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Abstract. In this paper, a class of systems of pseudo-parabolic PDEs is considered.
These systems (S). are derived as a pseudo-parabolic dissipation system of Kobayashi—
Warren—Carter energy, proposed by [Kobayashi et al., Physica D, 140, 141-150 (2000)],
to describe planar grain boundary motion. In this context, ¢ is a value to control the
relaxation of singular diffusivity. These systems have been studied in [Antil et al., SIAM
J. Math. Anal., 56(5), 6422-6455], and solvability, uniqueness and strong regularity of
the solution have been reported under the setting that the initial data is sufficiently
smooth. Meanwhile, in this paper, we impose weaker regularity on the initial data, and
work on the weak formulation of the systems. In this light, we set our goal of this paper
to prove two theorems, concerned with the existence and the uniqueness of weak solution
to (S)e, and the continuous dependence with respect to the index e, initial data and
forcings.
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AnHoTauusa. PaccmarpuBaercsi Kjacc CHCTEM IICEBIONAPabOIMYECKAX YPaBHEHUN B
YACTHBIX IPOM3BOAHBIX. DTU CHCTEMBI (S)e SBJIATCS BepCHel IICeBonapaboInaecKoil
JINCCUTIATUBHOMN cucreMbl sHeprun Kobasicn — Yoppen — Kaprep, npezoxennoii [Kobaya-
shi et al., Physica D, 140, 141-150 (2000)] s onmcanusi ABUKEHUS IJIOCKUX TDAHMUIL
3epeH. B 9TOM KOHTEKCTEe € — 9TO 3HAYEHWE JJIsi KOHTPOJIST PEJIAaKCAIUU CHHIYJISPHOM
nuddysun. dtu cucrempl 6blin u3ydens! B [Antil et al., STAM J. Math. Anal., 56(5),
6422-6455], rue Oblia JOKa3aHA Pa3peINMOCTb, €AUHCTBEHHOCTb M CUJIBHAS PeryJisip-
HOCTb PeIIeHUs IPHU yCJIOBUU, UTO HaYaJbHbIE JAHHBIE JIOCTATOYHO Iyajkue. Haxia-
IBIBAIOTCS Oosiee cyrabble YCIOBHSI PEryJIIDHOCTH Ha HadajbHbIE JAHHBIE M [IPOMCXOIUAT
pabota Haj cy1aboit popMyIUpPOBKOi cucTeM. JIOKa3bIBAIOTCS JIBE TEOPEMBbI, KACAIOIIUECS
CYNIECTBOBAHUSI U €JMHCTBEHHOCTH cj1aboro perenust s (S)e, & TakyKe HelpepbIBHON
3aBUCUMOCTHU OT UHJEKCA £, HAYaJbHBIX JAHHBIX U BO3IEHCTBUIA.

KuroueBbie cjioBa: IJI0CKOe JIBUYKEHUE TPAHUIL, TIceBaonapabonyeckast cucrema KWC,
paccesiHue SHEPruu, CUHTYJIsIpHast Juddy3usi, TUCKPETU3AIMS 10 BPEMEHHI

Buaaropapuoctu: Pabora Bemonnena npu nogiaepxkke JST SPRING
(rpant Ne JPMJSP2109).

Ccouika aiist nurupoBanusi: Mizuno D. Weak Solution to KWC Systems of Pseudo-
parabolic Type // WsBectusi Upkyrckoro rocymapcreenHoro yuusepcurera. Cepusi Ma-
remaruka. 2025. T. 52. C. 88-104.

https://doi.org/10.26516,/1997-7670.2025.52.88

1. Introduction

Let N € {1,2,3,4} be a fixed spatial dimension, and let @ C RY be a
bounded domain. When N > 2, I" denotes a smooth boundary of €2, and
nr denotes the outer unit normal on I'. Also, let T" > 0 be a fixed time
constant, and set Q := (0,7) x Q, ¥ := (0,7) x ', H := L*), and
V= HYQ).

In this paper, we consider a class of pseudo-parabolic systems, denoted
by (S)c for € € [0, 00):

S)e (0 — Ay + w?0m) + g(n) + o/ (M2 + [VOP = u, in Q,
V(n+ p*dm) -nr =0, on %,
n(0) = mo, in €,
7
Ve + VP

Vo 9
a(n)———= +v*Vol) -nr =0, on X,
( (n) EENE t ) r

0(0) = 6o, in Q.

ap(n)0:0 — div (a(n) + 1/2V8t9> =, in @,
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The system (S) is pseudo-parabolic version of KWC-model of planer grain
boundary motion, which is proposed by [7;8]. In this system, n and 6 repre-
sent orientation order and orientation angle in a polycrystal, respectively.
e > 0 is a value to control the relaxation of singular diffusivity. ¢ is a
perturbation for the orientation order n, with a non-negative primitive G.

a and «q are positive-valued functions, called mobilities of grain boundary

motion. wu,v are forcing terms. Finally, a pair of functions [ng, 6p] is the

initial data of [n, 6].

In this paper, the components of the system (S). are considered under
the following assumptions.

(AO) p> 0, v > 0 are fixed positive constants.

(A1) g : R — R is a locally Lipschitz continuous function with a non-
negative primitive G € C!(R). In addition, g satisfies the condition;
limg, ., g(§) = —o0 and limgpo g(§) = o0

(A2) @ : R — [0,00) is a C%-class convex function, such that o/(0) = 0
and o > 0on R. ap: R — (0,00) is a locally Lipschitz continuous
function. Moreover, we suppose , := inf ag(R) > 0.

(A3) u € L*®(Q), and v € L*(0,T; H).

(A4) The initial data [ng, 6p] belong to [V N L>(2)] x V.

The system (S). is derived from the following energy-dissipation flow:

[N |

u(t)

| = Voaz .00+ |

a.e. t>0, (1.1)

| w2

where Ay denotes the Laplace operator subject to the homogeneous Neu-
mann boundary condition, and JF; is free-energy of grain boundary motion,
called KWC-energy, and defined as follows:

Fu(n,0) = %/Q\Vn]zdx—i—/QG(n)dx—l—/Qa(n)\/&?+]DGP € [0, 9.

In this context, the last term is given by:

/Qoz(n)\/es2 + |Do|?

{onkpz € WHY(9Q)
= inf{ lim / a(n)y/e2 + |Vp|? dx | such that ¢, — 0 in },
n—o0 JQ LY() asn — oo

for [n,0] € HY(Q) x BV(Q), and ¢ € [0, 00).

We note that if § € H'(€2), then the integral [, a(n)+/e? + [D8]? coincides
with [, a(n)y/e% + V0|2 dz. Also, a function w € RY — /e2 + |w]? €
[0,00) is a smooth approximation of the Euclidean norm | - |, which is
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often used in numerical analysis and advanced mathematical topics, such
as optimal control problems.

The system (1.1) can be regarded as a generalized version of KWC
system, and the case u = v = ¢ = 0 corresponds to the original. So
far, many researchers have worked on mathematical verification of KWC-
type systems, and amount of mathematical results have been reported
such as solvability results and large-time behavior on variational settings
(cf. [9-13]). But uniqueness question is still a difficult problem, because
of the nonlinear flux o(n)—=X2 and the unknown-dependent mobility

\/e24+|Vo|2’

a and «p. In fact, we need suitable regularization for the energy, and
simplification for the mobility to obtain uniqueness result (cf. [2;6;17]).

Recently, [3] reported the solvability, uniqueness results under a smooth-
ness condition for initial data to a KWC-type system with pseudo-parabolic
regularization, which is often found in fluid dynamics as Foigt regular-
ization, and provides better properties such as well-posedness and strong
regularity (cf. [4;5;14;15]). The novelty of [3] lies in the fact that it does
not require resetting the free-energy and the mobilities. In this light, this
article is focused on the extensions of the existence and uniqueness results
of [3] to the weak formulation in Theorem 1.

Theorem 1. Under the assumptions (A0)—-(A4), the system (S)e admits
a unique solution [n, 0] in the following sense:

(S0) n € WH2(0,T;V) N L*>®(Q), and § € WY2(0,T;V). In particular, if
0o € L>®(Q) and v =0, then 6 € L>®(Q).

(S1) n solves the following variational identity:
| (@unte) + an(e) + o) V2 IVOEP) o

" /Q V(4 120m)(t) - Vo di = /Q ut)p de,

for any ¢ € V, and a.e. t € (0,T), subject to n(0) = no.
(S2) 0 solves the following variational inequality:
| (@atmon) o) — vyde + [ atn(t) @+ VIOP do
42 /Q Va0(t) - V(O(t) — v) da

< [ at)VEFVIRd + [ w000 - v)d.
Q Q

for any ¢ € V, and a.e. t € (0,T), subject to 6(0) = 6.
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(S3) [n, 0] fulfills the following energy-inequality:
t
Co [ (10 + 100)7) dr + 7 (), 6(0)
1 2 1 2
< 706000 + 5 [ () + 5ol )

for any 0 < s <t <T, where Cy = min{i,,uz, %*,1/2}.

Subsequently, the arguments used in Theorem 1 will derive a result for
continuous dependence of solution, which provides a mathematical funda-
mental in optimal control problems.

Theorem 2. Let {e,}>2, C [0,00), {[N0,n,00n]}021 C [VNL>®(Q)|xV and
{[tn, va] 152 C L®(Q) x L*(0,T; H) be sequences satisfying the following
conditions:

® Sup [7on|re(Q) < 00, and sup |u|pe- @) < oo,
neN neN

en =€ m R, non — 1o, o — O in'V, and (1.3)
[ J
Up — U, Uy — v weakly in [L*(0,T; H))?, as n — oo.

Let [n,0] be the unique solution to (S)., corresponding to the initial data
[M0,00] and the forcings [u,v|, and let [n,,0,] be the unique solution to
(S)e,., for the initial data oy, 00,] and the forcings [uy,vy,], for any n =
1,2,3,.... Then, we can obtain the following convergences as n — 0o:
N — n in C([0,T]; H), L*(0,T;V), weakly in WY2(0,T;V)
and weakly-x in L>(Q),
0, — 0 in C([0,T); H), L*(0,T;V), and weakly in W20, T;V),

Mn(t) = n(t), O,(t) — 6(t) in 'V, for allt € [0,T).

(1.4)

The outline of this paper is as follows. Notations and a key-lemma for
the proof are given in Section 2. On account of these preparations, the
proof of the theorems are given in Section 3.

2. Preliminaries

We first prescribe notations and known results used in this paper.

Specific notations. We define r V s := max{r, s} and r A s := min{r, s}
for all 7,s € [—00,00]. We denote by []T, [|~ positive part and negative
part, respectively. We denote by |-|, [-]| floor function and ceiling function,
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respectively. For an abstract Hilbert space X, we denote by (-, ) x the inner
product of X.
Next, to simplify notations, we set {7c }.¢[0,00) Dy

Ve 1y € RN = 1. (y) :== V/e2 + [y]? € [0, 00).

As is easily seen that 7. is convex and non-expansive, and for a non-negative
a® € H, the following functional is convex and continuous on [H]V:

we [HN — /anfys('w) dz € [0,00).

Also, for any &g € [0,00), 7. converges to ., uniformly on RV as ¢ — &o.
Finally, we use the following fact(x) in the proof (cf. [1, Proposition
1.80]): if a,b € R and {a,}5° ¢, {bn}22; C R satisfy:

lim ap > a, lim b, > b, and lim (an +bn) < a+0.

n—oo n—oo
Then, a, — a and b, — b as n — oc.
Notations for the time-discretization. Let 7 > 0 be a constant of
time-step size, and let {¢;}5°, C [0,00) be time sequence defined as t; =

iT, i = 0,1,2,.... Let X be a Hilbert space. Then, for any sequence
{lti, zi]}52y C [0,00) x X, we define three interpolations Z;,z, and z, by:

_ t—1t;_ t; — 1t
Zr(t) =z, 2.(t) := zi—1, 2:(t) := TZ 1zi + ZT Zi1,

for t € [tifl,tz'), and fort=1,2,3,....

Note that Z;,z, € L3S.([0,00); X) and 2, € VVliCQ([O, 00); X). Here, the fol-
lowing estimates can be obtained by use of Young’s and Holder’s inequality

fort > 0and 7 > 0:

/ (Orzr(1),Z,(r)) x dr
0

1, 1
> §(|Zf(f)|§( — |20l%) = T2|Zr | 1oo (0,6:3) 1027 | L2 (0 447 ) (2.1)

Meanwhile, for any ¢ € L2 ([0,00); X), we denote by {¢;}52, C X the

loc
sequence of time-discretization data of (, defined as:

I
(o:=0in X, and ¢ :=— ¢(t)dt in X, fori=1,2,3,....
T

ti—1

Clearly, the time-interpolations ¢, ¢_ for the above {(;};2, fulfill that:

¢, — (¢ and ¢ —Cin L2 ([0,00); X), as 7 | 0.

loc



94 D.MIZUNO

Time-discretization scheme for (S).. The proof of Theorem 1 is based
on time-discretization scheme. In this light, we recall a known result (cf. [3,
Theorem 1]). Let 7 € (0,1) be a time-step size, and let {t;}3°, be a
time-sequence. The index ¢ € [0,00) is given arbitrarily. Now, the time-
discretization scheme of (S)., denoted by (AP)., is described as follows:

(AP),: To find {[n;,0;]}32, C [V]? satisfying the following variational
formulas:

1
(;(m = ni—1) + 9(Tam) + & (Tauni ) (V) <P> o (Vi V)

+—=(V(0i — ni-1), Vo)~ = (wi, p)m, for any ¢ € V.

o (Tamies)(6: — 61), 6 — ) + / o1 (1i-1)1e(V6;) d
T Q

<

+ —(V(0; — 0i-1), V(i — )1y

< [ ap(ni—1)7e(VY) dx + (v, 0; — ), for any ¢ € V,

for i =1,2,3,..., where [ng, 0] is the initial data as in (A4).

S~

Here, Tar : 7 € R— Tar(r) := M A (—M V) is a truncation operator with
a large constant M > 0, fixed later. s is a primitive of o’ o Tj; such that
apyr = a on [—M, M]. Finally, for i = 1,2,3,..., let [u;,v;] € [H]? be the
time-discretization data of [uf*, v§*] which is the zero-extension of [u,v].

Based on the above, the following lemma can be obtained through slight
modifications of [3, Theorem 1].

Lemma 1. There exists a sufficiently small constant 7, € (0,1) such that-
for any 7 € (0,7y), (AP); admits a unique solution {[n;,0;]}32,, satisfying

C
O(!m ni1fy +10; 11!V)+F (3 6:) (2:2)

<.7: (Mi—1,0i-1) + |ul|H+ |vZ|H, fori=1,2,3,..., where

where
FM(n,0) : /|V77|2dx+/GM dx+/aM( )= (D8),
Q

and Gy is a non-negative primitive of g o Tyy.
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3. Proof of Theorem 1 and 2

3.1. PROOF OF THEOREM 1

Let € € [0,00) be fixed. Throughout this subsection, we use the notations
m-(t) == |L|,n,(t) := [L]. Before the proof, we prepare two lemmas,
concerned with comparison principle for pseudo-parabolic equations.

Lemma 2. (cf. [3, Lemma 5.4]) Let n*,n* € W12(0,T;V), n§,n3 € V,
0 c L?(0,T;V), uec L*0,T; H), and

(1) YO — An(' + 120’) + g(Tarn') + o (Tam')7=(V0))
< (=)', a.e. inQ,
ni(O) = né, i H.

Then, there exists a constant C7 > 0 such that
' =PI @)f < Cr|lng =[5 for any t € [0, 7],

Lemma 3. We assume that 01,0* € W12(0,T;V), 6§,03 € V,
i€ Wh2(0,T: H) N L®(Q), and

(col7i(1) W0 (1), 6(t) — V) + /Q a(i7(8))e (VO () da

H(VOH' (), V(0" (t) — ¥)) v < /Qa(ﬁ(t))%(wﬁ) da
for any ¥ € V, and for a.e. t € (0,T). (3.1)

Then, there exists a constant Cy > 0 such that:

16 — 6%t ()], < Co68 — 64 [, for any t € [0,T).

Proof. By putting ¢ = (01 A 62)(t) if i = 1, and ¥ = (0 Vv 02)(t) if i = 2,

and taking the sum of two inequalities, we have

(a0 (7()0 (0" = 0)(2), [0" = 0°]7 (1))

<0, fora.e. tc

= +
1\3|T
Q
<
Sy
\
s
=
=
z
S—

Also, in light of (A3), the continuous embedding from V to L*(Q2) under
N < 4, and the generalized chain rule in BV-theory (cf. [1, Theorem 3.99)),
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it is observed that:

(00" —2)(1), 0" ~ 671 (1) > 5 (/a6 — 0 (1))
e O | AR ST (33)
> L4 ol - 071 (0)l%)
(cF)? _ 214
- | (77 Moo )|8t17(t)|HH — 6] |V’ for a.e. t € (0,7T),

where 0‘54 is the constant of the continuous embedding from V' to L*(€).
Now, according to (3.2) and (3.3), we can arrive the following Gronwall
type inequality:

d (CL")? B .
Ejo(t) S m’ 0( )‘Loo(Q)’atn(t)‘HJ()(t), for a.e. t e (O,T), Wlth,

= | Va6 = 0°* ()5, + V7] V16" = 071(0)

and thus, we conclude Lemma 3. ]

Proof of Theorem 1 By (A1), (A3) and (A4), let us set the constant M
so large that:

M > max oo 5 |W| oo ’ and
{ > max{|no| oo (@), [ul L ()} (3.4)

g(M) > |ulpeo(@y, 9(=M) < —|u| o0 ().

Now, Lemma 1 yields the following boundedness:

— Oy, 010, € L?(0,00; V) for 7 € (0,7,), and

sup{ |97 | £2(0,005v) V 0607 L2(0,00:v) | T € (0, 7) } < 00.

{n: |7 € (0,7)}, {0, |7 € (0,74)} is bounded in WH2(0,T; V),

{7, |7 € (0,7}, {n_[7 € (0,7)}, {0-[7 € (0,7)}, {0, |7 € (0,7)}

is bounded in L*°(0,7;V).
Hence, by applying Aubin’s type compactness theory (cf. [16, Corollary
4]), we can obtain a sequence {7,} C (0,7x); 7, 4 0 and a pair of functions
[n,0] € [WH2(0,7T;V))? such that:

Mn = N, — 1, O = HTn — 0 in C([OvT];H)

and weakly in W12(0,T;V), as n — oo. (3.5)
and in particular,
1(0),60)] = lim [1,(0).6,(0)] = [ 6] im [H%.  (36)

NsBectusi pKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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Additionally, taking into account the boundedness of [0y, 0;0,], we can
compute:

(17, =) lv VI, =) lv V|(Or, = On)lv V[(Er, —n)lv) (1)

< / (18P V 1060 ()|v) dr (3.7)
(ti—1,t:)N(0,T)

1
<712 (19l 220,13 V 10100l L20.751))
fort € (ti—1,t;)N(0,T), i=1,2,3,...,n., and 7 € (0, 7).

Hence, we obtain the following convergences:

T =Ty, =0, 0, = n. = and 0,, ;== gm — 0,0, =0, —0,
in L*°(0,T; H) and weakly-* in L*(0,7;V), asn — o0,  (3.8)

and in particular,

Tn(t) = n(t), 0, (t) = 1(t), Ou(t) = 0(t), 0,(t) — 0(t)
in H and weakly in V, for any ¢ € [0, 7. (3.9)

Now, let us show the pair of functions [n, 0] is a solution to the system
(S)e. The initial condition is easily confirmed by (3.6). Let us check that
[, 0] solves the variational inequalities (S1) and (S2). From Lemma 1, the
sequences given in (3.5) and (3.8) fulfill that

/I (@ + 9(TarT) + o (TaaTa ()= (VBu() () dr - (3.10)
" /l (VT + 120mn) (), Vo)) dr = /I (T (), w(r)) i,

for any w € L?(0,T;V), and

[ (@, 11)0380(0). @, = ) ) dr

// ot (. (1)7e (VB (r)) dacdr (3.11)
v / (V00 (r), V(B — w)(r)) gy
< [ [ ana, (St dodr -+ [ (50,00, (0 = ) i

for any w € L2(0,T;V), and any open interval I C (0,7) and n =
1,2,3,.... Here, set I = (0,t) for t € (0,7], and w = (7,, — 1) in (3.10).
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Then, using (2.1), (3.5) and (3.8), it is observed that:

t
fim ([ 197, () dr + & (IV%( Wiy = [Violfey )
; (1] (1] (1]

n—oo

t t
< lim (/ |Vﬁn(r)|%H]N dr + ,u2/ (VO (r), Vi (r) dr) (3.12)
0 0

n—oo

< - lim ((81577” + Q(TMﬁn) + O/(TMﬁn)’VE(Vén))(T)’ (ﬁn - U)(T))H dr

n—oo [q
t

+ lim [ (Y@, + 120mn)(r), V(r) y dr

n—oo [q
t

+ (@r, (), (T = 1) (r)) 1 dr

n—oo

¢ t
= | V() gy dr+ | (VOmn(r), V(r)) - dr
0 LA 0

t 2
= [ 190 gy dr -+ 5 (90O s = [Vl

Moreover, if we take w = 6 in (3.11), then having in mind (2.1), (3.5) and
(3.8), we see that:

T ([ [ vl 01 (TP didr + (V80 g~ 1900f)

< Tim 0 (/QOCM(Q (1)) (VB (r ))dx+y2(vaton(r),v§n(r))w)dr

n—00
t

< lim [ (—ao(Tmn,(r))0i0n(r) + v, (1), (0, — 0)(r)) g dr (3.13)

n—oo Jq
t

+ lim ( / 0rr 1, (M) (VO)) i+ V(T4 (), TO(1) )y )

TL—)OO

/ /aM Ne (VO(r)) dedr + v /t(VBtH(r),VH(r))[H}N dr

0
/ / ant (1) (VO(r)) dadr + 2 (\ve £) B — [V 00/ )

On the other hand, from (3.8), (3.9) and Fatou’s lemma, we have:
hd nh_)_rilo|vﬁn(t) [ZH]N = |Vin(t) [QH]Na h_m VO (t )|[HN > Vot ) [H]N >

n—oo

e lim / /aM N (VO ( dxdr>/ /aM Ne(VO(r)) dzdr.
n—oo

NsBectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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Now, by the fact(x) in Section 2, (3.9), (3.12)—(3.14), and the uniform

convexity of [H]V, we can derive the following convergences as n — oo:

VT, Oy = (V)i (VO] — VO], (3.15)
and therefore, 7,,(t) — n(t), 0,(t) — 0(t) in V, for all t € [0, T].
Moreover, from (3.7), (3.15), the boundedness of [, ;0,] in L?(0,T; H),

and Lebesgue’s dominated convergence theorem, we find the following con-
vergences as n — 00:

o nu(t),n, (t) = n(t), 0a(1),0,() —0(t) inV,
o 7, =1, 0, —0in L*(0,T;V), with (3.16)
T — nl20.1:v)» 100 — O0lr20,m5v) — 0,

Easily, in view of (3.5), (3.8), (3.15) and (3.16), when w = ¢ in V in
(3.10) and w = % in V in (3.11), we let n — oo and observe that for any
open interval I C (0,7):

ﬂ«anumnm»+dmhm%wmwm@Hm
+zaun+ﬁamwwimwdn:ﬂwvwam«
and

[ (@o(Tmtryore). o) - Hm+//aM )7 (VO(r)) dedr

I

V? / (VO0(r), V(O(r) — )y dr
< [ [ artatr)e( 0 dodr + [ w000~ )n v

Since the interval I C (0,7 is arbitrary, the limiting pair [n, 6] fulfills (S1)
and (82) if ’T]‘LOO(Q) < M.

Here, let us confirm the L®-boundedness for the limiting function 7,
and for § when v = 0. Take into account (A2) and (3.4), it follows that:

WM — A(M + 120, M) + g(M) + o/ (M)|VO(t)| > u(t),
Op(—M) — A(=M + (i20(=M)) + g(—=M) + o/ (=M)|VO(#)| < u(t),
a.e. on Q, and for a.e. t € (0,T).
Hence, applying Lemma 2 with
{[nl,nz,é, a) = [, M,0,u] in L*(0,T; H), [ng,n3] = [no, M] in H, and
', 7°,6,a] = [—M,n,60,u] in L*(0,T; H), [ng,n3] = [=M,mno] in H,
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one can see that [1(t)|r (@) < M. Also, since any constant function satisfies
the variational inequality (3.1), if we suppose 6y € L*>®(Q2) and v = 0, then
applying Lemma 3 under:

0%, 6%, 7] = [0, 00| o (), m] in L*(0,T; H),
[90790] [00,[00] Lo (0] in H, and
[0,6%,7] = [~[60 (), 0, m] in L*(0,T’; H),
[90790] [~100] L (0), Bo] in H,
we obtain that 6] (q) < |00z (q)- Therefore, [n,6] fulfills (S0)—(S2).
Next, we proceed to verify the energy inequality (1.2). Fix s,t € [0,T7;

s < t. For any n = 1,2,3,..., by summing up the both side of (2.2) for
i=n.(8),n,(s)+1,...,n., (t), it is observed that:

Co [ (10 )+ 106,00 ) dr + 721 (@,0.0,0)  (317)

nTn(t)T" —
<Co [ (1000 +10a(r) ) dr + 723,08 (0)

My, (8)Tn

Ny (6)Tn
<A+ [ (OB + 0 )

Mr, ($)™n

On this basis, owing to the convergences (3.5), (3.15), (3.16), the L°°-
boundedness of 7, the estimate (3.17), and Lebesgue’s dominated conver-
gence theorem, letting n — oo yields that:

Co [ (1m0 + Va8 ) dr -+ F.(n(0).0(0)

t pa—
< lim Cp / (\@nn(r)!?vﬂvaten(r)!?v) dr + lim 2 (7, (t),0n(1))

n—oo
M 1 My T 9 1 5
< — 1 ex o, ex >
< lim 7, (9),0,()) + 5 Jim | Tn(uo (PN + 5 ) dr

= Fo0().6)) + 5 [ (1) + 5100

and hence the solution [n, ] fulfills the energy inequality.

Now, our remaining task is the verification of uniqueness of solution. The
proof of uniqueness is given in [3, Main Theorem 2|, and as in [3, Remark
3.2], the points lie in the pseudo-parabolic regularity § € W1H2(0,7;V)
and the continuous embedding from V to L*(Q2). So, In this article, we
introduce the outline of proof. Let [*,6%], k = 1,2, be the solutions to (S).
corresponding to the same initial value [ng, 0] and forcings [u,v]. Let us
set Mo == |n*| o) V |7°] L=(Q), take the difference between the variational

NsBectusi pKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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identities for n*, k = 1,2, and put ¢ := (n* — n%)(t). Then, by using (A1),
(A2), convexity of a and Holder’s and Young’s inequality, we can compute
as follows:

&|Q~

(167 =)0 By + 1219 (0 = 1) () ) (3.18)

DO |

< 9| oo (2 0o, vy [ (0 — 1) (03
& [ oo (— 1 M,
+ R (| = ) (B + V(6" = 6O,
for a.e. t € (0,T).

On the other hand, we consider putting 1) = 62 in the variational in-
equality for 8, and 1 = 6" in the one for 2, and adding the both sides of
two inequalities. Then, using (A2), continuous embedding from V to L*(Q2),
and generalized chain rule in BV-theory, we can compute as follows:

2 (Va0 ) () + V2190 = (1))

|| Loo (— 0 M,
< %(W — YO + VO~ ) (1))

CL4 2 o/ ol
() ottt 0. )+ 20 ) (319)

(' =) O)IF + 10" = 0*) D)), for ae. t € (0,7).

Therefore, putting
J() == |(n" = n2) t)\?{ + MQIV(nl — ) (0) [y

_l’_

+Vao(n (D)0 = 6°)(0)[3 + v |V (8 = 0*)(1)|Pyyyw, for t € [0,T],
Ca — 2(‘04 ’LOO(—MO,MO) + ‘g ’LOO(—MO,MO) + (C\I; ) ’OCO‘LOO(—MO,MO))
i I NE ’
it is deduced from (3.18) and (3.19) that:

%J(t) < C3(|om" )| + [0:0* )|V + 1) J(t), ae te(0,T). (3.20)

(3.20) implies that the solution to (S). is unique, and thus, we complete
the proof of Theorem 1. O

3.2. PROOF OF THEOREM 2
By setting a large constant M™* > 0 such that

M* > sup(|non|ree(o) V [unlr= (@), and
neN

g(M™) > sup |up|p=(q), 9(—M") < Sllp—\un\Loo
neN neN
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and applying the same argument in Theorem 1, we obtain [1,|zeg) < M*
for n =1,2,3,.... Also, thanks to Theorem 1, the sequence {[n,, 0,]}5;
satisfies the following energy-inequality for n =1,2,3,...:

T
%%;WMAM%+@%WWJM+EA%H%%@D
1 [T 1
< Fermbo) 5 [ ()l + SloaB) . (321)
0 *

2

Now, taking into account (1.3), (3.21) and L*°-boundedness of 7, we

can derive the following boundedness:

— {n,}52; is bounded in W12(0,T; V) and in L>®(Q),

{6,322, is bounded in W12(0,T; V),
By virtue of Aubin’s type compactness theory and variational techniques
used in (3.12)—(3.16), we can find a subsequence {n;} C {n}; ny T oo, and
a pair of functions [7, 0] € [WH2(0,T; V)N L>(Q)] x W12(0,T; V) fulfilling
the following convergences as k — oo:

e 1y, — 7 in C([0,T); H), L*(0,T; V), weakly in W2(0,T;V),

and weakly-* in L>(Q), (3.22)
e 0, — 0in C([0,T); H), L*(0,T;V), weakly in W2(0,T; V),
o N, (1) = (1), 00, (t) = 0(t) in V, for all t € [0,T].
In particular, by (1.3) and (3.22), we see that:
[7(0),8(0)] = Jim [1, 0), 60, (0)

= kh_)ngo[no,nk’HOMk] = [770’90] in [H]2

Additionally, we can check the pair [7, 0] satisfies the variational inequalities
(S1) and (S2) by letting k¥ — oo in the following (3.23) and (3.24):

/emm+m%mx>>Hﬁ+/wmm+u@%mmvwmww

[ ] (0070, (VO (0) dndt = [0 0t (329

for any ¢ € V, and

/(Oéo(ﬁnk ()0t (1), Oy, (1) =) 1 dt+/l /Q (N, (t))’)/enk (VOn, (1)) dzdt

I

0 [ (9010,,(0), ¥ 00 (0) — )y e

1

< /1 /Q (N, (1), (V) dadt + /1 (Un, (1), 00, () — V) dt,  (3.24)
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for any ¢» € V and any open interval I C (0,T). Therefore, the pair [7, 0] is
a solution to (S)., and we see that [7, ] coincides the unique solution [n, 6].

Finally, by the uniqueness of the limit, the convergence (1.4) is verified.

Thus, we complete the proof of Theorem 2.
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