cases are equivalent. The Example 9
with a scalar 1 states that the first and the second cases are equivalent.
The lemma is proven.

4. RB-Operators with two-dimensional image

In [13] it was proved that there are only two two-dimensional non-unital
subalgebras B in O, up to action of automorphism and antiautomorphism:
idempotent Fe;; + Fejo and nilpotent Fuvejo + Fvegs. Is is easy to see
that My (F') does not contatin two-dimensional nilpotent subalgebra. Let
us describe the Rota-Baxter operators of zero weight on O with idempotent
image.

Lemma 3. Let R be a Rota-Bazter operator of zero weight on the
split Cayley-Dickson algebra O and Im(R) = Fey1 + Feja. Then, up to
conjugation by automorphism, antiautomorphism and up to multiplication
by a scalar, an operator R acts in one of the following ways for some a € F
(an operator R is zero on unspecified basic elements e;j, ve;j):

1) R(e21) = e11, R(e22) = e12;
e21) = —ei1, R(e1r) = era;
e21) = e11, R(vear) = e1a;

(
(

4) R(ven) = &e1q, R(’U€21) = €12, (X 7A 0;
(
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6) R(1)621) = aen,R(vegg) = €12, (X 75 0

Proof. According to the Proposition 1, the following cases are possible.

1) R(egl) = €11, R(€22) = €12, R(en) == R(€12) =0.

Let R(U@ll) = 1e11 + 51612. Then G(vell, 621) = —51612, whence ﬁl =
0. Further, G(vej, e22) = ajeja, whence a; = 0. Therefore, R(vej;) = 0.

Let R(veja) = ageqr + Baeiz. Then G(veqa, ea1) = —[Bae12, whence P =
0. Further, G(vejg, €22) = ageia, whence ay = 0. Therefore, R(vej2) = 0.

Let R(veg1) = agej; +fsei2. Then G(vear, e21) = agerr, whence az = 0.
Further, G(ea1,vea1) = —f3e12, whence B3 = 0. Therefore, R(vea;) = 0.

Let R(vegs) = ayerr+faer2. Then G(vegs, e21) = ayerr, whence oy = 0.
Further, G(e21,vess) = —f4e12, whence 4 = 0. Therefore, R(vegs) = 0.
We have obtained case (1) from the statement of the lemma.

2) R(egl) = —€11, R(en) = €12, R(elg) = R(egg) =0.

Let R(ve11) = age1r + freiz. Then G(e1r,ver1) = —ajern, whence a; =
0. Further, G(ea1,ve11) = —f1e12, whence 51 = 0. Therefore, R(vey;) = 0.

Let R(vegs) = ager1+ Pae22. Then G(ear, vess) = agerr, whence ay = 0.
Further, G(veas, e21) = —fse12, whence 4 = 0. Therefore, R(vegs) = 0.

Let R(ve12) = age1r + fae12. Then G(err,vera) = —agera, whence ag =
0. Further, G(e11,vess) = Paei12, whence Sy = 0. Therefore, R(vej2) = 0.
Let R(vea1) = age1r + fse12. Then G(eqr,vear) = —asern, whence as =

0. Further, G(vea1, €21) = —f3e12, whence 53 = 0. Therefore, R(vea;) = 0.
We have obtained case (2) from the statement of the lemma.

In the remaining three cases, the dimension of R(Maz(F')) does not exceed
one. Then the dimension of R(vMy(F)) is not less than one. Let 0 #
x = awvel + Bueis + yvesy + dvegy € Ker(R). Since e11,e12 € Im(R) and
Ker(R) is an Im(R)-bimodule, then ej;x = yves; +dvezy € Ker(R), whence
avel + Pvers € Ker(R). But then eja(ej1x) = —yverr — dvegs € Ker(R).
Let V1 = Ker(R) N (Fveyr + Fueya), Vo = Ker(R) N (Fvegy + Fvegs). Thus,
Ker(R)NvMsy(F) = Vi@ Vs, and dim V; > dim V,. Since 2 < dim(Ker(R)N
vMy(F)) < 3 (by the theorem on the dimension of the kernel and image
for Rl|,ar(r)), then either dimV; = 2 and dimV, = 1, or dimV; = 2
and dim Vs = 0, or dimV; = dim Vs = 1. In the first case, veji,veis €
Ker(R) and we can assume (by Examples 2-4) that ves; € Ker(R). In the
second case, veyp,veis € Ker(R). In the third case, we can assume (by
Examples 2—4) that vejj, vea; € Ker(R).

3) R(egl) = €11, R(611) = R(elg) = R(GQQ) =0.

Let R(Uell) = aqe11 + Bieia. Then G(vell,egl) = —pie12, whence
b1 =0. Let R(U€12) = ageqq + Paeq2. Then G(Uelg, 621) = —fse19, whence
B = 0. Let R(v€21) = ageq1 + Pzere. Then G(v€21,€21) = ageq1, whence
ag = 0. Let R(ves) = ayerr + Baerz. Then G(vegs, ea1) = agerr, whence
ay = 0. Further, G(vegs, vear) = (Baa1 — Pazaz)err, whence fzaa = Baa.
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3a) Let dim V; = 2 and dim V5 = 1. Then, by above and by Example 4,
we can assume that

R(e11) = R(e12) = R(ea2) = R(ve11) = R(veiz) = R(veas) =0,
R(€21) = €11, R(U€21) = 64612.

Consider the automorphism ¢ from Example 6 for o = i. Then

_ 1 _ 1
¢ 'Rp(ean) = — e11, ¢ 'Rp(vear) = —eyo.
B4 B4

After multiplication by the scalar 54 we can assume that
R(e21) = e11, R(vea1) = ea.

We have obtained case (3) in the statement of the lemma.

3b) Let dimV; = 2 and dim Vs = 0. If we consider the restriction of
the mapping R to Vb, we will find that the image of this mapping has
a dimension at most one, which implies (according to the the theorem
on the dimension of the kernel and the image) that the kernel must have
a dimension at least one. Therefore, this case is impossible.

3c) Let dim V; = dim Vo = 1. Then, by above, we can assume that

R(en) = R(elg) = R(egg) = R(Uen) = R(Uegg) = 0,

R(e21) =e11, R(ven) = azerr, R(vegr) = Paera.

Consider the automorphism ¢ from Example 6 for a = 1714' Then

_ 1 _ _
v~ ' Ro(en) = 5,009 'Ro(verr) = azerr, ¢ 'Ryp(vear) = 5,1
4

After multiplication by the scalar 54 we can assume that (here € = asf4)
R(egl) = €11, R(U@n) = &e11, R(Uegl) = €12.

The Example 10 with a scalar ¢ allows us to assume that R(ez;) = 0. We
have obtained the case (4) in the statement of the lemma.

4) R(egl) = €19, R(en) = R(BQQ) = R(elz) = 0. Let R(Uen) = oi1€e11 +
Biei2. Then G(veir,es) = ajeis, whence a; = 0. Let R(veja) = agern +
B2e12. Then G(vejs,es1) = ageis, whence ag = 0. Let R(vea1) = agern +
Bse12. Then G(vear,ea) = (ag — p1)e12, whence ag = 1. Let R(veg) =
ag4eq1 + ,34612. Then G(’U€22, 621) = (Oé4 — ,32)612, whence oy = ,32.

4a) Let dim V4 = 2. By above we have 1 = 2 = 0, hence ag = a4 = 0.
Then Im(R) = Feja, a contradiction. Therefore, this case is impossible.

4b) Let dim V; = dim V5 = 1. By above and Example 4, we can assume
that vejo, vegs € Ker(R). Therefore, Sy = ay = B4 = 0. We have

R(ell) = R(elg) = R(egg) = R(’Uelg) = R(’Uegg) = 0,
R(e21) = e12, R(veir) = fieiz, R(vear) = fieir + fzeia.
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Consider the automorphism ¢ from Example 6 for « = $;. Then

o 'Rp(ea1) = Biera, ¢ ' Rp(verr) = Biern, R(vear) = frerr + B3fiera.

After multiplication by % we can assume that
1

R(e21) = e12, R(ven) =e1a, R(vear) = e+ PBzela.

Example 10 allows us to assume that R(e21) = 0, R(ve11) = ej12, R(vea;) =
e11 + Bze12. Example 12 with a scalar o = —73 allows us to assume that
R(ea1) = 0, R(ve11) = e12, R(vear) = e11. We have obtained case (5) in
the statement of the lemma.

5) R(M2(F)) = 0. By above we can assume that either Ker(R) N
(VM3 (F)) = Fvey + Fuea, or Ker(R) N (vMa(F)) = Fveyr + Fuoeay. Let
R(veia) = agerr + Paern, R(vear) = azerr + fze12, R(vess) = auerr + Baera.

5a) R(1)621) = 0, that is a3 — 53 = 0. Then

G(vei,vegr) = (B2 — ag)aserr + (B2 — au)faera.

Since R(’U€12) = ageq1 + Poeqe # 0, then ay = Ss.
If By = 0, then we can assume (up to Example 4) that R(vei;) = ageqq,
R(veg1) = e12. We have obtained case (4) from the statement of the lemma.
If B2 # 0, then conjugation by automorphism from Example 7 with
a= é gives us (with € = %)

R(vei2) = agenn + e12, R(ves) = e11 + ceqa.

The conjugation by automorphism from Example 6 for a = é and Ex-
ample 4 allow us to assume that R has the form R(vej;) = aseerr + €19,
R(vea1) = e11 + e12. After conjugation with an automorphism from Exam-
ple 12 with a scalar —0%2 and a multiplication by a scalar, we obtain case (4)
in the statement of the lemma (if ay # 1, otherwise we obtain R(veg;) = 0,
it is a contradiction).

It is easy to see that the operator R with these conditions is a Rota-
Baxter operator. It remains to note that in order for the condition Im(R) =
Fei1 4+ Feqs to be satisfied, it is necessary and sufficient that age # 1.

5b) R(U@lg) = 0, that is ag = 89 = 0. Then R(’Uezl) = agerl + f3eis,
R(veas) = ageqy + Byere. It is easy to see that the operator R with these
conditions is a Rota-Baxter operator. Note that in order for the condition
Im(R) = Fej1 + Feja to be satisfied, it is necessary and sufficient that
asfy # ayf3. Next, let S5 = 0. Then we can assume that

R(’Uegl) =e11, R(’UGQQ) = ge11 + 54612. (41)

By the Example 7 we can assume that R(ves;) = e11, R(vegs) = 611—1—%612.
Then, by the Example 8, we can assume that R(vea;) = 7ye11, R(vex) =
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e11 + €1z, where v = g—i. According to the Example 3 we can assume that

R(vea1) = ve11, R(veas + v tvea1) = e11 + e12, whence R(vear) = veri,
R(vea) = e12. We obtain case (6) in the statement of the lemma.

Let 83 # 0. Then we can assume that R(ves;) = asei; + ejz. Further,
by the Example 3 with a scalar 84 we can assume that

R(vea1) = azenr + ez, R(vexz) = vera,
where v = a4 — B4a3. Then we can assume that
R(vea1) = agerr + Be12,  R(vex) = enr.
According to the Example 4 we can assume that
R(vea1) = e11, R(veyn) = —ajsern — Bsern.

This is exactly the already discussed case 3 = 0, formula (4.1). The lemma
is proven.

Corollary 1. Let R be a Rota-Bazter operator of zero weight on the
split Cayley-Dickson algebra O and Im(R) = Fey; + Feyo. If a field F
18 quadratically closed then, up to conjugation by automorphism, antiauto-
morphism and up to multiplication by a scalar, an operator R acts in one
of the following ways for some a € F' (an operator R is zero on unspecified
basic elements e;;, ve;j;):

1) R(ea1) = e11, R(ean) = e12;
2) R(e21) = —eq1, R(eir) = e1a;
3) R(ea1) = e11, R(vear) = e12;
4) R(veir) = e11, R(vea1) = e12;
5) R(ve1r) = e1a, R(vea1) = e11;
6) R(ves1) = e11, R(vegs) = e12;

Proof. Let us consider the resulting cases on R in Lemma 3. Cases
1-3,5-7 remained the same.

4) Example 7 with a scalar /o allows us to assume that R(vej;) =
Vaeir, R(vea1) = y/aerz. Up to multiplication by a scalar, we obtain the
required operator.

6) Example 7 with a scalar \/a allows us to assume that R(vea;) = aeqq,
R(vegs) = aejz. Up to multiplication by a scalar, we obtain the required
operator. The corollary is proven.
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5. Main Theorem

We are ready to formulate the main result.

Theorem 1. Let R be the Rota-Baxter operator of zero weight on
the split Cayley-Dickson algebra O and Im(R) can be embedded in My (F').
Then, up to the action of automorphism, antiautomorphism and multipli-
cation by a scalar, R acts on O in one of the following ways for some a € F
(an operator R is zero on unspecified basic elements e;j, ve;j):

ver) = ei2, R(vear) = eqr;

1) R(e21) = e12;

2) R(vegs) = e12;

3) R(ea1) = e11;

4) R(e21) = e11, R(ez) = e12;

5) R(e21) = —e11, R(e11) = e12;

6) R(e21) = e11, R(vear) = eq2;

7) R(ve11) = aeqr, R(ves1) = e12, a # 0;
(
(

7)621) = &eqq, R(Uegg) = €12, 75 0.

Proof. In [13] it was proved that there are only three non-zero non-
unital matrix subalgebras B in O, up to action of automorphism. They
are precisely the subalgebras from the statements of Lemmas 1-3. The
theorem is proven.

Corollary 2. Let R be the Rota-Bazter operator of zero weight on the
split Cayley-Dickson algebra O and Im(R) can be embedded in My (F). If
a field F is quadratically closed, then, up to the action of automorphism,
antiautomorphism and multiplication by a scalar, R acts on O in one of the
following ways (unspecified basic elements e;j, ve;; lie in Ker(R)):

1) R(e21) = e12;

(
2) R(veas) = e12;
3) R(e21) = e11;
4) R(ez1) = en1, Rlea) = e1;
5) Rles) = —e11, R(en) = e1a:
6) R(es1) = e11, R(ves) = e1a;
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7) R(UGH) = €11, R(U@Ql) = €12,

8) R(U@ll) = €12, R(U@gl) = €11,

9) R(Uegl) = €11, R(’Uegg) = €12.

Remark 1. In the Corollary 2 operator (5) is the unique one, where

R? #0, but R? = 0. Operators (1)-(4), (6)-(9) are the ones, where R? = 0.

10.

11.

12.

13.

14.
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