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Abstract. In this work, partial groupoids are constructed associated with compositions
of multilayer neural networks of direct signal distribution (hereinafter simply neural
networks). The elements of these groupoids are tuples of a special type. Specifying
such a tuple determines the structure (i.e., architecture) of the neural network. Each
such tuple can be associated with a mapping that will implement the operation of the
neural network as a computational circuit. Thus, in this work, the neural network is
identified primarily with its architecture, and its work is implemented by a mapping
that is built using an artificial neuron model. The partial operation in the constructed
groupoids is designed in such a way that the result of its application (if defined) to
a pair of neural networks gives a neural network that, on each input signal, acts in
accordance with the principle of composition of neural networks (i.e., the output signal
of one network is sent to the input second network). It is established that the constructed
partial groupoids are semigroupoids (i.e. partial groupoids with the condition of strong
associativity). Some endomorphisms of the indicated groupoids are constructed, which
make it possible to change the threshold values and activation functions of the neurons
of the specified population. Transformations of the constructed partial groupoids are
studied, which allow changing the weights of synoptic connections from a given set of
synoptic connections. In the general case, these transformations are not endomorphisms.
A partial groupoid was constructed for which this transformation is an endomorphism
(the support of this partial groupoid is a subset in the support of the original partial
groupoid).
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Hayunas cratbs

O yacTUYHBIX I'PYIIIONIAX, ACCOIMUPOBAHHBIX C KOMIIO3UII-
eii MHOTOCJIOMHBIX HEMPOHHBIX CeTell IIPSAMOro paciipocTpaHe-
HHUsI CUTHAaJIa

A.B. JIutaspuu'®, T. B. Mouceenkona'

L Cubupckmit dbenepanbusii yausepenrer, Kpacuosipek, Pocenitckas Penepamst
= anmll@rambler.ru

Awnnorarusi. CTposiTcs YaCTHYHBIE TPYIIOUIbI, ACCOIUMUPOBAHHBIE C KOMIIO3UIIMSMU
MHOT'OCJIOMHBIX HEHPOHHBIX CETel NPSMOro paclpelesieHusl curuaia (ganee — HelpoH-
HBIE CeTH). DJIEMEHTaMU JAHHBIX I'DYIIIONIOB SIBJISIIOTCS. KOPTEXKH CIIENUAIBHOIO BHJA.
3aJlanne TAKOro KOPTEXKa OIPEIEAeT CTPYKTYPY (T. €. apXUTEKTypPy) HElpOHHOI ceTu.
Kark oMy TakoMy KOpTeKy MOYKHO COIIOCTAaBHTBH OTOOpakeHue, KOTopoe 6y1er peasn3o-
BBIBATH PAbOTy HEHPOHHOI CETH KaK BBIYUCIUTEILHON cxeMbl. Takum 0O0pa3oM, B JTAHHOMK
pabore HepOHHAasT CeTb OTOXKJAECTBJISIETCS B IIEPBYIO OYEPEIb CO CBOEH apXUTEKTYpPOii, a
ee paboTy peanu3dyeT 0TOOparkeHre, KOTOPOe CTPOUTCS C IIOMOIIIBIO MOJIE/IN UCKYCCTBEH-
HOro Heffpona. JacTudHas Omeparus B IMOCTPOEHHBIX TPYIIIONIAX YCTPOEHA TaK, UTO
pe3yJjbTarT ee IPUMEHEeHUA (ecnn OH onpegeneH) K IIape HEeHMPOHHBIX ceTell JaeT HepOH-
HYIO CeTb, KOTOpasd Ha KaKJOM BXOJIHOM CUTHaJIe JIefiCTByeT B COOTBETCTBUU C IIPUHIIUIIOM
KOMIIO3UIAY HEPOHHBIX ceTell (T. e. BBIXOIHOM CUTHAJ OJIHOM CEeTH OTIIPABIIsIeTCs] Ha BXOJ,
BTOPOH CETH). YCTAHOBJIEHO, UTO MOCTPOECHHBIE YACTUIHBIE IPYIIION/IbI SBJISIIOTCS IOy~
IpynIongamMu (T. €. YaCTHIHBIMU PYNIOHIAMHI C YCJIOBHEM CHIIBHON aCCONUATUBHOCTH).
CrposTcs HeKOTOPbIE SHA0MOP(MU3MbI YKA3AHHBIX I'PYIIIOUJIOB, KOTOPBIE IO3BOJISIIOT Me-
HSITH MOPOTOBBIE 3HAYEHUS U (PYHKIIUU aKTUBAIUA HEHPOHOB yKA3AHHON COBOKYITHOCTH.
N3zygaroTcsa npeobpa3oBaHusl TOCTPOEHHBIX YACTUYHBIX IPYHIIONI0B, KOTOPBIE ITO3BOJIS-
IOT MEHSATH BeCa CUHOIITUYIECKHUX CBA3€H U3 3aJJaHHOI'O MHOXKECTBA CUHOIITUIECKHUX CBA3€EH.
Hanubie mpeobpa3oBaHus B OOIIEM CJIydae He ABJIAIOTCA dHI0MOpdu3MaMu. Bbl1 mocTpo-
€H YaCTHYHBIH TPYIIONI, NI KOTOPOTO JTaHHOEe MpeoOpa3’0BaHUe SIBJISETCS IHIOMOD-
dusmMoM (HOCHTENB HTOrO YACTUYHOIO IPYIIIOUIA SIBJISIETCS! TIOJMHOXKECTBOM B HOCHTEJIE
HCXOJHOTO YACTUIHOTO IPYIIIOUJIA).

KuroueBble ciioBa: 4aCTUYHBIN PYIIION, TOJIYTPYIIIONT, SHIOMOPMU3IM IaCTUIHOTO
IPYIIONIa, MHOIOCJIOHAs HEMPOHHAS CETh IIPSIMOTO PACHPOCTPAHEHUS CUTHAJIA

BiaromapuocTu: Pabora BbinoHeHa py o iepkke KpacHosapcKoro MmareMaTn4ecko-
ro mnearpa u puHaHCUpyeTCcss MUHHCTEpCTBOM HayKW W BBICIIEro obpa3oBaHus Poccuii-
ckoit Peneparun (gorosop Ne 075-02-2024-1429).
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1. Introduction

This work considers only multilayer neural networks with direct signal
distribution (hereinafter, simply networks or neural networks). Information
about neural networks and their structures can be found in [4;5;7;9;10].
The information technology industry’s advances in the use of various neural
networks can be found in [10]. We consider neural networks as math-
ematical objects that define the structure of the neural network. The
operation of a neural network as a computational circuit is defined as a
mapping defined using an artificial neuron (McCulloch—Pitts) model. For
each neural network N with k inputs and m outputs corresponds to a
mapping Fj : R¥ — R™, which models the operation of a neural network
as a computing circuit. The definition 4, which models the neural network
in this work, is constructed in a similar way to the definition of a neural
network from the works [6]. The definition 4 has some differences from the
definition of neural networks in [7]. The latter is explained by the context
of the study.

If on each input signal € R* the neural network A/ := Nj o N5 produces
the signal Fi,(Fn;, (T)), then we will say that the network N is built in
accordance with the principle of composition. This approach, from the
point of view of the theory of abstract automata, can be interpreted as
supplying the output signals of the first automaton to the input of the
second automaton (see, for example, [2, definition 25, p. 54]).

In this work, we do not use abstract automata and related constructions
(see, for example, [9]) to model neural networks. Because this approach
does not provide a convenient way to consider the structure of neural
networks. This circumstance is known and was noted by V.M. Glushkov in
the review [2, p. 59, conclusion] for any automata represented as abstract
automata.

Objectives of research. The work is aimed at creating algebraic
systems that describe the composition of neural networks and studying
the algebraic properties of these systems. The results of the work will be
useful for developing methods for studying neural networks using algebraic
objects.

There are various ways to construct algebraic systems that model the
composition of neural networks. In this work, the concept of partial grou-
poid will be used to model the composition. Information about partial
groupoids can be found in the works [1;3; 8], which formed the basis for
Section 2 of this work.

Main results. A partial groupoid SN(k,Q) = (SN(k,Q),0) is con-

structed whose elements are neural networks with k£ inputs and k outputs,
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neurons are elements of the set @) . The partial operation (o) is defined so
that for any input signal Z € R* the equality holds

Fons (E) = Fy;, (FN1 (E))

(see the Definitions 5, 6 and the Proposition 1 in section 3 of this article).
Theorem 1 shows that the partial groupoid SN (k, Q) is a semigroupoid,
and the zero extension SN (k, Q) of this a groupoid is a semigroup.

The main results of the work include Theorems 2 and 3. Theorem 2
gives a series of endomorphisms I" of the partial groupoid SN (k, Q) that
introduce changes to the structure mapping [. Theorem 3 gives a series of
endomorphisms T of the partial groupoid SN (k, @) that introduce changes
to the structure mapping g. For each S C @ x @Q a set of neural networks
T(k,Q,S) C SN(k,Q) is introduced. This set is closed (in the sense of a
partial operation) with respect to the operation (o). A series of transfor-
mations ® of the set SN(k, Q) are constructed, which introduce changes
into the structural mapping f. Theorem 4 shows that the transformations
® are endomorphisms of the partial groupoid (T'(k, @, S),0).

The transformations discussed in Theorems 2, 3 and 4 can be used in
modeling the learning processes of neural networks using objects of general
algebra. This explains the consideration of these transformations. The
following problem remains open

Problem. Give a description of the set of all endomorphisms of the
partial groupoid SN (k, Q).

2. Partial groupoids

We denote the Cartesian square of the set X by X? := X x X. A partial
binary operation on the set G is the mapping (x) : Dom(x) — G, where
Dom(x) C G2?. We will call a tuple G = (G, *) a partial groupoid if (%)
is a partial binary operation on G. The set Dom(x) can be interpreted
as the domain of definition of the partial operation (). Every groupoid
G = (G, %) can be interpreted as a partial groupoid G = (G, *) such that
the condition Dom(*) = G? is satisfied.

Definition 1. Let G = (G, *) be a partial groupoid. Then by & we denote
a special element such that this element is not contained in the set G. We
assume that G := G U {0} and () is binary algebraic operation on a set

G such that for all tuples (x,y) € Dom(x) and (u,v) € G?\ Dom(x) the
following relations are satisfied:

xRy = x*xy, ukv = Q.
We will call the system G = (6,1) zero extension of the partial groupoid
g.

NsBectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
Cepusa «MaremaTtuka». 2024. T. 50. C. 101-115
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Usually, the element ¢ is denoted by the symbol of the empty set or zero
(see work [1]), but in this work these symbols are used for their intended
purpose. That’s why we use the symbol (. The zero extension of a partial
groupoid will be an ordinary groupoid. Note that the element { has the
multiplicative property of zero in the groupoid G. Two different types of
endomorphisms of a partial groupoid arise naturally: endomorphisms of
the zero extension of a partial groupoid and endomorphisms of a partial
groupoid. The last type of endomorphisms can be defined as follows. Let
I(G) be the symmetric semigroup of transformations of the set G.

Definition 2. An endomorphism of a partial groupoid G = (G, *) is any
transformation ¢ from I(G) such that for all tuples (x,y) € Dom(x) and
(u,v) € G?\ Dom(x) the conditions are satisfied:

p(zry) = o) xd(y), (p(x), d(y)) € Dom(x), (¢(u), (v)) ¢ Dom(x). (2.1)

This definition is based on the definition of (strong) homomorphism of
two partial groupoids given in the work [8]. This approach to defining
endomorphism is quite natural and is in good agreement with the goals
of the study. Endomorphisms obtained in this way will have a natural
interpretation in the context of neural networks.

Definition 3. A partial groupoid G = (G,x) is called a semigroupoid if
for any x,y,z € G the following conditions are satisfied:

(x*y,z) € Dom(%) = (z,y * 2) € Dom(x),(r*xy)*xz=x* (y*x z), (2.2)
(x,y* z) € Dom(%) = (z*y,2) € Dom(x),(r*xy)xz=x* (y* 2). (2.3)

The given conditions (2.2) and (2.3) are called strong associativity of a
partial groupoid. Information about semigroupoids can be found in the
review by [3] (see also the works by [1]). The implications (2.2) and (2.2)
can be replaced by a single equivalence.

3. Neural networks

Further, we will use the notation F(R) := Hom(R, R).

Definition 4. Let the following objects be defined:

1) the tuple (M, ..., M,) of length n > 1 of finite non-empty sets, where
for i # j the condition M; N M; = & is satisfied;

2) the set S := (M1 X MQ) @] (M2 X Mg) U...u (Mn,1 X Mn),

3) the mapping f: S — R;

4) the set A = My U...UM,;

5) the mapping g : A — F(R);



106 A. V. LITAVRIN, T. V. MOISEENKOVA

6) the mapping | : A — R;

7) the bijection i : My — {1,2,...,|Mi|};

8) the bijection o : M,, — {1,2,...,|My,|}.

Then the tuple N = (My,...,My,i,0,f,g,1) will be called a multilayer
feedforward neural network.

The above definition is based on the formal definition of a neural network
from the work [7] (and earlier works; coincides with a similar definition from
the work [6]). There are differences. Points 7 and 8 are added (they were
not in [7]), changes are made to the first point. The differences are dictated
by context.

Standard characteristics of a neural network. We will associate
the following notations with each neural network N'=(Mjy,...,M,, i, 0,f, g,1):

n n—1
n(./\/) =n, A(N) = U Mi7 Syn(./\/) = U Mz X Mi+1-
i=1 =1

Thus, n(N) is the number of all network layers N, A(N) is the set of all
neurons of the network A" and Syn(N) is the set of all synoptic connections
of network A/. We will call the mappings i, o, f, g, structural mappings of
the neural network .

Definition 5. Let k be some natural number and @Q be some set such that
|Q| > k. Then by SN(k, Q) we denote the set of all neural networks with k
iputs and k outputs whose neurons are elements of the set Q.

Definition 6. Let
Nl - (M1)"'5Mu)ilaolaflaglall)a N2 - (P1)"'an)i2aO2af2)g2;l2)

these are two neural networks from SN(k, Q). Let us define a partial binary
operation (o) on the set SN(k,Q) so that the result N1 o Ny of applying
the operation (o) to the pair (N1, N2) is defined if and only if the condition
A(N7) N A(N2) = @ is satisfied. Let (N1,N2) be a pair of neural networks
such that the result N1 o Ny is defined. Then the equality holds

NioNy = (My, .., My, Pr, ..., Pyyiv, 00, f', g 1), (3.1)

where the structural mappings f', ¢', I are defined so that the following
statements hold:
1) for any ny € A(N1) and ny € A(N3) the conditions are satisfied

g'(m) == gi(n1), ¢'(n2) == ga2(n2), I'(n1) := li(na), I'(na) = la(na); (3.2)

2) for any tuples s1 € Syn(N1), s € Syn(N2) and (k,m) € M, x Py the
conditions are satisfied

f'(s1) == fi(s1), f'(s2):= fa(s2), (3.3)

Nssectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
Cepusa «MaremaTtukay. 2024. T. 50. C. 101-115
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f((kym)) :==1% o01(k) =ia(m), f'((k,m)):=0<% o1(k) #iz(m).

Then the partial groupoid SN (k,Q) := (SN(k,Q), o) will be called a par-
tial groupoid associated with the composition of multilayer neural networks.

The relations (3.2) and (3.2) completely determine the structural map-
pings f’, ¢’ and I’ of the network N7 o N>.

Remark 1. Let us discuss why the product (o) is introduced exclusively
on pairs of neural networks (N7, N3) such that the intersection of sets A(N7)
and A(N3) are the empty set. If we assume that the intersection of the sets
A(N7) and A(N2) is not empty, then the object defined by the relation
(3.1) is not a neural network in the sense of the definition 4. The first point
of this definition is violated. The first point gives the condition that the
intersection of any two different layers of neurons is the empty set. The
latter is not possible for an object from (3.1) when A(N7)NA(N2) # @. On
the other hand, if A(N7) N A(N2) = @, then the relations (3.1), (3.2) and
(3.3) correctly define the object N7 o N5. This object is a neural network
in the sense of the definition 4.

Remark 2. It is possible to model the composition of neural networks
using ordinary groupoids. In work [6] the authors of the work constructed
a groupoid (ordinary groupoid) with support X (k, Q) and operation (©)
such that SN(k,Q) C X(k,Q) and equality Faqon,(T) = Fa,(Fa, (T))
is performed for any networks Np, Ny € X(k,Q) (i.e., the operation (®)
is built in accordance with the principle compositions). In this case, the
equality holds
AN O M) N[ANT) UANR)] = 2.

It was proven that (X (k,Q),®) is a free groupoid (as a result of which it is
even devoid of associativity). It removes the question of describing the set
of all endomorphisms, but leaves the question of describing the set of all au-
tomorphisms of this groupoid. The groupoid (X (k, @), ®) is burdened with
mathematical formalism much more than the partial groupoid SN (k, Q).
This mathematical formalism may be unnatural for specialists specializing
in the practical use of neural networks. The groupoid (X (k,Q),®) will be
useful for studying the theoretical properties of the composition of neural
networks.

Operation of a neural network. The operation of the neural network
N = (My,....My,i,o0, f,g,1) from SN(k, Q) as a computational circuit will
be implemented by the function Fys : R¥ — RF. We will describe the
action of this function using the McCulloch-Pitts artificial neuron model
(see, for example, [4]). Let n be a neuron of layer M; for j > 1. Neuron n
receives a signal (in the form of a number) from each neuron of the previous

layer. Let us denote these neurons by symbols ny, ..., |, _,|, and the signals
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(numbers) they send will be denoted by the symbols ay, ...,ajp;,_,|- Then
the neuron n generates its signal G,, according to the rule

[ M1

Go=ya | D Fl(nan) as+1n) | | (3.4)
s=1

where y,, := g(n) is the activation function of neuron n (g(n) is the result
of applying the mapping g to neuron n, which is equal to some numer-
ical function from F(R)). Further the signal is transmitted through the
appropriate synoptic connections to the next layer.

The action of the function Fj is that the signal (z1,...,2;) € RF is
transmitted to the input layer M7 so that the neuron n € M; receives
signal z; when i(n) = s. Neurons of the input layer transmit their signals
Yn(xs +1(n)) (yn = g(n), i(n) = s) via synoptic connections to the second
layer Next, the signal propagates through the network in accordance with
the artificial neuron model described above. The output layer My gener-
ates a vector (ui,...,u), where the number ug is generated by the neuron
n € My such that o(n) = s. We assume by definition that the equality
Fn(z1, ...y zk) := (u1, ..., ug) holds.

Proposition 1. Let N7 and Ny be two networks from SN(k,Q) such
that that A(N1) N A(N2) = @. Then for any signal T € R* the equality
Fpons (E) = FNQ(FNI (E)) holds.

Proof. Indeed, by virtue of the definition of the neural network NjoN5, the
signal T will pass through the network A7 oN5 to the layer with index n(N7)
just as it would pass through the network A7 (follows from the relations
(3.4 ), (3.1), (3.2) and (3.3)). The layer with index n(N7) will generate
a signal Fj; (Z), which will then pass through the layers of the network
Ni o N3 in the same way as it would pass through the layers of the A5
network. Therefore, the layer with index n(N7) 4+ n(N2) will generate a
signal Fy, (Fa;, (Z)). The statement has been proven. O

4. Formulation and proof of Theorem 1
Theorem 1. The partial groupoid SN (k,Q) is a semigroupoid. Zero
extension SN(k, Q) of a partial groupoid SN (k,Q) is a semigroup.

Proof. a) Let us show that the partial groupoid SN (k, Q) has the property
of strong associativity (see (2.2) and (2.3)). Let

Nl - (M17 ---7Mu77:17017f17917l1)7 NQ == (P17 '-'7PU72‘27027f27g27l2)7
N3 - (Dla"')Dt)i3)03)f3)g3al3)

NsBectusi UpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
Cepusa «MaremaTtukay. 2024. T. 50. C. 101-115



ON PARTIAL GRUPOIDS ASSOCIATED WITH THE COMPOSITION 109

these are three arbitrary neural networks from SN(k, Q). Let us assume
that the condition is satisfied (N7 o N2, N3) € Dom(o). This means that
the condition (N7, N3) € Dom(o) is satisfied. Consequently, we have the
relations

A(Nl) N A(Nz) =, A(Nl ONQ) N A(Ng) = J.
Since the equality A(N7joN3) = A(N7)UA(N3) holds, we have the equalities

AND) NAN:) = 2, AN NANG) = 2, AN2) NANG) = 2. (4.1)

Then, by the definition of the operation (o), we have (N3, N3) € Dom(o)
and (N1, N2 0 N3) € Dom(o).

We have shown that if the product (N7 o N2) o N is defined, then the
product Aj o (N2 oN3) is defined. Equality (N7 oN3)oN3 = Njo(NsoN3)
is derived from the relations (3.1), (3.2) and (3.3). We have shown that
the partial groupoid SN (k, Q) satisfies the condition (2.2). Using similar
reasoning, we can show that for a given partial groupoid the condition (2.3)
is satisfied. The strong associativity of the partial groupoid SN (k, Q) is
proved.

b) If for three neural networks N7, Mo, N3 the relations (4.1) are satisfied,
then from the definition of the zero extension and the conditions of strong
associativity (which we proved above) the identities follow

(N1 ON2) oN3 = (N15N2)5N37 Nio (J\/2 ON3) = ng(f\/ﬁ/\/?,)’

(./\/16./\/-2)5./\/3 = ./\/16(./\/25./\/3). (4.2)

Let now N7, N2, N3 not satisfy the relations (4.1). In this case the
equalities are true

(N10N2)oN3 = N1o(N2oN3) = 0. (4.3)

Indeed, if (4.1) are not satisfied, then at least one of the conditions is
satisfied: 1) AN7) N AN2) # &, 2) AN1) NAWN3) # @, 3) AN) N
A(N3) # . Let us assume that condition 1) is satisfied. Then we have the
implications:

A(Nl) N A(NQ) 7& I = NlSNQ =0 = (NlSNZ)SNB =0

N5ENG # O = A(NI) N ANZBNG) = ANG) 1 [AN2) U ANG)] # & =
= NIS(NBAG) = 0 NoBAG = 0 = NB(NZENG) = 0.

In this case, the equality (4.3) is true. Similarly, it can be shown that when
conditions 2) and 3) are met, equality (4.3) is satisfied. The equalities (4.2)

and (4.3) show that the groupoid SN(k, @) is an associative groupoid. [
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5. Formulation and proof of Theorems 2, 3 and 4

In this section it will be convenient to use a special notation for writing
mappings. Let ¢ : L1 — Lo. Then we will use the following notation:

¢ r—=y & ox)=y (r €Ly, y€ Ls.

Mapping [. Let H be some subset of the set () and o : H — R is some
mapping of H to R. Let us introduce the transformation I'[H, a] of the set
SN(k, Q) as follows

~

I[H,a| : N = (My,.... My, i,o0, f,g,1) = (M, ..., Mp,i,0, f,g,0), (5.1)

where 1 is a mapping from the set A(N') to the set R, which on any neuron
n € A(N) acts according to the rule

oy . JUn), ifnd H,
in) '_{a(n), if ne H.

Theorem 2. For any subset H of the set Q and any mapping o : H — R
the mapping T'[H, ] is an endomorphism of the partial groupoid SN (k, Q).

Proof. a) For compactness we assume that ¢ := I'|[H, a]. Let us show that
¢ satisfies the conditions (2.1). Let N7, Ny, U;,Us be four arbitrary neural
networks from SN(k, @) such that the conditions are met

(N1, N2) € Dom(o), (Uy,Usz) € (SN(k,Q))? \ Dom(o),

Nl = (Mla "')Muailaolaflaglall)a N2 = (Pla "')Pvai2)025f2)g2;l2)-

Note that the ¢ transformation does not affect the neurons of neural
networks (see (5.1)). Therefore, for any network N from SN(k, Q) the
equality A(¢p(N)) = A(N) holds. From the definition of the partial op-
eration (o) it follows that the neural networks U and Uy have identical
neurons, therefore, the neural networks ¢(U;) and ¢(Us) have identical
neurons. Therefore, the condition (¢(U;),p(Us)) ¢ Dom(o) is satisfied.
Because the (N1, AN3) € Dom(o), then the the tuple (¢(N7), ¢(N2)) belongs
to the set Dom(o). Thus, we have shown that ¢ satisfies the last two
conditions from (2.1).

b) Let us show that ¢p(N; o N2) = ¢(N7) o ¢(N2). The definition of the
partial operation (o) implies the equalities

Nl ON2 — (Mla "')MU)Pla ...,Pv,i/,O/,f,,g/,l,),
¢(N1 ONQ) == (M17 ---7Mu7P17 ---7PU7i,70,7f/7g,7Z7)7
¢(Nl) o ¢(N2) = (Ml) "'aMua-Pl) ...,Pv,’i,,Ol,f/,gl,m[l:,l;]),

Useectuss pKyTCKOTO TOCYJapCTBEHHOTO YHUBEPCUTETA.
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where the mapping m(l1,l] : A(G(N1)) U A(¢(N2)) — R defined by rule
mlly, B(n1) = l(m) (Y1 € A(6A))), (52)
mlly, bo)(ns) = la(na) (Vna € A($(N2)))-

Equalities (5.2) are defined in accordance with relations (3.2) for the struc-
tural mapping . Let us show that the mappings I’ and m[l;,ls] are

pointwise equal. Let n1 € A(¢(N1)) = A(N1) and na € A(p(N2)) = A(N2).

Then we have equalities

) = { ) £ =) = mi o)
)

o'
77 l2(n2 ) /Lf n2 ¢H) 7 T~
!/ — —
Png) = { 502 72 £ 0 = o) = il Bl )
which show that I/ = m][ly,ls]. Therefore, the tuples ¢(N;) o ¢(Ns) and
d(N1 o N3y) are equal. We have shown that the first condition from (2.1)
is satisfied. Thus ¢ satisfies the conditions (2.1). This means that ¢ is an
endomorphism and the theorem is proven. O

Mapping g. Let H be some subset of the set @ and 5 : H — F(R) be
some map of H to F(R). Let us introduce the transformation Y[H, ] of
the set SN(k, Q) as follows

T[Haﬂ] :N: (Mlv"'aaniaoa fvg7l) - (Mlv"'aaniaoa fvgvl)v

where ¢ is a mapping from the set A(N) to the set F'(R), which on every
neuron n € A(N) acts according to the rule

N (n), if n¢ H,
QWV—{&m,ﬁneH.

Theorem 3. For any subset H of the set Q and any mapping B : H —
F(R) the mapping Y[H, (] is an endomorphism of the partial groupoid
SN (k,Q).

Proof. The proof is similar to the theorem 2. O

Mapping f. Let S be some subset of the set @? and v : S — R be
some map of S to R. Let us introduce the transformation ®[S,~] of the set
SN(k, Q) as follows

(I)[Safy] :N: (Mlv"'aaniaoa fvg7l) - (Mlv"'anviaov.]?’gal)a

where f is a mapping of the set Syn(N) into the set R, which on any
synoptic connection s € Syn(N') follows the rule

oy . L I(s) if s¢ S,
f(s) = { v(s), if s€S.
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Remark 3. The transformation ®[S,~] is not necessarily an endomor-
phism of the partial groupoid SN (k, Q). Indeed, let the connection z :=
(a,b) € Q? satisfy the conditions z € S and y(x) = 3 (you can take any
number different from zero and one) . Further, we assume that N7, N are
two networks from SN(k, @) such that the output (i.e., last) layer network
N1 contains neuron a and the input (i.e., first) layer of network N5 contains
neuron b. We assume that A(N7) N A(N2) = @ (i.e. the action N7 o Ny
defined). Then we can easily obtain the condition

O[S, 7](N1 0 N2) # @[S,7](N1) o @[S, 7](N2).

In fact, the weight of the synoptic connection = = (a,b) in the neural
network ®[S,v](N7 o N3) will be equal to 3. Weight of synoptic connection
x = (a,b) in the network ®[S,v](N7) o ®[S,~](N2) will be equal to either
zero or one. Therefore, the considered networks cannot be equal.

Remark 4. Despite the fact that the transformation ®[S,~] is not an
endomorphism of the partial groupoid SN (k,Q), this transformation is
important in the context of issues related to training neural networks (since
the assignment of new weights of synoptic connections is part of the itera-
tion of the inverse error distribution method). Therefore, it is useful to find
a subset X of the set SN(k, Q) such that on this set the operation (o) will
be closed (in the sense of a partial operation) and for any pair of networks
from this set the transformation ®[S,~y| will preserve the partial operation
(i.e. satisfy the conditions (2.1)). The results of constructing the set X are
reflected in Theorem 4.

As usual, 2% is a Boolean of the set X. Let us introduce the mappings
Uy : SN(k, Q) — 29 and Uy : SN(k, Q) — 29, which for each network N =
(M, ..., M,,i,0, f,g,1) € SN(k, Q) act according to the rule Uy (N) := My,
Us(N) := M,

Let S be some subset of the set Q2. Let D(S) denote the set of neurons
from @ such that the condition holds: € D(x) < 3(a,b) € S:a=2xVb=
x. Let’s introduce a lot of neural networks

T(k,Q,8) := {N € SN(k,Q) | U1(N) N D(S) = @, Us(N) N D(S) = .

The set T'(k,Q,.S) consists of neural networks such that the input and
output layers of these networks do not contain neurons from D(S). It is
not difficult to notice that (T'(k,Q,S),0) is a partial groupoid, where (o)
is the operation introduced by the definition 6.

Theorem 4. For any subset S of the set Q% and any mapping v : S —R the
mapping ®[S,~] is an endomorphism of the partial groupoid (T'(k,Q,S),0).

Proof. a) Let ¢ := ®[S,~]. The transformation ¢ is correctly defined on all
elements of the set T'(k, @, S) (this fact follows from the definition of this

Useectuss IpKyTCKOTO TOCYJapCTBEHHOTO YHUBEPCUTETA..
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mapping). Note that A(¢(N)) = A(N). Therefore, repeating verbatim the
reasoning from point a) of Theorem 2, we obtain that ¢ satisfies the last
two conditions from (2.1).

b) Let us show that ¢(NjoN3) = ¢(N7)op(Na) when (N, N2) € Dom(o)
and the equalities hold

Nl = (M17 "'7Muvi17017f17glvl1)7 NQ - (P17 '-'7PU72‘27027f27927l2)'
We have equalities N7 o Ny = (My, ..., My, Py, ..., Py, 7,0, f',¢',1") and
(b(Nl ONQ) == (M17 '--7Mu7P17 '-'7PU7’[:/70/7,]/1\./7gl7l/)7

¢(N1) o (b(NQ) == (M17 '--7Mu7 P17 --'7PU77:,70,7 b[.]?lv .]?2]79,71/)7

where the mapping b[f1, fa] : Syn(¢(N1)od(N)) — R defined in accordance
with (3.3). Since Syn(¢p(N)) = Syn(N) and for any pair (N7,N3) of
Dom(o) the equality is satisfied

Syn(N1 ONQ) = Syn(/\/l) U Syn(./\/'g) @] (UQ(Nl) X Ul(NQ)), (5.3)

then the mapping b[]?l, ]?2] is defined on the set from the right side of the
equality (5.3). Since N1,N5 € T'(k,Q,S), then on the set Uy(N7) x Uy (N3)
the mapping b[fl, fg] acts in the same way as the mappings f’' and jA” (the
mapping f’ is determined by the relations (3.3)). According to (3.3) the
action of the mapping b[fl, fg] on the set Syn(N7) U Syn(N2) is defined by
the equalities b[f1, fo](s1) = fi(s1) (Vs1 € Syn(N1)) and b[f1, fo](s2) =
fa(s2) (Vs2 € Syn(N2)). Let us show that the mappings f’ and b[fi, f2]
are equal on the set Syn(N7i) U Syn(N2). In fact, the relations hold

Plo = { S0 1 E8 = Fton) = R Flon) (o1 € Sum(AQ),

v(s2),

which show that f' = b[f1, f1]. Therefore, the tuples ¢(N7) o ¢p(Ns) and
d(N1 o N3) are equal. We have shown that the first condition from (2.1) is
satisfied. Thus ¢ satisfies the conditions (2.1). Theorem is proven. O

Ploa) = { 208 1022 £ 8 Faton) =0l Filse) (52 € Synln)

6. Conclusion

The partial groupoid SN (k, Q) allows us to model the composition of
neural networks. In this case, the composition N7 o N5 carries information
about the architecture (i.e., the internal structure) of the networks A, N
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and N7 o Ny. The ability to store information about the architecture of
neural networks distinguishes this method of modeling from modeling the
composition of neural networks using abstract automata. The results of
this work will be useful in those studies of neural networks that involve
significant use of information about the structure (i.e. architecture) of
neural networks. If there is no such need, then it is preferable to use
automata theory or matrix implementations of neural networks. This will
eliminate the need to take into account mathematical formalism, which
may be unnatural in the context of solving specific applied problems.

References

1. Arapina-Arapova E.S. Partial groupoids in relation to information systems. News
of the Southern Federal University. Technical science, 2013, no. 2, pp. 46-51. (in
Russian)

2.  Glushkov V.M. Abstract theory of automata. UMN, 1961, vol. 16, no. 5, pp. 3-62.
(in Russian)

3. Gluskin L.M. Research on general algebra in Saratov. Izv. Vyssh. Uchebn. Zaved.
Mat., 1970, no. 4, pp. 3-16 (in Russian)

4. Golovko V.A., Krasnoproshin V.V. Neural network technologies for data processing.
Minsk, Publ. house Belarus State University, 2017, 263 p. (in Russian)

5.  Gorban’ A.N. Generalized approximation theorem and computational capabilities
of neural networks. Sib. zhurn. calculated mathematics, 1998, vol. 1, no. 1, pp.
11-24. (in Russian)

6. Litavrin A.V., Moiseenkova T.V. About one groupoid associated with the
composition of multilayer feedforward neural networks Zhurnal Srednevolzh-
skogo matematicheskogo obshchestva, 2024, wvol. 26, no. 2, pp. 111-122.
https://doi.org/10.15507/2079-6900.26.202402.111-122 (in Russian)

7. Litavrin A.V. On endomorphisms of the additive monoid of subnets of a two-layer
neural network. The Bulletin of Irkutsk State University. Series Mathematics, 2022,
vol. 39, pp. 111-126. https://doi.org/10.26516/1997-7670.2022.39.111

8. Lyapin E.S. Partial groupoids that can be obtained from semigroups by restrictions
and homomorphisms. Izv. Vyssh. Uchebn. Zaved. Mat., 1989, vol. 33, no. 10, pp.
37-45.

9. Slepovichev I.I. Algebraic properties of abstract neural networks. Izvestiya Saratov
Univ. New series. Series Mathematics. Mechanics. Informatics, 2016, vol. 16, no.
1, pp. 96-103. https://doi.org/10.18500/1816-9791-2016-16-1-96-103 (in Russian)

10. Sozykin A.V. An overview of methods for deep learning in neural networks.
Vestn. YuUrGU. Ser. Vych. Matem. Inform., 2017, vol. 6, no. 3, pp. 28-59.
https://doi.org/10.14529/cmsel 70303 (in Russian)

CHOmncok MCTOYHUKOB

1. Apanuna-Apanosa E. C. Hacruunble rpynmoujbl TPUMEHUTEILHO K UHMOPMa-
nuonHbM cucreMaM // Ussectust FO®Y. Texuuueckume Hayku. 2013. Ne2. C.
46-51.

Nssectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
Cepusa «MaremaTtukay. 2024. T. 50. C. 101-115



10.

ON PARTIAL GRUPOIDS ASSOCIATED WITH THE COMPOSITION 115

Inymkos B. M. A6cTpakTHast TeopHusi aBTOMATOB // YCIEXW MaTeMaTHIeCKUX
nayk. 1961. T. 16, Ne 5. C. 3-62

Inyckun JI. M. Uccienoanust o obuieit anre6pe B Capatose // M3BecTust BbICIIIX
yuebubix 3aBenenuii. Maremaruka. 1970. Ne 4. C. 3-16.

Tonoeko B. A., Kpacmonpomuu B. B. HeiipocereBble TexHosioruu o6pabOTKH
JAHHBIX : y4ueb. mocobme. Munck : U3a-so Bemapyc. roc. yu-ta, 2017. 263 c.
Topbans A. H. O6006miennasi anmpoKCUMAIMOHHAS TEOPEMa W BBIYUC/IATEb-
Hble BO3MOXKHOCTU HEHPOHHBIX cereil // CHOMPCKUIl »KypHAJ BBIYUCIUTEIHHON
maremaruku. 1998. T. 1, Ne 1. C. 11-24.

JIutapun A. B., Mouceenkosa T. B. O6 omHOM rpynmouje, acCOMUPOBAHHOM C
KOMIIO3UIIMEl MHOT'OCJIOMHBIX HEMPOHHBIX CeTell ITPAMOIrO paClpOCTPAaHEeHUs CUTHA~
sa // 2Kypran CpeaHeBOIKCKOTO MaTeMaTudeckoro obmecrsa. 2024. T. 26, Ne 2.
C. 111-122. https://doi.org/10.15507/2079-6900.26.202402.111-122

Litavrin A. V. On endomorphisms of the additive monoid of subnets of a two-
layer neural network // M3sectuss VIpKyTCKOro roCcyAapCTBEHHOIO YHUBEPCUTETA.
Cepusi Maremaruka. 2022. T. 39. C. 111-126. https://doi.org/10.26516/1997-
7670.2022.39.111

Jlganun E. C. HacTudnble IPyNIIONIbI, TOJIyYaeMble U3 HOJyTPYII OrPAHUYEHUsI-
Mu 1 romomopdusMamu // M3Bectust Boicnnx y4ebHbIX 3aBejeHnil. Maremaruka.
1989. Ne 10. C. 30-36.

Caenosuues 1. V. AsreGpanveckue CBOHCTBa abCTPAKTHBIX HEHPOHHBIX cereil. //
UsBectus Caparosckoro yuusepcurera. Hosasi cepusi. Cepusi: Maremaruka. Mexa-
nuka. Uuadopmaruka. 2016. T. 16, Ne 1. C. 96-103. https://doi.org/10.18500/1816-
9791-2016-16-1-96-103

Cosbikna A. B. O6Gzop meronoB o0yueHusi riiyGOKMX HEHPOHHBIX cereil //
Becruuk HOxkno-Ypasbckoro rocyzapcrBennoro yuumpepcurera. Cepus: Boi-
qucauTeabHag MareMaruka u wuadopmarmka. 2017. T. 6, Ne 3. C. 28-59.
https://doi.org/10.14529 /cmse170303

06 aBTOpax

JIutaBpun Anapeit BukrtopoBud,
KaHI. pus.-MarT. HAyK, JOII.,
Cubupckuii deiepabHbIi
yuusepcuret, Kpacnosipck, 660041,
Poccuiickas Oenepanus,
anml1@rambler.ru,
https://orcid.org/0000-0001-6285-0201

MounceenkoBa TarbsaHa
BuagumupoBHa, KaHIl. hu3.-Mar.
Hayk, goir., Cubupckuit degepasibHbIii
yuusepcuret, Kpacnosipck, 660041,
Poccniickas @eneparus,
tanya-moisl1@yandex.ru,
https://orcid.org/0009-0009-2216-
195X

About the authors

Andrey V. Litavrin, Cand. Sci.
(Phys.—Math.), Assoc. Prof., Siberian
Federal University, Krasnoyarsk,
660041, Russian Federation,
anmll@rambler.ru,
https://orcid.org/0000-0001-6285-0201

Tatyana V. Moiseenkova, Cand.
Sci. (Phys.—Math.), Assoc. Prof.,
Siberian Federal University,
Krasnoyarsk, 660041, Russian
Federation, tanya-moisl1@yandex.ru,
https://orcid.org/0009-0009-2216-
195X

Iocmynuasa 6 pedaryuro / Received 08.04.2024
Hocmynuaa nocae peuensuposanus / Revised 09.06.2024
Hpunama x nybaurayuu / Accepted 19.08.2024



