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AnHoTauusa. PaccmarpuBaercst MOHSTHE CJIA00NW MUKJIMYIECKON MUHUMAJILHOCTH, SBJIS-
foIIeecsl BAPUAHTOM O-MUHUMAJIBHOCTH TSI IIUKJIMIECKH YIIOPSIIOYEHHBIX CTPYKTYP. Vc-
CJIEYIOTCS aJireOpbl OMHAPHBIX U30JUPYIOMKUX (DOPMYJI [t No-KATEerOpUIHbIX 1-TpaH3u-
THUBHBIX HEIMPUMUTHUBHBIX CJ1ab0 IUKJIMYIECKN MWHUMAJIBHBIX TEOPHUI PAHra BBITYKJIO-
cru 6osbinero 1 ¢ TPUBHAJIBHBIM OMPEIEIMMbIM 3aMBIKAHUEM, UMEIOIIUX HETPUBUAJb-
HYI0 MOHOTOHHYIO BJIEBO (DYHKIIUIO, JEACTBYIOILYI0 HA OCHOBHOM MHOXKECTBE CTPYKTY-
pot. IlpencraBieno onucanue stux ayrebp. Ilokasano, 4To [jisi JTAHHOrO Cjydvasi Cy-
IIECTBYIOT TOJBKO HEKOMMYTATHBHBIE aJireOphbl. TakkKe yCTAHABIMBAETCSI CTpOrasi M-
JIeTEpPMUHUPOBAHHOCTH TAKUX AJIredp JJIsi HEKOTOPOIro HATYPAJIBHOIO YHUCJIa M.
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1. Preliminaries

Let L be a countable first-order language. Throughout we consider L-
structures and assume that L contains a ternary relational symbol K,
interpreted as a circular order in these structures (unless otherwise stated).

The circular order is described by a ternary relation K satisfying the
following conditions:

(col) VaVyVz(K(z,y,2) = K(y, z,));

(co2) VaVyVz(K (z,y,2) NK(y,z,2) @ x=yVy=2Vz=u1);

(co3) VaVyVz(K (z,y, z) = Vt[K(z,y,t) V K(t,y, 2)]);

(cod) VaVyVz(K (z,y,2) V K(y,z, 2)).

The following observation relates linear and circular orders.

Proposition 1. [4] If (M, <) is a linear ordering and K is the ternary
relation derived from < by the rule

K(z,y,z) @ (x<y<z)V(z<z<yV(y<z<x)
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then K s a circular order relation on M.

The notion of weak circular minimality was studied initially in [14]. Let
A C M, where M is a circularly ordered structure. The set A is called
conveg if for any a,b € A the following property is satisfied: for any ¢ € M
with K (a,c,b), ¢ € A holds, or for any ¢ € M with K(b,c,a), ¢ € A holds.
A weakly circularly minimal structure is a circularly ordered structure M =
(M, K, ...)such that any definable (with parameters) subset of M is a union
of finitely many convex sets in M. The study of weakly circularly minimal
structures was continued in the papers [15]- [21].

Let M be an Ng-categorical weakly circularly minimal structure, G :=
Aut(M). Following the standard group theory terminology, the group G
is called k-transitive if for any pairwise distinct ai,as,...,arp € M and
pairwise distinct by, ba,...,bx € M there exists g € G such that g(a;) =
b1,9(a2) = ba,...,g(ax) = bx. A congruence on M is an arbitrary G-
invariant equivalence relation on M. The group G is called primitive if G
is 1-transitive and there are no non-trivial proper congruences on M.

Definition 1. (1) Ko(z,y,2) == K(z,y,2) Ny #x ANy # z Nz # 2.
(2) K'(uy,...,u,) denotes a formula saying that all subtuples of the
tuple (uy,...,u,) having the length 3 (in ascending order) satisfy K, i.e.

K/(ula .- ’un) = AN Ni<i<j<m<n K(uu Uyj, um) A K(unfl’ Un, ul)

AK (U, ut,ug).

Similar notations are used for K.

(3) Let A, B, C be disjoint convex subsets of a circularly ordered struc-
ture M. We write K(A, B,C) if for any a,b,c € M with a € A, b € B,
¢ € C we have K(a,b,c).

Further we need the notion of the definable completion of a circularly
ordered structure, introduced in [14]. Its linear analog was introduced in
[24]. A cut C(x) in a circularly ordered structure M is maximal consistent
set of formulas of the form K(a,z,b), where a,b € M. A cut is said to
be algebraic if there exists ¢ € M that realizes it. Otherwise, such a cut
is said to be non-algebraic. Let C(x) be a non-algebraic cut. If there is
some a € M such that either for all b € M the formula K(a,z,b) € C(z),
or for all b € M the formula K(b,z,a) € C(x), then C(z) is said to be
rational. Otherwise, such a cut is said to be irrational. A definable cut in
M is a cut C'(z) with the following property: there exist a,b € M such that
K(a,z,b) € C(z) and the set {c € M | K(a,c,b) and K(a,z,c) € C(x)}
is definable. The definable completion M of a structure M consists of M
together with all definable cuts in M that are irrational (essentially M
consists of endpoints of definable subsets of the structure M).

Nssectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
Cepusa «Maremarukas. 2025. T. 52. C. 120-136
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Definition 2. [14] Let F(z,y) be an L-formula such that F(M,b) is
convex infinite co-infinite for each b € M. Let F'(y) be the formula saying
y is a left endpoint of F'(M,y):

Jz1329[Ko(21,y, 22) AVEL(K (21, t1,y) A t1 #y — = F(t1,y))A

VtQ(K(yatQ) ZQ) Nto # Yy — F(tQ)y))]
We say that F'(z,y) is convex-to-right if

M | Vyva[F(z,y) — F'(y) AV2(K(y, 2,2) = F(z,9))].

Consider F(M,a) for arbitrary a € M. In general, F(M,a) has no the
right endpoint in M. For example, if dcl(a) = {a} holds for some a € M
then for any convex-to-right formula F'(x,y) and any a € M the formula
F(M,a) has no the right endpoint in M. We write f(y) := rend F(M,y),
assuming that f(y) is the right endpoint of the set F(M,y) that lies in
general in the definable completion M of M. Then f is a function mapping
M in M.

Definition 3. Let E(x,y) be an (}-definable equivalence relation partition-

ing M into infinite convex classes. Suppose that y lies in M (non-obligatory
in M). Then

E*(x,y) := 3y13yelyr # y2 AVUEK (y1,t,y2) — E(t,z)) A Ko(y1,y,y2)]-

Let M, N be circularly ordered structures. The 2-reduct of M is a
circularly ordered structure with the same universe of M and consisting
of predicates for each (-definable relation on M of arity < 2 as well as of
the ternary predicate K for the circular order, but does not have other
predicates of arities more than two. We say that the structure M is
isomorphic to N up to binarity or binarily isomorphic to N if the 2-reduct
of M is isomorphic to the 2-reduct of N.

Let f be a unary function from M to M. We say that f is monotonic-
to-right (left) on M if it preserves (reverses) the relation Ky, i.e. for any
a,b,c € M such that Ky(a,b,c), we have Ko(f(a), f(b), f(c)) (Ko(f(c),
f0), f(a))).

Let F'(z,y) := 3t[F(t,y) A F(x,t)], where F(z,y) is a convex-to-right
formula. Denote by f2(y) the right endpoint of F'(M,y) in M.

Lemma 1. [15] Let M be an No—categorical 1-transitive weakly circularly
minimal structure, F(xz,y) be a convex-to-right formula so that f(y) :=
rend F(M,y) is monotonic-to-left on M. Then f*(a) = a for all a € M.

The following definition can be used in a circular ordered structure as
well.
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Definition 4. [22], [23] Let 7" be a weakly o-minimal theory, M be a
sufficiently saturated model of T', A C M. The rank of convexity of the set
A (RC(A)) is defined as follows:

1) RC(A) =0 if A is finite and non-empty.

2) RC(A) > 1 if A is infinite.

3) RC(A) > o+ 1 if there exist a parametrically definable equivalence
relation E(x,y) and an infinite sequence of elements b; € A,i € w, such
that:

— For every i,j € w whenever i # j we have M |= —E(b;, b;);

— For every i € w, RC(E(M,b;)) > « and E(M,b;) is a convex subset

of A.

4) RC(A) > ¢ if RC(A) > « for all a < §, where § is a limit ordinal.

If RC(A) = a for some «, we say that RC(A) is defined. Otherwise (i.e.
if RC(A)) > a for all ), we put RC(A) = oo.

The rank of convezity of a formula ¢(x,a), where a € M, is defined as
the rank of convexity of the set ¢p(M,a), i.e. RC(¢(x,a)) := RC(¢p(M,a)).

The following theorem characterizes up to binarity Np—categorical 1-
transitive non-primitive weakly circularly minimal structures M of convex-
ity rank greater than 1 having both a trivial definable closure and a convex-
to-right formula R(z,y) such that r(y) := rend R(M, y) is monotonic-to-left
on M:

Theorem 1. [15] Let M be an No—categorical 1-transitive non-primitive
weakly circularly minimal structure of convexity rank greater than 1 such
that dcl(a) = {a} for some a € M. Suppose that there exists a convex-to-
right formula R(z,y) such that r(y) := rend R(M,y) is monotonic-to-left
on M. Then M is isomorphic up to binarity to

,5,2,2 = <M’ KB’E%’E%" .. ’EE’E§+1’R2>’

where M is a circularly ordered structure, M is densely ordered, s > 1;
Esi1 is an equivalence relation partitioning M into two infinite convex
classes without endpoints; E; for every 1 < i < s is an equivalence re-
lation partitioning every FE;i1-class into infinitely many infinite convex
E;-subclasses without endpoints so that the induced order on E;-subclasses is
dense without endpoints; R(M,a) has no right endpoint in M and r*(a) = a
for all a € M, where 72(y) == r(r(y)).

Algebras of binary formulas are a tool for describing relationships be-
tween elements of the sets of realizations of an one-type at the binary level
with respect to the superposition of binary definable sets. A binary isolating
formula is a formula of the form ¢(x,y) such that for some parameter a
the formula ¢(a,y) isolates a complete type in S({a}). The concepts and
notations related to these algebras can be found in the papers [25;26]. In

Useectus MpKyTCKOro TOCYJapCTBEHHOTO YHUBEPCUTETA..
Cepusa «Maremarukas. 2025. T. 52. C. 120-136



ALGEBRAS OF BINARY FORMULAS FOR WEAKLY CIRCULARLY... 125

recent years, algebras of binary formulas have been studied intensively and
have been continued in the works [1], [3], [7]- [13].

In [9] algebras of binary isolating formulas are described for Wy-cate-
gorical weakly circularly minimal theories with a primitive automorphism
group. In [10] algebras of binary isolating formulas are described for No-
categorical weakly circularly minimal theories of convexity rank 1 with a
1-transitive non-primitive automorphism group and a non-trivial definable
closure. In [11]- [12] algebras of binary isolating formulas are described for
Ng-categorical weakly circularly minimal theories of convexity rank greater
than 1 with a 1-transitive non-primitive automorphism group and a non-
trivial definable closure. In [13] algebras of binary isolating formulas are
described for Ng-categorical weakly circularly minimal theories of convexity
rank 1 with a 1-transitive non-primitive automorphism group and a trivial
definable closure. Here we describe algebras of binary isolating formulas for
Ng-categorical weakly circularly minimal theories of convexity rank greater
than 1 with a 1-transitive non-primitive automorphism group and a trivial
definable closure.

2. Results

Definition 5. [26] Let p € S1(()) be non-algebraic. The algebra P, is
said to be deterministic if uq - uo is a singleton for any labels w1, us € Pu(p)-

Generalizing the last definition, we say that the algebra P, is m-
deterministic if the product uy - uo consists of at most m elements for any
labels w1, ug € p,(p). We also say that an m-deterministic algebra P, is
strictly m-deterministic if it is not (m — 1)-deterministic.

Example 1. Consider the structure M ,, := (M, K* E}, E5, R?) from
Theorem 1 with the condition that the function r(y) := rend R(M,y) is
monotonic-to-left on M. Here Fs(x,y) is an equivalence relation partition-
ing M into two infinite convex classes.

We assert that Th(./\/l’l’m) has nine binary isolating formulas:

Oo(z,y) ==z =y, bi(z,y) = Ko(z,y,r(z)) A E1(z,y),
O2(z,y) := Ko(z,y,r(z)) A Ez2(2,y) A ~Er(z,y),
O3(z,y) = Ko(z,y,7(z)) A =Ea(z,y) A ~Ei(y,7(x)),
Os(z,y) := Ko(z,y,7(2)) A ~Ea(z,y) A ET(y,r(z))
05(z,y) == Ko(r(z),y,z) A =Ea(z,y) A EY(y,7(2)),
O6(z,y) = Ko(r(z),y,z) A =Ea(z,y) A ~Ei(y,r(x)),
O7(z,y) :== Ko(r(z),y, ) A Ez(z,y) A ~Ei(z,y),
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08('%.7 y) = KO(T(x)v Y, .’IJ) A El(xv y)7
and the following holds for any a € M:

K(/)(HO(Q’ M)a 01 (CL, M)a 02(&, M)a 03(&, M)a s ’97(0’5 M)’ 98(0’5 M))
Define labels for these formulas as follows:
label k for 0(x,y), where 0 < k < 8.

It easy to check that for the algebra P, 20 the following equalities hold:
0-k=k-0={k} for each 0 <k <8,
1-k={k}foreach1<k<4,1-5={4,5},1-6={6},1-7={7},
and 1-8 ={0,1,8},

1={2},2-2=1{2},2-3= {3}, 2-4= {3}, 2-5 = {3},

-6 =1{3,4,5,6},2-7=1{0,1,2,7,8}, and 2 -8 = {2},
-1=4{3},3-2=1{3,4,5,6}, 3-3={0,1,2,7,8},
-1={4,5},4-2={6},4-3={7},4-4=1{0,1,8},
5={1},4-6=1{2},4-7={3},4-8 = {4},
-1=4{5},5-2={6},5-3={7},5-4={8},5-5={0,1,8},

-6 ={2},5-7={3},5-8={4,5},
1={6},6-2={6},6-3={7},6-4={7},6-5={7},
-6=1{0,1,2,7,8}, 6-7={3,4,5,6}, 6-8 = {6},
1=A{7},7-2={0,1,2,7,8}, 7-3={3,4,5,6}, 7-4 = {6}, 7-5 = {6},
6={6},7-7={7},7-8={T7},

-1={0,1,8}, 8-2={2},8-3={3}, 8-4=1{4,5}, 8-5= {5},
8-6=1{6},8-7={7}, 8-8={8}.

According to these equalities, the algebra 3 Mg, is strictly 5-determi-

0 3O O UULUU = W W

nistic and not commutative.

The following theorem describes the algebra B3 M, for every s > 1 by
giving the Cayley table for this algebra.

Theorem 2. The algebra ‘BM/S - of binary isolating formulas with mo-

notonic-to-left function r has 4s+5 labels, is strictly (2s + 3)-deterministic
and not commutative for every s > 1.

Proof. We assert that the algebra 3 M, has 4s + 5 binary isolating for-
mulas: Ho(ﬁ,y) =r=Y, Hl(x)y) = Ko(ﬁ,y,T(CC)) A El(xay)’

0l1(x)y) = Ko(ﬁ,y,T(CC)) A Ell (w,y) A _'Ell—l(xay)) where 2 < ll <s+1
08+2(x7y) = Ko(.’L',y,T(JI)) A 5+1(.%',y) A _‘E;k(yvr(x))v

01,(z,y) == Ko(w,y,7(x)) AN ~Esy1(2,y) A Esgiz 1, (y,r(x))A
—|E§‘5+2_l2(y,r(:c)), where s + 3 < Iy <2s+1,

Useectuss pKyTCKOTO TOCYJapCTBEHHOTO YHUBEPCUTETA..
Cepusa «Maremarukas. 2025. T. 52. C. 120-136
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(925+2(.%',y) = Ko(x,y,r(x)) A% 5+1(907y) A Ef(y,r(m)),
923+3(x,y) = KO(T(:C)’y’x) A 3+1($,y) N Ef(y,r(x)),
913(3:,@/) = KO(T(:C)’y’x) A 3+1($,y) A E;;,—(25+2)(yar(x))/\

Bl _2s+3)(y,7(x)), where 2s +4 <13 <3s+2,

935+3($,y) = KO(T(:C)’y’x) A~ 3+1($,y) A _'E;k(y’r(x))a
0[4 (1‘, y) = KQ(’I“(.%'), Y, 1’) A E4s+5fl4 (.’IJ, y) A _\E43+4,l4(.’11', y)v
where 3s + 4 <y < 4s+ 3,

Ossva(x,y) = Ko(r(z),y,x) AN E1(z,y).

Thus, we have 2+s+1+(s—1)+24+(s—1)+1+s+1=4s+5 binary
isolating formulas. Moreover, we have defined the formulas so that for any
a € M the following holds:

Ké(HO(a’v M)701(a’7 M)702(a’7 M)7 s 7048+3(a’7 M)704S+4(G7M))'

Prove now that the algebra By is strictly (2s + 3)-deterministic and

not commutative for every s > 1. Firstly, obviously that 0-k = k-0 = {k}
for any 0 < k < 4s 4 4. Suppose further that k1 # 0 and ko # 0.

Consider the following formula: 3t[0, (x,t) A Ok, (¢, y)].

Case 1: k1 = 1. Then we have: F(z,t) and Ko(zx,t,r(x)).

If ko = 1 then Ey(t,y) and Ko(t,y,7(t)). Whence we obtain: E(z,y)
and Ky(x,y,r(z)), i.e. 1-1={1}.

Suppose now that 2 < kg < s+ 1. Then we have: Ko(t,y,7(t)), Ei(t,y)
and —FE;_1(t,y) for some 2 < [ < s+ 1. Consequently, we obtain the
following: Ko(x,y,r(z)), Ei(x,y) and —Ej_1(x,y), i.e. ki - ko = {k2}.

Consider the product ky-1. We have the following: Ko(z,t,7(z)), Ey(x,t)
and —Ej_1(x,t) for some 2 <1 < s+ 1; Ko(t,y,r(t)) and Ei(t,y). Whence
we obtain: Ky(z,y,r(x)), Ei(x,y) and ~Ej_1(z,y), i.e. ka1 = {ko}.

Suppose that ks = s + 2. Then we have: Ky(t,y,r(t)), “Fst1(t,y) and
—E¥(y,r(t)). Consequently, we obtain: Ko(x,y,r(z)), "Fsy1(x,y) and
ﬂE;*(y,r(x)), i.e. kl . kg = {kg}

Consider the product (s + 2) - 1. We have the following: Ky(z,t,r(x)),
—Fgy1(z,t) and ~E%(t,r(z)); Ko(t,y,r(t)) and Ey(t,y). Whence we obtain:
Ko(z,y,7r(z)), 7Esy1(z,y) and =El(y,r(x)), ie. (s+2)-1={s+2}.

Suppose now that s +3 < ko < 2s + 1. Then we have: Ky(t,y,r(t)),
—Esi(t,y), Ef(y,r(t)) and —E; {(y,r(t)) for some 2 < I < s. Whence
we obtain: Ko(z,y,r(z)), “Est1(z,y), Ef (y,r(z)) and ~E | (y,r(z)), i.e.
ki - ko = {ka}. We can show similarly that ko - k1 = {ko}.

Suppose that ky = 2s+ 2. Then we have: Ko(t,y,7(t)), "Est+1(t,y) and
Ef(y,r(t)). Whence we obtain: Ko(x,y,r(x)), "Fst1(x,y) and Ef(y,r(z)),
ie. kjl . k?z = {k‘g}
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Consider the product (2s + 2) - 1. We have the following: Ky(z,t,r(x)),
—Fgy1(z,t) and Ej(t,r(z)); Ko(t,y,r(t)) and Ey(t,y). Consequently, we
obtain: =F41(x,y) and Ef(y,r(x)), but it can be Ko(z,y, r(x)) or Ko(r(x),
y, x), ie. (2s+2)-1={2s+2,25+ 3}.

Thus, the algebra B M5, is not commutative for every s > 1.

Suppose that ks = 2s+ 3. Then we have: Ky(r(t),y,t), 7 Es+1(t,y) and
Ef(y,r(t)). Whence we obtain: —F,ii(x,y) and Ej(y,r(x)); moreover,
by monotonicity-to-left of the function r we have Ky(x,t,r(t),r(x)), i.e.
it can be either Ky(z,y,r(z)) or Ko(r(z),y,z); consequently, ki - ko =
{2s + 2,25 + 3}. By considering the product (2s + 3) - 1, we can see that
(25 +3)-1={2s+3}.

Suppose now that 2s + 4 < kg < 3s + 2. Then we have: Ky(r(t),y,1t),
—Esi(t,y), Ef(y,r(t)) and —E} {(y,r(t)) for some 2 < I < s. Whence
we obtain: Ko(r(z),y,z), "Est1(z,y), Ef (y,r(z)) and ~E | (y,r(z)), i.e.
ki - ko = {ka}. We can show similarly that ko - k1 = {ko}.

Suppose that ks = 3s+ 3. Then we have: Ko(r(t),y,t), "Es+1(t,y) and
—E%(y,r(t)). Then we also obtain that ky - ko = {ka} = ko - k1.

Suppose now that 3s + 4 < kg < 4s + 3. Then we have: Ko(r(t),y,1),
Ei(t,y) and —E;_i(t,y) for some 2 < | < s+ 1. Whence we obtain:
Ko(r(z),y,z), Ei(x,y) and ~Ej_1(z,y), i.e. k1 -ks = {ka}. We can show
similarly that k?z . k‘l = {ka}

Suppose that ko = 4s + 4. Then we have: Ky(r(t),y,t) and Ei(t,y).
Whence we obtain: Fj(z,y), wherein y can be anywhere in this class, i.e.
ki-ke ={0,1,4s+4}. We can show similarly that (4s+4)-1 = {0,1,4s+4}.

Case 2: 2 < k; < s+ 1. Then we have: Ky(z,t,r(z)), Ej,(z,t) and
—Ep, —1(x,t) for some 2 <[} < s+ 1.

Suppose that 2 < ks < s+ 1. Then we have: Ko(t,y,7(t)), E,(t,y) and
—Ep,—1(t,y) for some 2 < Iy < s+ 1. Whence we obtain: if [; < [y then
Ko(z,y,r(x)), E,(x,y) and =Ey,_1(x,y), i.e. ky-ky = {ka}; if l; > lo then
Ko(z,y,r(x)), B (z,y) and =Ey,_1(z,y), i.e. ky - ko = {k1}.

Suppose that ks = s + 2. Then we have: Ky(t,y,r(t)), “Fst1(t,y) and
—E¥(y,r(t)). Consequently, we obtain: Ky(x,y,r(z)), "Fsy1(x,y) and
ﬂE;*(y,r(x)), i.e. kl . kg = {kz}

Consider the product (s+ 2) - k1. We have the following: Ky(z,t,r(x)),
—Fgy1(z,t) and —EX(t,r(z)); Ko(t,y,r(t)), Ei(t,y) and —E;_1(t,y) for
some 2 <[ < s+ 1. Whence we obtain: —Fgy;(x,y). Since = Esiq(z,t),
we have: Koy(z,r(t),t,r(x)). Consequently, it can be either Ko(z,y,r(x))
or Ko(r(z),y,z). Then (s+2) k1 ={s+2,s+3,...,35s+ 3}.

Suppose now that s +3 < ko < 2s 4+ 1. Then we have: Ky(t,y,r(t)),
~Ee1(t,y), Ef(y,r(t)) and =E}_(y,7(t)) for some 2 < I < s. Whence
we obtain: Ko(z,y,r(z)) and = Es1(z,y). If i} = s+1 then ki-ky = {s+2}.
If Iy > Iz and Iy # s+ 1 then Ej (y,r(x)) and —E},_,(y,r(x)), whence
ki ke = {2s +3 —1i}. If [y < lp then Ef (y,r(z)) and —E} _(y,r()),
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whence ki - ko = {k2}. By considering the product ks - k1, we obtain:
Ko(z,t,r(x)), ~Esy1(x,t), Ef (t,r(r)) and —E] _(t,7(z)) for some 2 <
I < s; Ko(t,y,r(t)), E,(t,y) and —Ep,_1(t,y) for some 2 < [y < s+ 1.
Whence we obtain: ~FEgyq(x,y). Ifl; > lo then ko-ky = {ko, ka+1,... ka+
211 — 1}. If l1 <ly then ko - k1 = {kg}

Suppose that ko = 2s+ 2. Then we have: Ko(t,y,7(t)), 7Es+1(t,y) and
Ef(y,r(t)). Whence we obtain: Ko(z,y,7(v)), ~Est1(z,y), Ef (y,7(z))
and =B} _,(y,r(z)) for some 2 <l < s+1. Consequently, k1-kg = {2s+3—
l1}. Consider the product (2s+2)-k;. We have the following: Ko(z,t,r(x)),
—Eopi(z,t) and Ef(t,r(x)); Ko(t,y,r(t)), £/ (t,y) and ~E} | (t,y) for some
2 <1< s+ 1. Whence we obtain: Ko(r(z),y,z), ~Esq1(x,y), Ef (y,r(x))
and ~E | (y,r(x)), i.e. (2542)-k1 = {254+2+1}. We can establish similarly
that if ko = 25+ 3 then k1 -ko = {2s+3—11} and 25+3)- k1 = {25+ 2+1}.

Suppose now that 2s + 4 < kg < 3s + 2. Then we have: Ko(r(t),y,1),
~Esy1(t,y), B, (y,r(t)) and —E} _(y,7(t)) for some 2 < Iy < 5. Whence
we obtain: —Fgiq(z,y). If i > lo then it is possible Ko(x,y,r(z)) or
KO(T(x),y,:c). If i > Iy then ki - kg = {28 + 3 — ll} If Iy = Iy then
ki ko = {k‘l, ki+1,....k +2l — 1} If I; < Il then we have KQ(T(I),y,SC)
and ky - ko = {2s + 2+ [3}. By considering the product ko - k1 we obtain:
Ko(r(z),t,x), =Esi1(x,t), B (t,r(z)) and —~Ef _ (¢, r(x)) for some 2 <
L <s; Ko(t,y,r(t)), E,(t,y) and —Ep,_1(t,y) for some 2 < [y < s+ 1.
Whence we obtain: = Fs11(x,y) and Ko(r(z),y,z). If I > Iy then ko -k =
{kg}. If l1 <l then ko - k1 = {kl}

Suppose that ks = 3s+ 3. Then we have: Ky(r(t),y,t), 7 Es+1(t,y) and
—E%¥(y,r(t)). Consequently, we obtain: Ko(r(z),y,z), “Fsy1(x,y) and
—E¥(y,r(x)). Consequently, ki - ko = {k2}. By considering the product
(3s + 3) - k1 we obtain similarly that ko - k1 = {ko}.

Suppose now that 3s + 4 < kg < 4s 4+ 3. Then we have: Ky(r(t),y,1t),
E,(t,y) and —E;,_1(t,y) for some 2 <ly < s+ 1. If [; > Iy then Ky(z, v,
r(x)), By, (x,y) and =Ej,_1(z,y), and ky - ke = {k1}. If i = I3 then it is
possible Ko (z,y,r(z)) or Ko(r(z),y,x), and ki - ke = {0,1,...,11,4s+ 5 —
li,...,4s+4}. It 1y < ly then Ko(r(z),y,x), Eip(x,y) and —Ep,_1(x,y), and
ky - ko = {k2}. By considering the product ks - k1 we obtain: Ky(r(x),t,x),
Ey (z,t), =Ep_1(z,t) for some 2 < I} < s+ 1; Ko(t,y,7(t)), E,(t,y)
and —Ep,_1(t,y) for some 2 < [y < s+ 1. Then if [; > lp, we have
Ko(r(x),y,z) and ko - k1 = {ka}. If [y =l then it is possible Ko(z,y,r(x))
or Ko(r(x),y,x), whence we obtain: ko-ky = {0,1,...,l1,4s+5—11,...,4s+
4}. If I <y then Ko(x,y,r(z)) and ko - k1 = {k1 }.

Suppose that ko = 4s + 4. Then we have: Ky(r(t),y,t) and Ei(t,y).
Whence we obtain: Ko(x,y,r(x)), By, (z,y) and —Ej, _1(z,y), i.e. ki -ka =
{k1}. We can show similarly that (4s +4) - k1 = {k1}.

Case 3: k1 = s + 2. We have the following: Ko(z,t,7(z)), "Esyi1(x,t)
and —EX(t,r(z)).
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If ko = s+2 then we obtain: Ko(t,y,7(t)), "Fst1(t,y) and =EX(y,r(t)).
Then we have: Esiq(z,y). Since ~FEgy1(x,t), we have Ko(z,r(t),t,r(x)).
Consequently, it is possible Koy(x,y,r(z)) or Ko(r(z),y,z). Whence we
obtain: ky - ke = (0,1,...,s+1,3s+4,...,4s + 4}, i.e. the product (s +
2) - (s + 2) gives 2s + 3 labels of the algebra.

Suppose now that s +3 < ko < 2s + 1. Then we have: Ko(t,y,7(t)),
—Esi1(t,y), B (y,r(t)) and =E}_(y,7(t)) for some 2 < Iy < s. Whence
we obtain: Esyi(x,y) and k1 - ks = {s + 1}. By considering the product
ko - k1 we obtain: Ko(z,t,7(x)), ~Est1(x,t), Ef(t,r(x)) and ~Ef | (t,r(x))
for some 2 <1 <s; Ko(t,y,r(t)), "Est1(t,y) and =EX(y,r(t)). Whence we
have: Esy1(z,y) and ko - k1 = {35+ 4}.

Suppose that k2 = 2s 4+ 2. Then we have: Ko(t,y,7(t)), “"Est1(t,y)
and Ef(y,7(t)). Whence we obtain: Fsyi(z,y) and ky - ko = {s +1}. By
considering the product (2s+2)-(s+2) we obtain: Ky(x,t,7(x)), " Esy1(x,t)
and Ef(t,r(z)); Ko(t,y,r(t)), "Est1(t,y) and —EZ(y,r(t)). Whence we
have: Est1(z,y) and (25+2)-(s+2) = {3s+4}. We can establish similarly
that if ko = 25+ 3 then k1 - ko = {s+ 1} and (2s+3) - (s +2) = {3s + 4}.

Suppose now that 2s + 4 < ko < 3s + 2. Then we have the following:
Ko(r(t),y,t), "Esi1(t,y), Ef (y,r(t)) and ~E} ;(y,r(t)) for some 2 <[ < s.
Whence we obtain: Fgi1(z,y) and ki - k2 = {s + 1}. By considering the
product ks - k1 we show similarly that ks - k1 = {3s + 4}.

Suppose that ks = 3s+ 3. Then we have: K(r(t),y,t), 7Es+1(t,y) and
—E¥(y,r(t)). Whence we obtain: Esi1(z,y) and ky - ko = {s + 1}. By
considering the product (3s + 3) - (s + 2) we show similarly that ks - k; =
{3s +4}.

Suppose now that 3s + 4 < kg < 4s + 3. Then we have: Ky(r(t),y,1t),
Ei(t,y) and =E;_1(t,y) for some 2 < [ < s+ 1. We establish in this case
that =Fs11(x,y) and ky - ks = {s + 2}. By considering the product ko - k;
we show similarly that =F,11(x,y) and ko - k1 = {s + 2}.

Suppose that ko = 4s + 4. Then we have: Ky(r(t),y,t) and Ei(t,y).
Whence we obtain: = Es1(z,y) and k; - ko = {s + 2}. By considering the
product (4s +4) - (s + 2) we show similarly that = Es1(z,y) and kg - k1 =
{s+2}.

Case 4: s+ 3 < k1 < 2s+ 1. We have the following: Ky(x,t,r(x)),
~Esi1(z,t), Ef (t,r(z)) and =B} _ (¢, 7(z)) for some 2 <1; <.

If s+3 < kg <25+ 1 then KO(t)y’T(t))’ - erl(tay)’ E;;(y,T(t)) and
B (y,r(t)) for some 2 <y < 's. Then we obtain: Fsi1(z,y). If l1 >l
then kq-ky = {ll} If Iy = Iy then ki kg = {0, 1,...,01,45+5—14,... ,4S+4}
If [1 <y then ky - ko = {48 +5— lg}

Suppose that ko = 25+ 2. Then we have: Ko(t,y,7(t)), 7 Es+1(t,y) and
Ef(y,r(t)). Whence we obtain: Esi1(z,y) and ky - ko = {l1}.

Consider the product (2s+2)-k;. We have the following: Ko(sc t,r(x)),
B (et) and Bi(tr(0) : Kolty,r(t)) . ~Euri(t,y), B{(y,r(t)) and
-Ef (y,r(t)) for some 2 < [ < s. Whence we obtain: Es+1(ac,y) and
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ky - ko = {4s +5 —1}. We establish similarly that if ko = 2s + 3 then
ky-ky={l1} and (2s4+3) - (s +2) ={4s+5—1}.

Suppose now that 2s + 4 < kg < 3s + 2. Then we have: Ky(r(t),y,1t),
~Es1(t,y), Ef (y,r(t)) and =E}_(y,7(t)) for some 2 < I < s. Whence
we obtain: E3+1(1‘,y). If ll Z 12 then kl . kg = {ll} If ll < 12 then
ko - k1 = {l2}.

Consider the product ks - k1. We have the following: Ky(r(x),t,x),
~Esy1(z,t), B} (t,r(x)) and =E} _ (t,r(x)) for some 2 < I; < 57 Ko(t, v,
r(t), —Esqa(t,y), Ej(y,r(t)) and ~E;_(y, r(t)) for some 2 < Iy < s.
Whence we obtain: Egyi(x,y). If [; > Iy then ko - ky = {4s +5—[;}. If
l1 <ly then ko - k1 = {45 +5— lz}.

Suppose that ks = 3s+ 3. Then we have: Ko(r(t),y,t), "Es+1(t,y) and
—E%(y,r(t)). Whence we obtain: Fqii(x,y) and ki - ko = {s + 1}.

By considering the product ko - k1 we prove that ko - k1 = {3s + 4}.

Suppose now that 3s +4 < kg < 4s + 3. Then we have: Ko(r(t),y,1),
Ei,(t,y) and —Ep,_1(t,y) for some 2 < Iy < s+ 1. We establish that in
this case —|ES+1(SC,y). If [y > Iy then ki - ky = {28 +3 - ll} If 1 <y
then ki - ko = {2s + 3 — l3}. Consider the product ks - k1. We have the
following: Ko(r(x),t,x), Ei, (x,t) and = Ej, _1(x,t) for some 2 <[} < s+ 1;
Ko(t,y,r(t)), ~Es1(t,y), B}, (y,r(t)) and =E}, _,(y,7(t)) for some 2 < Iy <
s. Whence we obtain: —FEgyq(z,y). If Iy > ls then ky - k1 = {2s + 2+ 11 }.
If I; = Iy then ky - k1 = {284—3—11,...,284—24—11}. If I; < Iy then
ko - k1 = {28+3—l2}.

Suppose that ko = 4s + 4. Then we have: Ky(r(t),y,t) and Ei(t,y).
Whence we obtain: —Fgy1(z,y) and ky - ko = {25 + 3 — {1 }. Consider the
product (4s + 4) - k1. We have the following: Ko(r(z),t,z) and Fj(z,t);
Ko(t,y,r(t)), ~Esr1(t,y), Ef (y,r(t)) and ~E} | (y,7(t)) forsome 2 <1 < s.
Then we obtain —FEs1(z, y) and kg - k1 = {2s +3 — 1}.

Case 5: k1 = 2s + 2. We have the following: Ko(z,t,7(x)), "Esy1(x,t)
and E(t,r(z)).

If ko = 2s + 2 then we have Ky(t,y,7(t)), 7 Es+1(t,y) and Ef(y,r(t)).
Whence we obtain: Fgi1(x,y). Since EY(t,7(z)), we have Ef(x,r(t)), and
consequently Fq(z,y). Then ki - ko = {0,1,4s + 4}.

Suppose that ko = 2s+ 3. Then we have: Ko(r(t),y,t), 7 FEs+1(t,y) and
Ef(y,r(t)). Whence we obtain: FEj(z,y) and kj - ko2 = {1}. Consider the
product (2s + 3) - k1. We have the following: Ko(r(z),t,x), 2 Est1(x,t)
and Ej(t,r(z)); Ko(t,y,r(t)), "Esy1(t,y) and Ef(y,r(t)). Consequently,
we obtain: Ei(z,y) and kg - ky = {4s + 4}.

Suppose now that 2s +4 < ky < 3s + 2. Then we have: Ko(r(t),y,1),
—Eo1(t,y), Ef(y,r(t)) and ~Ef | (y,r(t)) for some 2 <1 < 's. Whence we
obtain: Esi1(x,y) and ky - ko = {l}. Consider the product ks - k1. We have
the following: Ko(r(z),t,x), ~Esq1(x,t), Ef(t,r(x)) and ~E/ (t,r(x)) for
some 2 < [ < s; Ko(t,y,r(t)), "Es11(t,y) and Ef(y,7(t)). Whence we
obtain: Fgyi(z,y) and ko - k1 = {4s+5 —[}.
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Suppose that ks = 3s+ 3. Then we have: Ky(r(t),y,t), 7Es+1(t,y) and
—E¥(y,r(t)). Whence we obtain: Esi1(z,y) and ky - ko = {s + 1}. By
considering the product k3 - k1 we establish that ko - k1 = {3s + 4}.

Suppose now that 3s+4 < kg < 45+ 3. We have the following: Ko (r(t),
y, t), Ei(t,y) and —E;_1(t,y) for some 2 < [ < s+ 1. We establish that
in this case = Fsyi(x,y) and k; - k2 = {2s + 3 — [}. Consider the product
ko - k1. We have the following: Ky(r(x),t,z), Ei(z,t) and —Ej_i(x,t) for
some 2 < < s+ 1; Ko(t,y,r(t)), “Fst1(t,y), Ej(y,r(t)). Whence we
obtain: = Esiq(x,y) and ko - k1 = {25 + 2+ 1}.

Suppose that ko = 4s + 4. Then we have: Ky(r(t),y,t) and Ei(t,y).
Whence we obtain: —FEgyi(x,y) and ki - ko = {25 + 2}. Consider the
product (4s + 4) - k1. We have the following: Ko(r(z),t,z) and E;(z,t);
Ko(t,y,r(t)), “Fst1(t,y), Ef(y,r(t)). Consequently, we obtain —FEsi1(z,
y) and ko - k1 = {25 +2,2s + 3}.

Case 6: k1 = 2s + 3. We have the following: Ko(r(z),t,z), "Esy1(x,t)
and EY(t,r(z)).

If ko = 2s + 3 then we have: Ko(r(t),y,t), "Esy1(t,y) and Ef(y,r(t)).
Whence we obtain: Fi(z,y) and ky - k2 = {0, 1,4s + 4}.

Suppose now that 2s +4 < kg < 3s + 2. Then we have: Ko(r(t),y,1),
—Eg1(t,y), Ef(y,r(t)) and —E; | (y,r(t)) for some 2 <1 < s. Whence we
obtain: Fgy1(z,y) and ky - ko = {l}. By considering the product ko - k1 we
establish similarly that ks - k; = {4s +5 —[}.

Suppose that ks = 3s+ 3. Then we have: K(r(t),y,t), " Es+1(t,y) and
—E¥(y,r(t)). Whence we obtain: Esi1(z,y) and k1 - ko = {s + 1}. By
considering the product ks - k1 we establish that ko - k1 = {3s + 4}.

Suppose now that 3s + 4 < kg < 4s + 3. Then we have: Ky(r(t),y,1t),
Ei(t,y) and =E;_1(t,y) for some 2 < [ < s+ 1. We establish in this case
that =FEs41(z,y) and k; - ks = {2s + 3 — [}. Consider the product ks - k1.
We have the following: Ko(r(z),t,z), Ej(z,t) and —~E;_1(z,t) for some
2 <1 <s+1; Ko(t,y,r(t)), "Est1(t,y), Ef(y,r(t)). Whence we obtain:
—Fsii1(z,y) and ko - k1 = {25 +2 + 1}

Suppose that ko = 4s + 4. Then we have: Ky(r(t),y,t) and Ei(t,y).
Whence we obtain: ~Fsy1(z,y) and k- ke = {2s+2,2s+3}. Consider the
product (4s + 4) - k1. We have the following: Ko(r(z),t,z) and E;(z,t);
Ko(t,y,r(t)), " Est1(t,y), Ej(y,r(t)). Consequently, we obtain = FEs11(x,y)
and ko - k1 = {28 + 3}

Case 7: 2s +4 < k1 < 3s + 2. We have the following: Ky(r(x),t,x),
~Esi1(z,t), Ef (t,r(z)) and =B} _(t,r(x)) for some 2 <[ <'s.

If 25 +4 < ko < 3s + 2 then Ko(r(t),y,t), ~Es1(t,y), £, (y,r(t)) and
=B} _(y,7(t)) hold for some 2 <l < s. Whence we obtain: Esy1(z,y). If
l1 > 1y then ki - ko = {4S+5*l1} If [y =I5 then k- ko = {0,1,... 1,45+
5! *ll,...,48+4}. If I <y then ky - ko = {lz}
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Suppose that ks = 3s+ 3. Then we have: Ky(r(t),y,t), 7Es+1(t,y) and
—E¥(y,r(t)). Whence we obtain: Esi1(z,y) and ky - ko = {s + 1}. By
considering the product k3 - k1 we establish that ko - k1 = {3s + 4}.

Suppose now that 3s + 4 < kg < 4s + 3. Then we have: Ky(r(t),y,1t),
Ey,(t,y) and =Ej,_1(t,y) for some 2 < ly < s+ 1. We establish in this case
that —|E3+1($,y). If [; > Iy then ki - ko = {28 + 2+ ll} If Iy = Iy then
ki-ko = {2S+3*l1,...,28+2+l1}. If I1 < Iy then ky - ko = {28+3*
la}. Consider the product ks - k1. We have the following: Ko(r(x),t,x),
Ey (z,t) and —Ej,_1(z,t) for some 2 < I} < s+1; Ko(r(t),y,t), "Es+1(t,y),
E} (y,r(t)) and —Ej _(y,7(t)) for some 2 < Iy < s. Whence we obtain:
—|ES+1(SC,y). If [; > Iy then ky - ky = {48 + 5 — ll} If i = Iy then
ki-ky = {0,1,...,l1,48+5*l1,...,48+4}. If [1 <y then ki - ko = {lg}

Suppose that ko = 4s + 4. Then we have: Ky(r(t),y,t) and Ei(t,y).
Whence we obtain: —Fqy1(x,y) and ky - ks = {25 + 2 + [1}. Consider the
product (4s +4) - k1. We have the following: Ko(r(z),t,z) and E;(z,1t);
Ko(r(t),y,t), "Esi1(t,y), £ (y,r(t)) and ~E} ;(y,r(t)) for some 2 <[ < s.
Then we obtain = Fg4q(z, y) and kg - ky = {2s + 2 + [}.

Case 8: k1 = 3s + 3. We have the following: Ko(r(z),t,z), "Esy1(x,t)
and —EX(t,r(z)).

If k3 = 3s+ 3 then we have: Ky(r(t),y,t), 7Es+1(t,y) and =E*(y,r(t)).
Whence we obtain: Esiq(z,y) and ky-ke = {0,1,...,s+1,3s+4,...,4s+4}.

Suppose now that 3s + 4 < kg < 4s + 3. Then we have: Ky(r(t),y,1t),
Ei(t,y) and —FE;_1(t,y) for some 2 < | < s+ 1. We establish in this
case that = Fgy1(z,y). If | = s+ 1 then ky - ko = {s+2,...,3s +3}. If
[ < s+1 then ky - k2 = {3s+3}. Consider the product kg - k1. We have the
following: Ko(r(x),t,z), Ej(x,t) and =E;_i(x,t) for some 2 < < s+ 1;
Ko(r(t),y,t), 7 Es+1(t,y) and E¥(y,r(t)). Whence we obtain: = F,11(x,y)
and k; - ko = {3s + 3}.

Suppose that ko = 4s + 4. Then we have: Ky(r(t),y,t) and Ei(t,y).
Whence we obtain: —Fgy1(z,y) and kq - ko = {3s + 3}.

Consider the product (4s+4) - k3. We have the following: Ko(r(z),t,x)
and Eq(z,t); Ko(r(t),y,t), 7 Est1(t,y) and =E¥(y,r(t)). Then we obtain
—Fsi1(z,y) and ko - ky = {3s + 3}.

Case 9: 3s +4 < k1 < 4s + 3. We have the following: Ky(r(x),t,x),
Ey (z,t) and ~Ej, _1(z,t) for some 2 <[} < s+ 1.

If 3s +4 < kg < 4s + 3 then we have: Ko(r(t),y,t), Ei,(t,y) and
—FEp,_1(t,y) for some 2 < Iy < s+ 1. Whence we obtain: F,ii(x,y). If
l1 > 15 then ky - ko :{4S+5*l1} If I <y then ky - ko :{4S+5*l2}

Suppose that ko = 4s + 4. Then we have: Ky(r(t),y,t) and Ei(t,y).
Whence we obtain: Fgi1(z,y) and ky - ko = {4s+5— 11 }.

Consider the product (4s+4) - k1. We have the following: Koy(r(x),t,x)
and Eq(x,t); Ko(r(t),y,t), E(t,y) and ~FE;_1(t,y) for some 2 < < s+ 1.
Then we obtain Fgyj(x,y) and kg - ky = {4s+5 —{}.

Case 10: k1 = 4s+4. We have the following: Ko(r(z),t,z) and Ei(x,t).
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If ko = 4s + 4 then we have: Ky(r(t),y,t) and Fi(t,y). Whence we
obtain: Fj(x,y) and ky - ke = {4s + 4}.

Thus, the product ki - ko has the greatest number of labels, i.e. 2s 4 3,
in four cases:

(1) k1 = s+ 1 and ko = 3s + 4;

(2) by = ky = 5+ 2

(3) kjl :k2:35+3;

(4) k1 =3s+4 and ko = s + 1.

Consequently, the algebra 9 v o is strictly (2s + 3)-deterministic. [

3. Conclusion

We investigated algebras of binary isolating formulas for Ng-categorical
1-transitive non-primitive weakly circularly minimal theories of convex-
ity rank greater than 1 with a trivial definable closure having a non-
trivial monotonic-to-left function acting on the universe of a structure.
We also proved their non-commutativity and established their strict m-
deterministicity for some natural m. It would now be interesting to describe
the corresponding algebras for theories having a non-trivial monotonic-to-
right function.
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