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Hayunaga crarpa

HEOpTOI‘OHaJII)HOCTI) 1-TunoB B Teopudax
C JIMHENHBIM IMopAaKOM

B. C. Baitkanos!, O. A. YMm6er6aes!?™, T. C. 3ambapHas’

I MucTuTyT MAaTEMATHKE I MATEMATHYECKOrO MOAENUpoBanus, Amvarsl, Kasaxcran
2 Kasaxcrancko-Bpurancknii texumdeckuit yausepcurer, Anmarsl, Kasaxcran
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Awnnorarusi: HeoproroHabHOCTh MOJTHBIX TUIIOB SIBJISIETCS BAYKHBIM ITOHSITUEM JIJIsT Ta-
KHUX KJIACCOB TEOPUil IMEPBOr0 MOPsIKa, KAK O-MHUHUMAJIbHBIE, CIab0-O-MUHUMAJbHBIE U
BIIOJIHE O-MUHUMAJIbHBIE TEOPHUH. DTO MOHSATHE HUCIOIB3YeTCs MPU U3YUEHUH CYETHOTO
CIIeKTpa TaKMX TEeOPHUil, IOCKOJIbKY OPTOTOHAJIbHOCTBH BJIMSAET Ha OIIyCKaHUE U peajn3a-
nuio TunoB. JanpHeliniee usydenue runore3bl Boota /i1t MaJIbIX yIIOPSI0YEHHBIX TEOPU
TpebyeT UCIOIB30BAHNS CBSA3H MEXK/Yy HEIOJIHBIMHU TUIIAMU, B YACTHOCTH BBIIYKJIBIMU 33~
MBIKQHUSAMH 1-TUNOB. BBOAATCS ABa HOHSATHUS HEOPTOTOHAJBLHOCTH BBINYKJIBIX HEITOJIHBIX
TunoB. [lokazaHbl CBSA3M MeXKIy Pa3jIUYHBIMUA BHIAMH HEOPTOrOHAJbHOCTH. JloKa3aHbI
TeOpEeMBI O COXPaHEHUN CBONWCTB THUIIOB IIPM HEOPTOI'OHAJIBHOCTH.

KunroueBble CJI0Ba: JTMHEHHBIN IOPSAIOK, BBILYKJIOE 3AMbIKAHIE, OPTOTOHAIBHOCTD (CJ1a-
6asi ¥ II0YTH), OIIPEJIeJMMBbIH THUII, KBA3UPAIMOHAJIBHBLH THII

BaaromapaocTu: lannoe ucciiegoBanue punancupyercss Komurerom naykun Munucrep-
CTBa HAyKW W BBICIIETO oOpasoBammsi Pecrrybmmkm Kasaxcran (rpamt. Ne AP14971869,
rpant. Ne AP19677434).

Ccolika agasi nurupoBanusi: Baizhanov B., Umbetbayev O., Zambarnaya T. Non-Ort-
hogonality of 1-types in Theories with a Linear Order // Ussectusi pkyTckoro rocy-
napcrBennoro yausepcurera. Cepus Maremaruka. 2025. T. 53. C. 131-140.
https://doi.org/10.26516/1997-7670.2025.53.131

1. Introduction

According to S. Shelah, two complete types p(Z) and q(y) are weakly
orthogonal, if p(z) U q(y) is a complete type [20]. The following is an
equivalent definition of weak orthogonality of 1-types.

Let A C N, p,q € S1(A4), and M be an |A|"-saturated structure of a
language £. We use the standard notations: p(M) = {a | N = p(a)} and
oM, o) ={B | N E= v(B,a)}. We say that p is weakly orthogonal to q and
write p L% ¢ for this, if for every A-definable formula ¢(z,y) and every
a € p(M) either (N, a) Ng(M) =0 or ¢(N) C (M, ).

Equivalently, the definition of non-weak-orthogonality can be given. We
say that p is not weakly orthogonal to q and write p /" ¢ for this, if there
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exist an A-definable formula ¢(x,y), a € p(N), and realizations f1, f2 €
q(M) such that B; € (N, a) and B2 € (N, ).

In [2], B. Baizhanov studied properties of non orthogonality of 1-types
for the class of weakly o-minimal theories.

From now on we consider only linearly ordered structures and their
elementary theories.

Definition 1. [3/ The type p is not almost orthogonal to the type q,
p L% q, if there exists an A-definable formula o(z,y), such that for some
a € pM) and y1,72 € q(N), 11 < (M, @) < y2 and p(M, o) N qg(N) # 0.

The relations of non-weak and non-almost orthogonality in weakly o-
minimal theories are equivalence relations on S1(A4) [2].

Many authors refer to the question of the number of countable pairwise
non-isomorphic models [8;9;17;18;20;23]. The Vaught’s conjecture is an
important direction of study in model theory [7;10;11;13;21;22;24]. The
number of countable models of theories with an (-definable relation of a
linear order has been studied in [14;15]. Also, the Vaught’s conjecture has
been confirmed for several classes of theories with linear order [12;16;19].
The relations of non-orthogonality play an important role in counting the
number of countable non-isomorphic models [1;6;12;14]. The relation of
non almost orthogonality allows us to realize types, while the relation of
non weak orthogonality allows us to omit them.

In o-minimal, weakly-o-minimal, and quite o-minimal theories, the set of
all realizations of an arbitrary complete 1-type is convex. In general, this
is not true. There can be several 1-types with the same convex closure
(Definition 4). Later in the article, we generalize the notions of non-
orthogonality for weakly o-minimal theories and introduce definitions of
weak convex-orthogonality (Definition 6) and almost convex-orthogonality
(Definition 7) of the convex closures of complete 1-types in theories with
a linear order. In Remark 1, we describe the relationships between weak,
almost orthogonalities, weak and almost convex-orthogonalities of types.
We show that the relation of non weak convex-orthogonality is symmet-
ric (Theorem 3), preserves quasirationality (Corollary 1) and definability
(Theorem 2) of convex types.

2. The main part

For subsets A and B of a linearly ordered structure MM = (M;=,<,...)
we use the following notations:

At i={yeM |MEa<n,forall a € A};
AT ={yeM |ME=~v<a,forall a e A}.

We write A < Bif M E=a <bforallae A, be B. We write a < B
(A <b)if {a} < B (A < {b}). If sets A and B are C-definable (C C M),
then AT, A~ and A < B are C-definable as well.
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Definition 2. A subset A of a totally ordered structure I is said to be
convex if a < ¢ < b implies c € A for all a,b € A and all c € M.

Definition 3. A formula ¢(x,§,a) is a convex formula, if for every b € N
the set (M, b,a) is convex in every model N = (N;=,<,...) of Th(IM)
containing a.

Definition 4. 1) The convez closure of a formula ¢(x,a) is the following:

¢°(z,a) == Iy Ty (e(y1,a) Ap(yz,a) A (1 <z <1p)).

2) The convez closure of a type p(x) € S1(A) is the following type:

pe(x) == {¢(z,a) | ¢(z,a) € p}.

Similarly we denote tp(a/A) = {¢°(x,a) | ¢(z,a) € tp(a/A)}. We
define Spe(A) := {q € S1(4) | ¢¢ = p°}.

The convex closure defines the smallest convex set which contains the
set of all realizations of a given formula or a type. From Definition 4 it
follows that the type p© is, in some way, complete: for every convex A-
formula ¢ one and only one of ¢, ™, ¢~ belongs to p¢ up to equivalence of
formulas. Up to equivalence, p¢ = {¢(z,a) € p | ¢(x,a) is convex in every
model of T'}. Note that in general the type p® is not necessarily complete.
From Definition 4 it follows that if p®(9) Ng®(N) # 0, then p(N) = ¢°(N).
Indeed, let a € p¢(M) N ¢°(N), and let ¢ € ¢° be a convex formula. Then
N = ¢(a), and therefore p € p©. Since ¢ is arbitrary, p¢ C ¢°. Analogically,
q¢ C p°. Then p® = ¢¢ and p(M) = ¢°(MN). So, the relation p¢ = ¢ is an
equivalence relation on the set Sj(A).

If T is a weakly o-minimal theory and p is a 1-type over a subset of a
model 9 = T, it is easy to see, that the set p(9) is either convex or empty,
and p(I) = p°(IM).

Let A C N, p,q € S1(A), and N be an |A|t-saturated model of a
theory with a linear order. Definitions 6 and 7 are direct generalizations of
non-orthogonality of complete types in weakly o-minimal theories.

Definition 5. We say that an A-formula ¢(x,y) monotonically increases
(decreases) on B C N, if for all by,by € B, with by < be, the following
holds:

(P(m> b2)+ - So(mv b1)+ (go(’ﬁ, bl)+ C go(‘ﬁ, b2)+)7

and for some distinct by, by € B, (M, b3) # p(N, by).

Definition 6. We say that p¢ is not weakly convex-orthogonal to q° and
write p¢ L q¢ for this, if there exists a convexr monotonic on p®(M) A-
definable formula p(x,y), such that for each o € p¢(M), there exist 1, P2 €
q“(M) with Br € p(M, ), B2 & p(N, @) and B1 < Pa.
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Definition 7. We say that p° is not almost convez-orthogonal to q¢ and
write p¢ Y% ¢¢ for this, if there exists an A-definable convexr monotonic on
pc(MN) formula p(x,y), such that for all a € p*(MN) there are v1,v2 € ¢°(N)
such that ) # (M, ) and 71 < (M, @) < 2.

We say that a formula ¢ (z) divides a (partial) type g, if (D) Nq(IN) # O
and —(M) N g(N) # 0. So, for two types p,q € S1(A), p¢ is not weakly
convex-orthogonal to ¢¢ if and only if there exists an A-definable formula
©(z,y) such that the right border of ¢(z,«) divides ¢¢ for all a € p¢(N),
and the formula ¢ is monotonic but not constant on the set ¢¢(91).

The following remark is obvious.

Remark 1. Let A C N, 9 be an |A|*-saturated model of a theory with
a linear order, p,q € S1(A) be non-algebraic types. Then

DptLYqeq LY p;

2)p frq=p LY q

3) p° 7‘KC(JL q° = p° 7‘ch e

4) p¢ L ¢¢ = po LY qo for each py € S1(A) with p§ = p© and each
0 € S1(A) with ¢f = ¢%

5) p¢ L% q° = po L* qo for each pg € Si1(A) with p§ = p° and some
qo € S1(A) with ¢§ = ¢°.

Definition 8. Let p € S1(A), A C N, and N be an |A|"-saturated model
of a theory with a linear order. We say that p° is quasirational to the right
(left) if there exists an A-formula U(x), such that for every a € p®(MN)

(P°(9)~ Up“ (M) =UN)
((p° ()" Up“ (M) =T (N)).

We say that p¢ is quasirational if it is either quasirational to the left, or
quasirational to the right.

Note that p® is quasirational to the right if and only if there exists an A-
formula R(x) such that p¢(M)* = R(M), similarly, p¢ is quasirational to the
left if and only if there exists an A-formula L(z) such that p¢(91)~ = L(MN).

Note that if p = p°, and p° is quasirational to the right and to the left,
then p is isolated.

Theorem 1. Let A C N, M be an |A|*-saturated model of a theory with

a linear order, p and q € S1(A) be non-algebraic types such that p® L ¢°.
Then if p© is quasirational, then ¢ is quasirational.

Proof. Let ¢(x,y) be a convex A-formula as in Definition 6. Without loss of
generality let p® be quasirational to the right, let U(z) be as in Definition 8,
and let ¢(x,y) be monotonically increasing on p®(M). Then there exists a
convex A-formula Uj(x) such that sup U; (M) = supU(M) and ¢(x,y) is
increasing on Uy (M).
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If any of the types from S;(A), whose convex closure equals ¢¢, is
principal, then the convex closure of its isolating formula guarantees quasir-
ationality of ¢°. Therefore, let ¢ be non-principal. Replace ¢(, ) with
(M, ) U (M, o). This way, ¢(M, «) will contain an initial segment of
N.

Consider the following convex A-formula:
R@yzaz@ﬁ@A¢@Jﬂ.

For each o € p°(M) the formula p(z,a) divides ¢¢(M). First we show
that for each 5 € ¢°(MN) there is a € p°(N) such that f € (N, «). Let
a € p¢(M) and v € ¢(N) be such that N | p(y,a). Then for each P(y) €
p°, M= Fy(P(y) A p(7,y)). Therefore (3y(P(y) A ¢(z,y))) € g(z). Then
since P(y) € p° is arbitrary, the desired property holds for each 8 € ¢(N).
To show that it holds for an arbitrary 8 € ¢“(M), take 5" € ¢(N) such that
B’ > B. Then there is o € p°(M) with N | ¢(F,a’). By monotonicity
of ¢ and since 8 > 3, M E ¢(B,d), and so, o is the desired element.
Moreover there exists 3”7 € ¢¢(M) such that 87 > o(N, ).

Then since U; defines the right border of p¢(91) and the formula ¢
monotonically increases on Uy (M), R(IN) defines exactly the right border
of ¢°(7M). This means ¢° is quasirational to the right. Analogically, if ¢
monotonically decreases, ¢¢ is quasirational to the left. ]

Definition 9. [20] Let A C N, A C L, p € SA(A). We say that p
is definable, if for every formula ¢(x,y) € A there erists an A-definable
formula d,(y) such that for every be A

p(x,b) € p & N = dy(b).

In the case of the convex closure p¢, A is the set of all convex A-formulas.

In weakly o-minimal theories, if p,q € S1(A) are such that p £" g, then
p is definable if and only if ¢ is definable [2]. In general this is not true
because of the following example.

Example 1. Let M = (M; =, <, P!, S, ©?), where M = (0,1)U(1, +00) C
R, P and S are unary predicates such that P(9) = (0,1) and S(9M) =
(1,+400), and < comes from the natural ordering of R. For all a,b € M let
M = p(b,a) imply M = (P(b) A S(a)). And let for all a1,as € S(9M) the
sets (M, a1) and ©(M, az) be infinite disjoint mutually dense subsets of
P(M1). More precisely, (9, a1) and ¢(9M, az) are both dense in (0,1) and
disjoint.

Let A:=QNS(M) and a € S(M). We put ¢, := tp(a/A). Let v, €
(M, a). Let pg := tp(v4/A). Notice that p, is principal if a € A. Also,
pys L g5 such that for each § € p z(M), p(6,M) = {V/2} and 6§ €
w(M, \/§) The type p /5 is non-principal and undefinable. To prove this,
let O(z, 21, 22) := Fy(e(x,y)ANz1 <y < 22). For all a,as € A, 0(x,a1,a2) €

WsBectus VpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2025. T. 53. C. 131-140



NON-ORTHOGONALITY OF 1-TYPES 137

pys if and only if R = a1 < V2 < ay. The element v/2 defines in A an
irrational cut. If there is a formula guaranteeing definability of the type
p,/3, 1t means the irrational cut is definable, which is impossible in this
structure. Also p 5 L" pq for all a € S(9) and since the relation of
non weak orthogonality is symmetric, p, L% p va- 1t shows that non weak
orthogonality does not preserve definability and isolation of types. Indeed,
for a € A, p, is isolated and consequently is definable, and p /3 1s non
definable and non-isolated. At the same time p NG and p, are non weakly
orthogonal. Later, we show that non weak convex-orthogonality preserves
these properties.

An example of a non-principal type that is not weakly orthogonal to a
principal type was also given in [5], and an example of a definable type that
is not weakly orthogonal to an undefinable type was given in [4].

Theorem 2. Let A C N, M be an |A|*-saturated model of a theory with
C

a linear order, p and q € S1(A) be non-algebraic types such that p¢ L ¢°.
Then if p© is definable, then ¢¢ is definable.

Proof. Let ¢(x,y) be a convex A-formula as in Definition 6. Let p® be
definable, o € p(MN), and let By, B2 € ¢°(N) be such that 51 € p(N, a) < fo.
Let ¢ be increasing on some definable convex set U(91), where U € p°.
Let 1 (z,2) be an arbitrary convex (-definable formula. For every b € A
the following hold:
Y(x,b) € ¢¢ & (B1,52) Cq°(MN) Cp(N,b)
& MEVr( <z <= d(,D)

& MNEJr T (ga(xl, a) A —p(ze, ) ANz < z2A
U(z1) AU (x2) AVz (21 < 2 < 29 — ¢(:1:,I_)))>.

We denote the last formula by H(a,b). Then, since p = tp(a/A) is
definable, there exist a formula d and a tuple ¢ € A such that

NE H(o,b) < H(y,b) € p < NE=db,e).
Therefore 9 (z,b) € ¢° if and only if N = d(b, &). O

Theorem 3. Let A C N, M be |A|"-saturated, p,q € S1(A) be non-

principal types. Then p¢ ) ¢°¢ < ¢¢ L p°.
Proof. Let p® [ ¢¢, and let ¢(z,y) be a convex A-definable monotonic
formula such that (91, ) N ¢°(MN) # 0 and (N, &) N ¢°(MN) # O for each
a € p¢(M). Without loss of generality we suppose that ¢ monotonically
increases on p°(9). Rename ¢ to be ¢ V ¢~

We claim that the formula ¢(z,y) := ¢(y,x) is the desired A-formula
which guarantees that ¢¢ /% p°.
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Let aj,ag,as € p°(N) and B € ¢°(MN) be such that a; < as < ag and
ag, a3 € o(8,9M). From the last statement, 8 € o(M, 1) and B € (N, az).
By monotonicity of the formula ¢ on p®(M), 8 € (M, a2). And then,
az € p(B,9). This implies that the formula ¥ (z,y) = ¢(y, x) is convex.

To show that ¢ (z,y) divides p®(M) for realizations of ¢°, towards a
contradiction, we suppose that there exists an element S € ¢°(0M) (which
we fix) such that p¢(M) C (B, N). First, we claim that this property holds
for all elements from some convex A-definable set. Namely, we claim there
is a convex A-formula P(y) € p°(y) such that P(M) C ¢(8,MN). If not, each
P(y) € p°(y) has an element v € P(N) with 8 € ¢(N, o). But then the set
p(y) U{B & ¢(M,y)} is locally consistent, which is impossible.

Then the formula Vy(P(y) — ¢(z,y)) belongs to tp(8/A). Let v €
g“(M), v > B. Since tp°(y/A) = tp°(B/A), we can take 5/ € ¢°(91) such
that tp(8'/A) = tp(B/A) and §' >~ > B. Then (Vy(P(y) — (r,y))) €
tp(5'/A). By monotonicity, when 3, 8’ € (M, «), then v € (M, ) as well.
Since 7 is arbitrary, (M, a) 2 ¢°(DM). This is a contradiction since p(N, )
should divide ¢¢(M).

Similarly, we can show that there is no § € ¢¢(0M) such that 5 & (M, a)
for all o € p®(M).

To show monotonicity of v, we first confirm that there is a formula
R(y) € p°(y) such that ¢ monotonically increases on R(91). Suppose the
contrary: for each R(y) € p®(y) there are ay,a0 € P(M), ap < g, with
(M, 1) C (N, az)t. But then the set

P°(y1) Up(y2) U{Va(p(z, y1)t — o(z,y2)")}

is locally consistent, which contradicts to monotonicity of ¢ on p¢().
Rename ¢(z,y) to be ¢(z,y) A R(y). This formula still guarantees that
p¢ L ¢¢. Therefore since ¢ is increasing then v should also be increasing.
For each 8 € ¢°(M) the formula ¢(x, 5) divides p°(I), therefore it can
not be constant on ¢¢(91). This finishes the proof of monotonicity of ¥ (z, y)
on ¢“(M).
By this, the formula ¢(x,y) = ¢(y, z) satisfies all the necessary condi-
tions for the theorem to be proved. O

Corollary 1. Let A C N, M be |A|"-saturated, and p,q € S1(A) be non-

principal types such that p¢ YV q¢. Then p° is quasirational if and only if

q° is quasirational.

Proof. Follows from Theorems 1 and 3. O

3. Conclusion

The aim of this paper is introducing notions that allow us to study the
countable spectrum of theories with a linear order. Notions of not convex
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weak and not convex almost orthogonality of the convex closures of types
have been given. Their connection with each other, with already known
relations of weak and almost orthogonality of complete types, as well as
with such concepts as quasirationality and definability of types has been
shown.

Non-orthogonality of types plays an important role in counting the
number of non-isomorphic models, in particular for o-minimal and quite
o-minimal theories. For weakly o-minimal theories a classification of 1-
types and the notions of non-orthogonality have been previously introduced,
but they have not been considered in the context of non-complete 1-types.
The relevance of the results of the article is in the future application of
the introduced types of non-orthogonality to investigation of the class of
ordered stable theories.
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