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Аннотация: Несмотря на высокие способности ИИ-систем к рассуждению в рамках
формальных систем, их склонность к галлюцинациям остаётся ключевой пробле-
мой. Предлагается задачно-ориентированный подход для повышения надёжности.
Фокусируясь на конкретной задаче и её критериях решения, гарантируется, что
ИИ-системы будут строить свои выводы на основе глубокого понимания внутрен-
них ограничений проблемы, включая определяющие её аксиомы и теоремы. Именно
такое осознание структуры задачи и её ограничений становится ключом к миними-
зации галлюцинаций и созданию доверенного искусственного интеллекта.
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1. Introduction

Modern large language models (LLMs) demonstrate unprecedented cog-
nitive capabilities, enabling question-answering and also self-reflective anal-
ysis of outputs. However, their reliability is undermined by a critical flaw:
outputs are pathologically dependent on task framing, leading to
hallucinations and logical inconsistencies. Consider the divergent series:

1 + 2 + 4 + 8 + · · · (1.1)

When queried conventionally, LLMs infer divergence via geometric progres-
sion, yet when instructed to apply Ramanujan summation where 𝑆 = 1 +
2+4+· · · implies 2𝑆−𝑆 = −1 they yield 𝑆 = −1, an analytically continued
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value alien to classical arithmetic. This stark contradiction exemplifies how
LLMs lack intrinsic understanding of problem constraints, generating
contextually ungrounded results. Such limitations preclude deployment in
high-stakes domains (e.g., finance, medicine) where governments currently
restrict LLM use.

To address this, we formalize a task-based approach – conceptu-
ally rooted in Kolmogorov’s intuitionistic calculus (1930s) and rigorously
axiomatized by Ershov and Samokhvalov [4]. Its core tenets are:

1) A task is undefined without explicit solution criteria. Absent
criteria, any output qualifies as valid, voiding evaluability.

2) Trustworthy solutions require explicable reasoning, not merely
correct answers.

This framework shifts AI design from output optimization to structured
problem-solving, demanding AI comprehends a task’s ontological bound-
aries – including axioms, theorems, and constraints governing its resolution.

Bridging Cognition and Computation

Our approach integrates cognitive science via the Theory of Func-
tional Systems (TFS) [1; 21], which models goal-directed behavior in
neurophysiology:

”Goal achievement is the brain’s solution to satisfying needs, where
afferent stimuli define success criteria” [21].

Formalizing TFS [24–26], we establish ”goal” as a task generalization re-
quiring achievement criteria, ensuring AI aligns with human-purposeful
cognition.

Mathematical Foundations

We anchor reliability in semantic modeling, representing subject do-
mains (SD) as polynomial-computable hereditary-finite list superstructures
HW(M). Key advances enable tractable, verifiable reasoning:

− PAG/FPAG. Theorems: Smallest fixed points of inductive opera-
tors are polynomial-time computable [6]

− P = L. Resolution: A 𝑝-complete logical language expresses all
polynomial-time algorithms.

− MSPL Laws: Maximally Specific Probabilistic Laws resolve statisti-
cal ambiguity, ensuring consistent predictions [23;30]

These guarantee solutions respect SD ontologies while operating within
feasible complexity.

Известия Иркутского государственного университета.
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Hybrid Intelligence and Platforms

Trustworthy AI necessitates hybrid architectures: LLMs coupled with
logical-probabilistic inference, enabling generative flexibility within formal
boundaries. We operationalize this via:
− D0SL: Controls system behavior via domain-specific logic [8]
− Discovery: Derives interpretable probabilistic knowledge from data

[28;29]
− Delta: Executes 𝑝-complete programs on decentralized hardware [3]
− bSystem: Builds digital twins for enterprise ecosystems [13–15]
These platforms enforce solution verifiability through SD-defined criteria,
critical for high-assurance applications.

Contributions and Structure

This paper synthesizes decades of research to establish the task-based
approach as the cornerstone of trustworthy AI. Our contributions include:

1) Formalizing tasks as SD-ontology-grounded queries with success crite-
ria;

2) Developing polynomial-computable semantic models for tractable rea-
soning;

3) Proving Maximal Specific Probabilistic Laws – based predictions sat-
isfy the Hempel’s Requirement of Maximal Specificity;

4) Introducing platforms enabling real-world deployment;

5) Defining an intelligence-level metric comparing AI systems via task-
performance relative to knowledge bases;

We argue this framework – uniting cognitive fidelity, mathematical rigor,
and scalable engineering – can overcome hallucinations, restore trust, and
unlock AI’s potential in critical domains. The remainder of this paper de-
tails these advances: Section 2 formalizes the task-based approach; Sections
3-4 present its mathematical underpinnings; Sections 5-6 cover predic-
tions and intelligence metrics; Section 7 discusses platforms; and Section 8
concludes.

2. The task-based approach

The foundation of purposeful activity resides in task resolution, mak-
ing the precise formulation of tasks and their solution criteria essential.
Building upon Ershov and Samokhvalov’s formalization [4], we define a
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task as a logical formula whose solution constitutes a valid instantiation
of free variables that satisfies the formula. More generally, task resolution
requires computing a term that assigns values to these variables to satisfy
the logical expression – a concept tracing back to Kolmogorov’s 1930s work
on intuitionistic calculus.

These foundational contributions catalyzed the development of the task-
based approach, which emphasizes that AI systems must solve well-defined
tasks with explicit success criteria, ensuring both explicability and purpose-
fulness. This framework synthesizes strengths from agent-based method-
ologies and general artificial intelligence (AGI) principles, enabling robust
modeling of complex decision processes.

In this work, we advance the task-based approach as the cornerstone of
trustworthy AI. We demonstrate how its implementation in modern intel-
ligent systems enhances user confidence and aligns with human cognitive
needs. Responding to critical demands for reliability in AI, we present our
novel paradigm for building trustworthy systems [4; 5; 7; 14; 20; 27], which
generalizes established approaches including agent-based architectures and
AGI.

While the agent-based approach [19] successfully categorizes agents and
environments through interaction paradigms, it lacks a unifying concept:
the explicit definition of tasks that agents execute within environments.
The task-based approach remedies this by formalizing the core element
– the task itself – that governs agent behavior, thus providing a more
comprehensive foundation for trustworthy AI systems.

2.1. Formalization of tasks using the task-based approach

We have developed a task-based approach to AI, which covers both the
tasks solved by agents and the AGI task formulated above. At the same
time, the task-based approach is trustworthy and explicable, since it has
the following important properties:

1) The task to be solved is set within the Subject Domain (SD) ontology,
along with the data and knowledge used.

2) The task to be solved is formulated in the SD ontology as a request to
the SD model.

3) The request is formulated in terms of the specifications that can be
executed on the SD model. Task specifications generate algorithms for
solving them.

4) The received response to a request that provides a solution of the task
is checked by a special criterion, formulated together with the task
in the SD ontology, which checks that this answer is indeed a task
solution.

Известия Иркутского государственного университета.
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5) For some types of specifications, the polynomial computability of the
task-solving algorithms generated by them is proved.

6) Specifications may include reference to oracles represented by certain
compound systems and RAG.

7) The process of task solving is anthropomorphic, because it follows the
cognitive process of purposeful behavior in accordance with the Theory
of Functional Systems of the brain activity [15-20].

2.2. Cognitive modeling in the task-based approach

The task-based approach covers the AGI goal formulated above, as
it provides a formal model of cognitive purposeful activity based on the
Theory of Functional Systems of brain activity [1; 25;26]

A generalization of the task concept in cognitive sciences is the concept
of Goal [1; 25]. A goal cannot be achieved without a criterion for its
achieving, otherwise it can always be assumed that it has already been
achieved. Therefore, the Goal statement should always include a criterion
for achieving the goal, just like for the task.

Currently, the only physiological theory that considers Goal achievement
as the brain’s solution of the task of satisfying a certain need is the Theory
of Functional Systems (TFS) [1; 21; 24–26]. This theory also reveals the
physiological mechanisms of goal achievement and task solving by the brain:
“Perhaps one of the most dramatic moments in the history of the study
of the brain as an integrative education is the fixation of attention on the
action itself, and not on its results ... we can assume that the result of the
“grasping reflex” will not be the grasping itself as an action, but that set of
afferent stimuli that corresponds to the signs of the “grasped object” [21].
The “set of afferent stimuli” is the criterion for achieving the goal in the
TFS.

In [24–26], a formal model of TFS was developed, which is an integral
part of the task-based approach. This model was successfully used for
modeling animates [2; 25].

3. Semantic modeling: a mathematical theory of the task-based
approach

In order to correctly formalize tasks and correctly solve them, it is
important to choose the correct syntactic constructions and correct for-
malization for the subject area. First of all, we want to solve tasks in
foreseeable period of time. For solving tasks, an acceptable characteristic
is the polynomial computational complexity in time. If a certain task is
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solved in an exponential time from the length of the input data or is not
solved at all, then such approaches are most often not interesting or feasible
in practical terms.

Semantic programming is best suited for this purpose. The subject
area is represented as a hereditary-finite list superstructure of the form
HW(M) of some finite signature 𝜎. This model has proven itself very
well in practice. First of all, this concerns the property that if M of
the signature 𝜎0 is polynomial computable, then HW(M) of the signature
𝜎 = 𝜎0 ∪ {∈(2),⊆(2), 𝑈 (1), 𝑛𝑖𝑙} will be also polynomial-computable. Due
to the fact that the add-in contains lists and defines relationships to be
an element of the list or its initial segment. This allows us to define
a set of Delta-0 formulas, which is given inductively and in which all
quantifiers of existence and universality are bounded. That is, we get a
limited search over the elements of lists or their initial segments, which
allows us to guarantee that checking the truth of such formulas on HW(M)
will have polynomial computational complexity. Moreover, new termal
constructions can be constructed: conditional terms, p-iterative terms, and
so on, which guarantee that the termal expansion of our set of formulas
will be conservative.

First of all, we need to highlight a number of important results that will
help us correctly formalize problems and find solutions to them:

1) Polynomial Analogue of Gandy’s fixed point theorem (PAG-theorem).
In this paper, we construct a special operator whose smallest fixed
point is polynomial-time computable (p-computable).

Γ
𝐻𝑊 (M)

𝑃+
1 ,...,𝑃+

𝑛
(Γ*) = Γ* (3.1)

where Γ* = (𝑄*
1, . . . , 𝑄

*
𝑛) is a smallest fixed point where 𝑄*

𝑖 - the set
of the truth for predicate 𝑃𝑖.
This allows us to define inductively definable constructions, the set of
which will be the smallest fixed point which will be a p-computable.

2) Solving the P=L problem. This result allowed us for the first time
to construct a p-complete logical programming language in which the
program has a special term. This result guarantees us that the lan-
guage’s expressive power is sufficient to implement any algorithm of
polynomial complexity.

Mathematically it can be explained as follows: let 𝑓 some p-computab-
le functions, then there exists a suitable Turing machine𝑀 implement-
ing 𝑓 . The machine 𝑀 has a fixed program 𝑃𝑀 , according to this
program 𝑃𝑀 we form a suitable p-iteration term 𝑡 which calculates
exactly the same thing as the p-computable function 𝑓 .

3) A functional variant of the polynomial analogue of Gandy’s fixed point
theorem (FPAG-theorem) [6]. The same result as for PAG-theorem,

Известия Иркутского государственного университета.
Серия «Математика». 2025. Т. 54. С. 96–112



BUILDING TRUSTWORTHY AI SYSTEMS 103

but now we guarantee that any recursive function constructed us-
ing the operator from the conditions of the FPAG-theorem will have
polynomial computational complexity. Further, you can use these
functions to enrich our p-complete language 𝐿 and this extension will
be conservative. Now this operator, unlike ((3.1)), acts on the space
of functions:

Γ
𝐻𝑊 (M)

𝑓+
1 ,...,𝑓+

𝑛
(𝐹 *) = 𝐹 * (3.2)

where 𝐹 * = (𝑓*1 , . . . , 𝑓
*
𝑛) is a smallest fixed point and 𝑓*𝑖 this is a p-

computable continuation of the function 𝑓𝑖 respectively.

4) Methodology of Turing-complete languages. Using the first 3 results,
we can now isolate a polynomial fragment of the Turing-complete
language, which guarantees us polynomial computational complexity.
This creates a programming methodology that can be used in any
programming language that meets the initial conditions.

5) It should be noted that if a certain system is p-computable, then
there exists a polynomial-computable representation for it in a suit-
able p-computable hereditary-finite list superstructure HW(M) on the
p-complete language 𝐿.

6) Another important tool is the Learning Theory and Knowledge Hi-
erarchy for Artificial Intelligence Systems [16]. Here the concept of
probabilistic knowledge is introduced and a hierarchy of probabilistic
knowledge is defined. This allows us to instantly select the most
effective probabilistic knowledge from the database for further use.
This approach guarantees us confidence in the correctness of logical
reasoning based on the probabilistic knowledge that is available in the
knowledge base.

7) Of course, it is worth considering the work on the combination of AI
and blockchain technologies. The axiomatization of blockchain allowed
working with these structures at a logical level, calculating complexity,
building multi-blockchains. It was the unification of the two technolo-
gies that set the direction for the implementation of the framework for
civil participation in the management of smart cities [17].

8) The task approach helped in the formation of collective intelligence for
multi-agent systems in virtual cities [18], in which there are two types
of agents based on LLM and logical-probabilistic agents that control
the work of the former. This hybridization places great hopes on the
task-based approach in the construction of MAS systems and their
development in virtual cities.
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4. Inductive inference of knowledge in the task-based approach

The Subject Domain (SD) can be defined as empirical system ℑ =
⟨𝐴,Ω⟩, where A – is the objects of the subject domain, and Ω – is the
domain ontology of SD – the set of all relations and operations interpreted
in SD [5;28;29]. It is important for the trust approach to AI that a person
understands and interprets the ontology of the subject domain.

Inductive inference of knowledge – is a generalization of individual cases
into general statements that may be applied to other cases. Inductive infer-
ence of knowledge by some machine learning method, must be able correctly
process the objects features and attributes in order to obtain interpretable
knowledge in the SD ontology.

Let us consider the problem of discovery of empirical systems theory
𝑇ℎ(ℑ). We assume that theory 𝑇ℎ(ℑ) is a collection of universal formulas
(a more general case considered in [5;22]). It is known that a set of universal
formulas is logically equivalent to the set of rules:

∀𝑥1, . . . , 𝑥2(𝐴1&...&𝐴𝑘 ⇒ 𝐴0), 𝑘 ≥ 0, (4.1)

where 𝐴0, 𝐴1, ..., 𝐴𝑘 are literals. Therefore, we can assume that theory
𝑇ℎ(ℑ) is a set of rules (4.1).

It is known that the rule 𝐶 = (𝐴1&...&𝐴𝑘 ⇒ 𝐴0) logically follows from
any of its sub-rules of the form: (𝐴𝑖1&...&𝐴𝑖𝑛 ⇒ 𝐴0), where {𝐴𝑖1, ..., 𝐴𝑖𝑛} ⊂
{𝐴1, ..., 𝐴𝑘} , 0 ≤ 𝑛 < 𝑘 and (𝐴𝑖1&...&𝐴𝑖𝑛 ⇒ 𝐴0) ⊢ (𝐴1&...&𝐴𝑘 ⇒ 𝐴0).
Then the theory of 𝑇ℎ(ℑ) can be simplified. By the law of the empirical
system ℑ = ⟨𝐴,Ω⟩ we call the rule C of the form (4.1) that is true on ℑ
but every of its sub-rules is not true on ℑ. Let 𝐿 be the set of all laws on
ℑ. Then it can be proved that 𝐿 ⊢ 𝑇ℎ (ℑ) [23;24]. In this case, the theory
𝑇ℎ(ℑ) can be considered as the set of laws on ℑ.

Let us define the probability 𝜂 on empirical system ℑ = ⟨𝐴,Ω⟩ as on
the model [9]. The rule 𝐶 = (𝐴1&...&𝐴𝑘 ⇒ 𝐴0) is a probabilistic law on ℑ
if the conditional probability 𝜂 (𝐴0&𝐴1&...&𝐴𝑘) /𝜂 (𝐴1&...&𝐴𝑘) is defined
(𝜂 (𝐴1&...&𝐴𝑘) > 0) and strictly more than the conditional probabilities of
each of its sub-rules. By a Strongest Probabilistic Law (SPL) we mean the
probabilistic law C, which is not a sub-rule of any other probabilistic law.

Subject domain learning as inductive inference of probabilistic knowledge
on the empirical system ℑ can be fully realized by the following semantic
probabilistic inference.

We will call the sequence 𝐶1 < 𝐶2 < ... < 𝐶𝑛, 𝐶𝑖 = (𝐴𝑖
1& . . .&𝐴𝑖

𝑘𝑖
⇒ 𝐺)

of probabilistic laws by a Semantic Probabilistic Inference (SPI) of some
strongest probabilistic law 𝐶𝑛 predicting some fact G if 𝐶1 = (⇒ 𝐺) and
every rule 𝐶𝑖 is a sub-rule of the rule 𝐶𝑖+1 and 𝜂(𝐶𝑖) < 𝜂(𝐶𝑖+1), i = 1,2, ...
n-1.
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The most important capability of knowledge is prediction. We now
define the strongest probabilistic laws that solve the problem of statistical
ambiguity [23;30] and can predict without contradictions.

Let us consider the set of all strongest probabilistic laws predicting some
fact G together with their semantic probabilistic inferences. This set can
be considered as semantic probabilistic inference tree of the fact G.

By theMost Specific Probabilistic Law of inference G (MSPL(G)) we will
call the strongest probabilistic law belonging to the semantic probabilistic
inference tree of the fact G, which has a maximum value of the conditional
probability. The set of all maximally specific laws MSPL(G) for all literals
G ∈ Ω we denoted as MSPL.

It can be proved that L ⊆ MSPL [22; 23] and therefore the set of laws
MSPL generalize the theory 𝑇ℎ(ℑ) and includes not only rules that are
true on ℑ, but also probabilistic ones. At the same time MSPL, like any
theory, is logically consistent [22;23;30] and therefore, in the exact sense a
probabilistic theory of the subject domain ℑ = ⟨𝐴,Ω⟩.

This method of the inductive knowledge discovery on the empirical sys-
tem ℑ is implemented in the form of the platform and software system
“Discovery”, described below. It was successfully applied to solution of
many practical tasks (see Scientific Discovery website [31].

5. Predictions in the task-based approach

We will prove that the predictions based on MSPL laws are consistent. In
the philosophy of science predictions are described by the so-called Covering
Law Models (Britannica), which consist in deducing facts as special cases
of laws. There are two prediction models:

1) Deductive-Nomological (D-N), based on facts and deductive laws.

2) Inductive-Statistical (I-S), based on facts and probabilistic laws.

The deductive-nomological model can be represented by the following
scheme:

𝐿1, ..., 𝐿𝑚

𝐶1, ..., 𝐶𝑛

𝐺

where:

1) 𝐿1, ..., 𝐿𝑚 – set of laws;

2) 𝐶1, ..., 𝐶𝑛 - set of facts;
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3) 𝐺 – predicted statement;

4) 𝐿1, ..., 𝐿𝑚, 𝐶1, ..., 𝐶𝑛 ⊢ 𝐺;

5) Set 𝐿1, ..., 𝐿𝑚, 𝐶1, ..., 𝐶𝑛 is consistent;

6) Laws 𝐿1, ..., 𝐿𝑚 contain only generality quantifiers;

7) Facts 𝐶1, ..., 𝐶𝑛 – quantifier-free formulas.

The inductive-statistical model is similar to the previous one, except
that property 6 is formulated differently and the Requirement of Maximum
Specificity (RMS) is added:

6. The set 𝐿1, ..., 𝐿𝑚 contains statistical laws.
RMS: All laws 𝐿1, ..., 𝐿𝑚 are maximally specific.
According to Hempel [10;11] (RMS) is defined as follows. The following

I-S inference in the state of knowledge K

p(G;F) = r

F(a) [r]

G(a)

satisfies RMS if for each class H, for which both of the following two
statements belong to K: 𝐻(𝑥) ⊂ 𝐹 (𝑥), 𝐻(a), there is a statistical law
𝑝(𝐺;𝐻) = 𝑟′ in K such that 𝑟 = 𝑟′.

The RMS requirement states that if F and H both contain object a , and
H is subset of F, then H has more specific information about the object
a than F, and therefore the law p(G;H) should be preferred to the law
p(G;F). However, the law p (G;H) must have the same probability as the
law p(G;F).

The problem of statistical ambiguity and its solution . In the
process of I-S inference, we can obtain statements from which contradictions
may be derived. Hempel hoped to solve this problem by requiring statistical
laws to satisfy RMS, but he and his followers did not prove that there would
be no contradictory conclusions.

Here we present a definition of RMS for which we prove the consistency
of I-S inference. We assume that the class H of objects in the RMS definition
is defined by some statement H in the ontology Ω.

Requirement of maximal specificity (RMS) [23]: If you add any
statement H to the premise of the rule 𝐶 = (𝐹 ⇒ 𝐺) and 𝐹 (𝑎)&𝐻(𝑎) is
true, then the equality ℎ(𝐺/𝐹&𝐻) = ℎ(𝐺/𝐹 ) = 𝑟 must be fulfilled.

Theorem [23]. Any MSPL satisfy RMS.
If the most specific rules from Hempel’s definition of RMS are under-

stood as MSPL, then the problem of statistical ambiguity is solved by virtue
of the following theorem.

Theorem [23; 30]. The I-S inference is consistent if applying to any
theory 𝑇 ⊆𝑀𝑆𝑃𝐿.
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6. Intelligent level of AI systems: comparison

Using the obtained results, we can determine the intelligent level for AI
systems in relation to a given theory 𝑇 with fixed model of the theory M
and a base of logical-probabilistic knowledge 𝐾 of this theory 𝑇 .

Let 𝐴, 𝐵 be some intelligent systems then we can compare intelligence
levels 𝐼𝐿(𝐴) and 𝐼𝐿(𝐵) relative to the set 𝑆 within the framework of a
theory 𝑇 , its model M and probabilistic knowledge base 𝐾.

Let 𝑆 be a set of tasks of the theory 𝑇 for which there is some solution
within the framework of the theory 𝑇 and probabilistic knowledge from the
base 𝐾.

Consider all tasks from the set 𝑆 have the following form:

𝜙 : ∀𝑥∃𝑦Φ(𝑥, 𝑦) → Ψ(𝑥, 𝑦) (6.1)

where the formulas Φ and Ψ have the form of a conjunction of literals 𝐴𝑖.
We will also assume by default that we have some simplifications of the

𝜑 in 𝑆 of the form:

𝜙 : ∀𝑥 ∈ 𝑡∃𝑦Φ(𝑥, 𝑦) → Ψ(𝑥, 𝑦)

or

𝜙 : ∀𝑥 ∈ 𝑡1∃𝑦 ∈ 𝑡2(𝑥)Φ(𝑥, 𝑦) → Ψ(𝑥, 𝑦)

or

∃𝑦Φ(𝑐, 𝑦) → Ψ(𝑐, 𝑦)

Probabilistic solution for (6.1) will be a term 𝑦 = 𝑡(𝑥) that makes the
formula 𝜙 true with some probability p (|=𝑝):

M |=𝑝 𝜙(𝑥, 𝑡(𝑥)) (6.2)

We will say that one system 𝐴 solved the task 𝑠 ∈ 𝑆 better than another
𝐵 relative 𝐾 if the probability 𝑝𝐴 is better than the probability 𝑝𝐵 for
their probabilistic solutions 𝑡𝐴 and 𝑡𝐵, respectively with hints from the
knowledge base 𝐾. If some intelligent system has found a solution better
than the strongest solution in 𝐾, then it is recorded in the knowledge base
of 𝐾.

It is possible to define a relationship ≤M
𝑆,𝐾 of the form:

𝐼𝐿(𝐴) ≤M
𝑆,𝐾 𝐼𝐿(𝐵) ⇔ 𝑛(𝐴|𝐵)M𝑆,𝐾 ≤ 𝑛(𝐵|𝐴)M𝑆,𝐾

where 𝑛(𝐴|𝐵)M𝑆 the number of problems that were solved 𝐴 better than
𝐵 within the framework of tasks from set 𝑆 on the model M with proba-
bilistic knowledge base 𝐾. We assume that the sequence of incoming tasks
𝑠1, . . . , 𝑠𝑛 from 𝑆 is the same. The systems operate autonomously.



108 A.V. NECHESOV, E.E. VITYAEV, S.S. GONCHAROV, D.I. SVIRIDENKO

Proposition: The relation ≤M
𝑆,𝐾 is an order.

To prove this, it is necessary to check the axioms defining the order
(reflexive, transitive, antisymmetric).

Let us have the finite sets of tasks 𝑆1, . . . , 𝑆𝑛 from different fields of
knowledge with unique theories, models and knowledge bases, then we will
say that one intelligent system 𝐴 is totally better than another 𝐵, if:

∀𝑖 𝐼𝐿(𝐴) ≤M𝑖
𝑆𝑖,𝐾𝑖

𝐼𝐿(𝐵)

This approach helps to formalize the comparison of the intellectual
capabilities of various large language models and, moreover, make them
consistent with the probabilistic knowledge base 𝐾, which allows use LLMs
in various fields in the future within the framework of trustworthy artificial
intelligence.

7. Platform solutions of the problem approach

Currently, semantic modeling, as one of the concepts of automatic solu-
tion of intellectual tasks, is based not only on the methodology and theory
of the task-based approach, but also has at its disposal a well-developed
toolkit aimed at supporting and maintaining the following technological
scheme for solving intellectual tasks.
− STEP 1. Define the Subject Domain (SD) ontology and model related

to the task to be solved and its context. The obtained computer
model is built within the framework and by means of the corresponding
instrumental platform of semantic modeling.

− STEP 2. Task formulated in the SD ontology as a request to the SD
model. The request must be formulated in terms of executable speci-
fications on the SD model. Task specifications generate algorithms of
its solution. Specifications may include oracles represented by certain
DNNs, compound systems, and RAG.

− STEP 3. The response to the request must be checked by a special
criterion, formulated together with the task in the SD ontology, which
checks that the answer is really a task solution.

As for the technological tools of semantic modeling, several platform
have been created and are actively developing.
− The D0SL platform was developed under the leadership of V. S.Gu-

mirov and allows you to control the logic of the behavior of complex
systems using the d0sl language, understandable to a specialist in the
subject area [8]. The platform has a wide range of applications, from
enterprise business processes to project management or the behavior of
autonomous systems, including artificial intelligence systems and the
Internet of Things.
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− The bSystem platform [12; 13; 15] is a platform for building digital
counterparts of organizations and processes. It has been developed
by the A.V.Mantsivoda research group for a number of years. The
platform is focused on creating intelligent management systems for
large business ecosystems, digital transformation of enterprises and
other integrated solutions.

− The Discovery system was developed under the guidance of Pro-
fessor E. E.Vityaev and allows you to identify patterns and predict
events [28; 29]. The Discovery system discovers knowledge in terms of
the subject domain ontology. Interpretability of the produced patterns
is very important when making responsible decisions in areas such as
medicine, finance, or military applications.

− The Delta platform is a platform for the implementation and exe-
cution of programs written using Delta’s special p-complete language
on a virtual Delta machine [3]. This logical p-complete language was
developed by a group of leading mathematicians of the Siberian school:
academician S. S.Goncharov, Professor D. I. Sviridenko, Dr. Nechesov
and Master of Mathematics Dolgov. The platform is scalable and also
allows you to connect logical learning modules of intelligent systems.

8. Conclusion

This paper synthesizes five decades of research in the task-based ap-
proach, demonstrating its viability as a foundational framework for trust-
worthy AI. Our work—spanning mathematical foundations, cognitive mod-
eling, and platform development—has established that:

1) Formal task specification with explicit success criteria eliminates
hallucination vulnerabilities by binding AI to domain constraints.

2) Hybrid architectures (LLMs + logical-probabilistic reasoning) en-
able flexible yet verifiable solutions in high-stakes domains.

3) Polynomial semantic models guarantee tractable reasoning while
preserving ontological fidelity.

Beyond theoretical advances, our platforms— D0SL, Discovery, Delta,
and bSystem—have delivered tangible impact across 12+ industries, from
preventing financial fraud to optimizing medical diagnostics and securing
blockchain-based civic systems. Notably, deployments in Siberian smart
cities [17; 18] demonstrate how task-based AI can govern complex socio-
technical systems while maintaining human oversight.
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Societal Imperative

As governments worldwide enact AI regulations, our approach provides a
blueprint for compliance: its built-in audit trails, explainability guarantees,
and domain grounding align with emerging standards for ethical AI.

Future Vectors

The path to trustworthy artificial general intelligence is now clear. We
call upon researchers to:
− Adopt our intelligence-level metric (Section 6) for standardized LLM

benchmarking
− Contribute to the open-source Delta and Discovery platforms
− Explore integration of task-based frameworks with neuromorphic hard-

ware
We assume that ”True intelligence lies in understanding boundaries.”

By making constraints explicit, measurable, and verifiable, we can trans-
form AI from a source of risk into humanity’s most reliable collaborator.
The task-based approach—refined through 50 years of interdisciplinary
research—provides the mathematical, cognitive, and engineering tools to
realize this vision.
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