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Amnnoranus: [Ipemraraercsas HOBasi IOCTAHOBKA 3a/1a41 ONTHMAJILHOIO YIIPABJICHHUS HA
OECKOHEYHOM rOopu30HTe. B Teopun ynpasiieHust OOBITHO, €CJIM U PACCMATPUBACTCS 331494
Tuna Bosbiia, To ee KOHEYHAs] CTOMMOCTD 3aBUCUT TOJIBKO OT HAYAJIBHOTO COCTOSIHUS, a K
[IPABOMY KOHILY CUCTEMbI MOXKET OBITH IPEIbIBJIEHO TOJIHKO TO UJIU MHOE ACUMIITOTUYE-
ckoe TpeboBaHuHe. BBoauTCst JOMIOIHUTEIBHOE yIPAB/IEHNE B TEPMHUHAJIBHOE CJIAraeMoe,
oTBevaIoIee 3a BLIOOD JIEHCTBUS [TOCJIE 3aBEPIIEHNs] TPAEKTOPUU. DTO B IIEPBYIO OYepe/ib
WHTEPECHO C TOYKHU 3PEHMs SKOHOMUIECKUX MPUJIOKEHUI, TTOCKOJIbKY UMEHHO GECKOHEeU-
HOE OTKJIQJbIBAHME B IEJOM YOLITOYHOIO JEHCTBHs (HAIPUMED, <IIOTAIIEHUS JI0JIa» )
9aCcTO MPUBOIUT K OTCYTCTBUIO ONTUMAJIBHOTO yrpasjeHus. st Takoit hpopMyIupoBKu
JI0Ka3aHbl HEOOXOAMMbBIE YCJIOBHsI ONTUMAJILHOCTH JJIsl CJIydasl IIPOCTEHINell JUHAMUKI.
Ha ocHoBe aTmx yc/ioBmit MINETCST ONTUMAJBHOE YIPABIEHNE B MPUMEPE ONMTHUMU3AIAN
noTpebJIeH s IPU PA3/IMIHBIX OIPAHUYEHNUAX Ha 3aMMCTBOBAHUE.

KuroueBsbie ciioBa: 3a1a4a yrnpaB/ieHus Ha GECKOHEYHOM TOPU30HTE, aKTUBHBIN 6ECKO-
HEYHBI TOPU3OHT, NPUHIUI MakcuMyMa [loHTpsaruna, OOGroHsIONass OITUMAILHOCTD
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1. Introduction

We propose a novel formulation of the optimal control problem on an
infinite horizon. Typically, in such problems with a Bolza-type formulation
the terminal cost depends only on the initial state [9;12;13], additionally,
one or another asymptotic requirement can be presented to the right end
of the system [10;11]. There are other formulations, and we note some
very general constructions in [5], as well as particular cases in [2]. In
our approach, we introduce an additional term to the terminal cost that
accounts for the choice of action following the completion of the trajectory.
For economic applications, such as the problem of optimal consumption,
our statement is particularly relevant unlike the discounted utilitarian ap-
proach, which clearly emphasizes the immediate future at the expense of
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the long run. For instance, when a consumer’s discount rate is lower than
the interest rate on their assets, postponing consumption indefinitely can
yield greater cumulative utility, leading to continuous asset accumulation
without optimal control. Our statements accommodates such infinite delays
in consumption by incorporating a finite utility from consumption after the
trajectory ends, making such behavior possible. An illustrative example of
this scenario will be analyzed in Section 3. Alongside this new formulation,
we also present some optimality conditions for the simplest case of system
dynamics in Section 2.

2. The general statement

We introduce the general statement of active infinite horizon control
problem:

T
maximize go2(7T, z(0),w,z(T),v(T)) +/0 g1(m,z(7),u(r))dr as T 1 oo

dflit) = F(t2(t),u(t), 2(t) € R, u(t) € U(t) aces;

o(T) € V(T), (z(0),w,z(T),v(T)) € Y(T) VT > 0.

s.t.

We assume that:

(H1) the multimaps U, V', and Y are Lebesgue measurable on R, and take
values subsets of some finite-dimensional Euclidean spaces;

(H2) the maps f, g1, go2 are LB-measurable; f is Lipschitz continuous in
x and satisfies the condition of the sublinear growth.

We say that (z,w,u,v) is admissible process if (Lebesgue selectors)
u(t) € U(t), o(T) € V(T), point w, and the arc z(T) in (AC)(R4;R")
satisfy all requirement to the problem above. in particular, the maps
t— f(t,xz(t),u(t)) and t — g1(t, z(t),u(t)) are summable on any compact
interval.

Similar to [4], call an admissible process (&, w, 4, ) weakly overtaking
optimal if, for each admissible process (z,u, v, w),

T
lim sup [gog(T,i"(O),w,if(T), o(T)) +/0 g1 (7, 2(7), a(7)) dr

T—o0 ;
— goo(T, 2(0), w, 2(T), v(T)) — /0 91 (r.2(r), () dr] > 0.

Note that the considered statement is general enough to accommodate
the general approach of [5].
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3. Necessary conditions

Further, we consider necessary conditions for a much less general state-
ment of infinite horizon problem:

T
maximize w” —i—/ u’(t)dt +0"(T) as T+ oo (3.1)
0
st. @(t) =/ (t), (v, ") (t) € U(t) c R"™ ae.; (3.2)
z(0) = w', (w',w") e W c R", (3.3)
(W', W")T) € V(T) CR? z(T)+4'(T) <0 YT >0. (3.4)

A
Define H(p, q,u’,u") = pu’ + qu” for all p,u’ € R™ and ¢,u” € R.

Theorem 1. Under hypothesis (H1) for U and V', assume also that the
set W as well as all values of multimaps U and V' are convex and closed.
Let (&,w,q,v) be weakly overtaking optimal in (3.1)—(3.4).

Then, for a natural T', there exist some non-decreasing in each variable
function p : [0;T] — R™ and nonnegative X such that \+|p(0)|+|p(T)| > 0,

sup  H(p(0), \,v',0") = H(p(0), A\, ', 0", (3.5)
(v " ew

sup  H(p(t), \,v',0") = H(p(t), A\, @' (t), 4" (t)) (3.6)
v " el(t)

for almost all t € [0;T), and p is constant on every subinterval (T";T") of
[0; T for which &(T) + limsup,_,, ¥'(s) <0 for all T € (T';T").

If in addition, u(t) + R} x (=Ry) C U(t) for almost all positive t, a unit
normal to W at v is unique, and " # sup(,y ,new v"; then, we can also
propose that ||p(0)|| # 0, p(t) is defined on Ry and non-positive in each
variable.

Remark 1. All assumptions on U, W are fulfilled if W and all sets U (t)
are the hypographs of some concave smooth and increasing on each variable
functions defined on R"}.

The proof of Theorem 1 follows Halkin’s method [7].

Proof. Define a function ¢'(T) by the rule /(1) 2 lim sup,_,, 0'(s) for all
7 > 0. This function is upper semicontinuous; furthermore, z(7)+9'(7) < 0
for all 7> 0 leads to x(7) +9'(7) <0.

Fix a natural 7. Then, by the Dynamic Programming Principle, the
pair (w, uljp,77) has to be optimal in the following problem:

minimize — z(7T")
st.a(t) =u'(t), 2(t) = 4" (t), (W, u")(t) € U(t) a.e.;
w = (2(0),2(0)) € W, x(T) = &(T), x(r) + (1) <0 Vrel0;T].
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Note that the state constraints in this problem is pure and upper semicon-
tinuous in t. Due to the Pontryagin maximum principle [3, Theorem 10.4.1],
[8, Theorem 5], there exist some

— nonnegative number 5\;

— functions p € BV ([0; T];R™) and ¢ € BV ([0; T];R);

— nonnegative Borel measure 7 under [0;77;
for which A+ [[p(0)[| + 1(0)| + n([0; TT) # 0,

(B(1), (1) = S (B(6),(0), 4(1)) € N(T(8);(1)) e (37

p z =— ol H(s),q(s),u(s))ds =
P50 == [ G006 iNds+ [ 1= [ 39)
) u0) == [ T o) )ds + [ odn=0(i>1). (39

0 7

i(r)=0(0) = [ 5 (3s). (). / Odi = 0 ¥r > 0, (3.10)
AT) =N (,)(0) € N(:(0), 20 (3.11)
suppn C cl{r € [0;T] | z(7) + 7' () = } (3.12)

here by N(A;a) we denote the normal cone (of convex analysis) to a set A
at a point a.

Note that from (3.8)—(3.10) it follows that p is non-decreasing in each
variable and ¢ is constant. This together (3.11) entails ¢§ = A. Further, in
the case of (p(0), 5(T)) = 0, by (3.8) and A+ [p(0)]| + |a(0)| + n([0; T]) 0
we obtain n = 0 with ¢ = X = 1. So, (p(0),p(T),G = A) # 0.

Secondly, since W is convex, for all (w’,w”) € W, the second relation in
(3.11) yields p(0)(w' — ') + AM(w” — ") < 0; this gives (3.5). Similarly, by
the convexity of U(t), from (3.7) it follows (3.6). Finally, (3.12) with (3.8)
yield that p is constant on any interval with negative & + v’.

To prove the second part, note that (3.6) and u(t) + R} x (—=R4) C U(t)
entail

PG + A0 > ple) (@ + ) + M@ — 1),

hence r > Ar > p(t)s, for all s € R’} and positive . This means that p;(t)
is nonpositive on [0; 7).

Suppose that p(0) = 0. Then, (3.5) and @" # sup(,s ,mew v" would
yield A = 0. Then, ||p;(T)| as well as some p;(T) would be positive.
Contradiction. So, Hp(O)H > 0.

Since a unit vector in the cone N(W;w) is unique, the relation (3.5)
has to hold true with a unique quotient H(0) : A. Put ||p(0)|] = 1 when
A =0. Then, p(0) is determined by X and is independent of the choice of
T. Due to Helly’s theorem, increasing T 1 oo, passing to the subsequence if
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necessary, consider its limit instead of p(t). This limit is defined on R4, is
also non-decreasing for each variable, and satisfy all needed conditions. [

4. Example

Consider consumer’s problem:

1-6 T 1-6 1-6
t T
maximize J(T) 2 111) 7 +/ e*Qtiul (6) dt + e*QTvl (9) as T 1 oo,
— 0 — —

where

— r is constant interest rate;

— o is the individual discount rate;

— 0 >0, 0 +# 1 is the constant relative risk aversion coefficient;

— y(T) is the wealth available for spending at time 7.
We will also confine our research to the case of a particular borrowing
constraint

y(t) 2 At + B

with a given positive B and nonnegative A.

The special case of such problem was considered in [2], with § — 1,
A =0, o = 0, modified constraint z(T) = y(T) — e "Tv(T), and the
absence of control w.

Theorem 2. If (&,w,u,v) is weakly overtaking optimal process in this
problem, then

(1-6)r<p, 6#£0:
oo (le=(1=0)r)B "9 (p—(1-0)r)B
(w’u’v)_(Q—l—Q—(l—G)r’ 0+ o0—(1—-6)r
(,0,0)= (B,e""A,0) if A > B,0 € (0;1);

(@

,eTTé(T)> if A=0;

u:)
(53
N~—
I
S5
®
N
=
Q
"
—~
4}
|
=
|
=
2
<
5
IS
=
\.O
N~—
=
o
AN
N
AN
&
)
m
—~
L
=

(A—w+Aln(w/A))0 = (o—(1—0)r)(w—B) for w € (A; B);
no weakly overtaking process if A > 0,0 > 1;
(,1,0) = (B,e"tA,0);



70 D.V.KHLOPIN, A. 0. BELYAKOV

r=p0,0=0:
any admissible control with o(T) = e " Ty(T) — #(T) — §(T);
(1-60)r=p,60#0:
(,0,0) = (A, e"tA,e"TA—§(T)) if 2A = B,
no weakly overtaking process if 2A # B;
(1—=8)r>p:
(,1,8) = (0,0,¢" Ty(T) — @D TY(T)5(T)) if 6 € 05 1);

no weakly overtaking process if 0 > 1;

for some nonnegative function 6(T') such that its lower limit is zero.
Furthermore, & is concave if 0 + |r — o| > 0.

Proof. Fix (Z,w,4,0). Denote by J its quality function.

Define hy(v) 2 e~ (e"t)1=0 /(1 — 6) for all t,v > 0 and put hy(0) = 0
if 0 <6 <1 and —oo otherwise. Set n = 1. For all nonnegative ¢ denote
by U(t) the hypograph of the map h(-):

T(t) 2 {(v,q) € R?|v > 0,9 < hy(v)}.

. . . . = A
This set is convex, closed and its boundary is smooth. Put W =

U(0),
V(T) 2 U(T) — (y(T),0) for all T > 0. Notice that SUP (e V' =
sup,,>o ho(v) is not reached.

Now, in the problem (3.1)—(3.4) with this data, the process

(&, (@, ho()), (7" a(t), he(e™""a(1))), (7" 0(T) — y(T), hr(e™" T0(T))))

is weakly overtaking optimal. Then, conditions of Theorem 1 are fulfilled.
Applying this Pontryagin Maximum Principle, for a natural T, there exists
a non-decreasing function p : Ry — R with A € {0,1} that satisfies |p(0)| +
p(T)[+ A >0,

. UA)l—G Ul—@
p(0)w + )\1 —p = max [p(O)v + )\m], (4.1)
a1=0 (¢ 1-0
p(t)e " ta(t) + )\egtul_(e) = max [p(t)e*’"tv + /\efgth} (4.2)

for almost all ¢ € [0; T]. In the case of § # 0, all additional assumptions are
fulfilled, and we can choose p defined and non-positive on R} with p(0) < 0.
So, either (w—B)f§ =0, or (w—B)# # 0, p(0) <0, p(t) < 0 and, for almost
all ¢ > 0 for which p(t) <0,

@ ()|p(t)] = e, (4.3)

Wssectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
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We claim that
the arc Z(t) is concave if (1 —)r < o, 0 #0. (4.4)

Assume that #(t) < y(t) on some interval (77;T") C Ry. In the case of
&|(prry = 0 this is trivial. Let Z[,ps # 0. Applying the Pontrygin
Maximum principle for the auxiliary problem with fixed end-points on any
[7/;7"] C (T";T"), we pick a non-zero pair of some non-positive constant p
and A € {0, 1} for which (4.2) holds on [r/;7"]. By 0 # 0, (4.2) gives (4.3)
on [7';7"], hence on (T';T"); (4.3) with & # 0 yields A = 1 and, for all
vt T <t <t <T",

d:i‘ t// " / dj: t/
cgt ) _ ((L=0r=0)t"/0)5=1/0 < o((1=0)r=)t' /6|51 =1/6 _ d(t) (4.5)
Since dz/dt is non-decreasing, the non-zero arc & must be concave on
(T';T") too. Thus, the arc Z is concave on a interval (T7”;7") for which
Z(t) < y(t). Then, since continuous & is no more than y and y is concave,
the arc & is also concave on Ry and (4.4) is verified.

The case 1: (1 —0)r < o.

We claim that

. z(T)

limsup —= = 1. 4.6
Indeed, were this not so and one would pick a natural k for which %i(t) <
y(t) for all t > k. Set @(t) = a(t) if t < k and @(t) = 0(t) + e *! otherwise.

. . A L LA
Increasing k if necessary, we can assume that the control (v = w, 4, v = 0)
is admissible. Hence its quality J should satisfy

()~ J Tt + et —al -t o)
=i = [ 16 di = et

Since el(1=0r=)Ty1=0(T) /(1 — §) — 0, the last term in the right side is
the same. But the first term is positive and increasing in 7. Therefore
(&,w, u,v) should not be weakly overtaking. Thus, (4.6) is verified.

The case 1a): 0 # 0, &(t) # y(t) for all positive t and (1 — 0)r < p.
Since 6 # 0 and #(0) = w # B, we obtain p(0) < 0 and (4.3) for all ¢ with
p(t) < 0. Further, p is constant because #(t) # y(t) on Ry. Therefore (4.3)
holds for all positive t. Hence (4.1) and (4.3) give

0 >w
o—(1—=0)r/
By (4.6), we obtain that y is bounded, i.e. A = 0. Now, (4.6) with A =0
yield #(T) — B, which means e~"Tn9(T},) — 0,
(e—(1—-0)r)B
0+o0—(1-0)r’

T
#(T) = o + w/ e~ (= (A=0nt/6 gy (1 +
0

con_ (e=(A=0)r)B _y¢
u(t)_9+g—(1—9)re( .

w =
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The case 1b): #(0) = B, 0 # 0, and (1 — 0)r < p.
By #(T3,)/y(T) — 1 and the concavity (4.4), (0) = B entails £ = y. This
also yields 9(7) =0, w = B and A = dfl—gf) = e "tq(t) for all ¢. Thus,

W= B, u(t)=¢€"tA, v =0. (4.7)

Note that, from 0(T") = 0 for all sufficiently large T, it follows that 6§ < 1
because hp(0) = —oo in the case of # > 1. So, 6 < 1.

In addition, we claim that (1 —0)r < g, 8 # 0, and (4.7) imply A > B.
Indeed, for all sufficiently small ¢ > 0 define w 2By A— Af(e”e/? —1) /o,
5 2 0, u(t S R LT < ¢ and u(t) 2 a(t) otherwise, here
o = p—(1—6)r > 0. Routine calculation yield that, for small e, this triplet is
admissible and, for all t > e. its arc and quality satisfy &(t) = At+ B = &(t)
and

. B—@ - A—@
J(t) = J(t) = AJ&QT(l + o(e)).

This leads to J(t) — J(t) > A(o — (1 — 0)r)e2(B~? — A=%)/30 > 0 for all
large t and small € if A < B. Since J is optimal, we have checked that
A>B.

The case 1c): 2(0) < B, (1 —0)r < g, 0 # 0, &(7) = y(7) for some 7.
We can also assume that &(t) < y(t) for all ¢t < 7; in particular, (w—B)f # 0
that ensures (4.3) on [0;7); in addition, the arc % is smooth on [0;7] and
we can propose that 4 is the same. Again, (4.6) and (4.4) entail Z(t) = y(¢)
for all £ > 7. This also yields ;s # 0, (7)) =0, and ¢ < 1.

Let N be a natural number that more than 7. Then, (Z,4,7) is C-local
optimal to the following auxiliary problem:

1-0 T 1-0 N —rt A\1-0
t A
maximize :cl _(g) —I—/O e_gtul—(e) dt _|_/T e_gt(el—)Q dt

s.t. 2(t) = e "tu(t), u(t) >0 a.e.,
z(0) >0, (1) < AT + B V7 € [0; N].

Now, by the Pontryagin Maximum Principle [6, Theorem 3.4.2], there exists

a non-zero pair (p, \) € Rx{0, 1} that satisfies (4.1), (4.2), and the following
transversality condition at 7:
Ae—eT(er7 A0 3 e~ eTql=0 ()
1-6 1-6

—(e7"Tu(7) — A)p=0. (4.8)

p
I

Now, (4.3) with @ # 0 gives 4% (7)|p| = Ae("=0)7 1, < 0 and, by (4.8),

(er%A)l—G o al—@(%)

T = a7 (7)(a(7) — e T A).
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By the strict concavity of hg, ho(v') — ho(v) = %év)(v’ —wv) iff v =7,

hence the corresponding substitution givesﬂﬁ(f') = TA > 0. Further,
#(0) = < B and (4.1) yield 4(7) = "0 7/%p, A = e=7" /%) < < B,
T= w, here o 2 0— (1 —6)r > 0. Hence &(7) = y(7) entails

AfIn(w/A) L B- A4+ B :w+/ =00 gt — i+ (w—A)H.
g 0 o

Thus, @(t) = "t max(A, e~ (@~ 0=OM/04) if § > 0, 0 < A < @ < B, here

w solves the equation (A —w + Aln(w/A))0 = (0 — (1 — 0)r)(w — B).

The case 1d): § =0 and r < o.

We claim that in this case Z(t) = y(t) for all positive ¢. Indeed, were this not
so. Then, there exists a positive to for which Z(t9) # y(to). By (4.6), there
exists a minimal 7 > 0 such that Z(t9) + y(to + 27) = 22(tp + 27). Hence
t?j_f:_ _u(t)dt > 0 for all small ¢ > 0. Therefore, one find a positive
e and Lebesgue subset A C [ty + 75t + 27] for which 4(t) > e’ on A

and 0 < e [, dt < y(to + 27) — &(to + 27). Define a(t) 2 a(t) + e"te if
t+71 € A, ut) 2 a(t) —e"te if t € A, and u(t) 2 u(t) otherwise. The

A
control (W = 1, %, 9 = 0), by #|[1y+2r;00) = | [tg+2r;00)» Should be admissible

>

and its quality J should satisfy

J(T)—j(T):/ e(r_@)tsdt—/ e(r_g)tgdt:(e(Q—T)T_l)E/ =0t gy
—74+A A A

By r < o, this difference is unboundedly increasing. This contradicts the
optimality of .J. So, &(t) = y(t) for all positive ¢. Similar the case 1b), this
gives (4.7).

The case 2: (1—0)r = p.
Note that (1 — 0)r = o means that the quality J can be written as

,w1—49 T e—rtu 1-6 e—rT,U 1-6
J(T):1_9+/0( 1_(2) gt 4 ¢ 1_(:'2) ()

Now, from the optimality of (&, w, a,v) it follows that

[(y(T) — (1) (emTo(T)? —0
1-46 1-46 ’

lim inf

T—o00

ie. y(T,) — 2(T,) — e " 1no(T;,) — 0 for some T}, 1 co. Note that, this

condition is also sufficient for optimality in the case of §# = 0, when J(T') =
z(T) 4+ e " To(T) < y(T).

Let 6 # 0. In this case we checked above the inequality (4.5); further,

2(@t") — &t

the equality (1 — 0)r = p ensures the equality in (4.5). Hence R
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is constant on any interval with negative & — y. Since & < y, the graph of
y is a line and any connected bounded subset of graph of Z lying below the
graph of y is a line segment, we obtain that the graph of Z is the line and

E(t) =+ (2(1) —d)t,  Vt>0.

. N N . JANA X
We claim that 2(1) — @ = A. Were this not so, let a« = 2(1) —w < A,
%. Increasing ©(7T') if necessary, we can also assume that

e Tap(Ty) > (A — a)T, = 2(a@ — a)T,. Now, (0 2 o, a(t) 2 eta, o(T) 2

o(T)—e"T(@a—a)T) is admissible and, by (4.9) the difference J(T},) — J(T},)
is no more than
T (@ =% —a'%) + (e 0(Ty) — (@—a)T,) % — (e7" ™ o(T;))
1-6

define @ 2

- Tn (6179 _ alf(?)
- 1—0

(@ )Ty (e (T ~ @ - o)) -

Tn (6170 o alfe)

- 1—0
By 6 > 0, the right side is unboundedly increasing, hence the difference
is the same. This contradicts the optimality of J. Thus, z(t) = w + At,

i(t) = e"tA for all nonnegative t.
Since #(t) = w + At, we can assume W + e "'9(T,) < B. By (4.9), @
has to maximize (“il:; + (Bfllf)elfg) ; this yields w = B/2. Now, by @ < B,

from (4.1) and (4.2) it follows B/2 = @ = arg max,>o [pv—kf—__g] =u(0) =
A

— (@—a)'0T0

Thus, in the case of B # 2A no weakly overtaking process; in the case
of B =2A we obtain (A4,e"tA,e™"TA —§(T)).
The case 3: (1 —6)r > p.
We claim that w = 0, « = 0, £ = 0, § > 1. Suppose w > 0. Consider
) )

(w 2 W/2,1% =0, 0(T) = 0(T) + " Tww/2). This triplet is admissible and

o =(T) — o' 79(T)
1-6

> (T) + " Tw/2) e Tw/2 > 5~ (T)e = Ty /2.

However, the quality J of this process would be better than J. Indeed,
J(T) — J(T) > e=0r=)Ty=0(T)qjy /2 — 20~ by (1b), there the right side of
this inequality is positive because (1 — 0)r — o > 0 and y has a sublinear
growth. This contradiction has shown w = 0.

In the case 6 > 0, by (4.1) and (4.3), w =0 gives &« =0 and 0 < 1.

Let § = 0, by (4.1) and (4.2), w = 0 gives p(0) + A < 0 and p(¢t) +
er=0t)\ < 0 for all t > 0. Then, from r > o it follows either A = 0,
p(0) < 0, or Z(t) = y(t) for large ¢t. Hence 4(t) = 0 as long as p(t) < 0 or
at least 2(t) < y(t). Since @ljp,,) = 0 gives Z[[p,;] = 0, we obtain @ = 0 too.
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Hence J(T) = e 2¢T9'=9(T) /(1 —0) and, by the definition of optimality,

on [T Py

1-6 1-0
> el =00 T (4 (1) — e T o(T)) (e 6 (T5)) ™) = 0

for some T}, 1 0o. Then, y(T) — e~ " To(T) = ele=0=0NTy0(T)5(T). O

5. Conclusion

In this paper, we consider a new formulation of the infinite-horizon con-
trol problem. Unlike the usual formulation [1], this formulation allows us
to hope for the existence of an optimal solution for the consumer problem.
However, in the simplest case that we have already analyzed, there may
still not be a weakly overtaking optimal solution.
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