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Научная статья
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Аннотация. Утверждается, что одними из важных характеристик структур явля-
ются степени семантической и синтаксической жесткости, а также индексы жестко-
сти, показывающие насколько данная структура отличается от семантически жест-
кой структуры, т.е. структуры с одноэлементной группой автоморфизмов, а также
от синтаксически жесткой структуры, т. е. структуры, накрываемой определимым
замыканием пустого множества. Вопросы описания степеней и индексов жесткости
представляют интерес как в общем контексте, так и применительно к упорядочен-
ным теориям и их моделям. Изучены возможности семантической и синтаксической
жесткости упорядоченных теорий, т. е. жесткости по отношению к группе автомор-
физмов и по отношению к определимому замыканию. Описаны значения индексов
и степеней семантической и синтаксической жесткости для вполне упорядоченных
множеств, для дискретных, плотных и смешанных порядков, а также для счетных
моделей ℵ0-категоричных слабо o-минимальных теорий. Отмечены все возможности
степеней жесткости для счетных линейных порядков.

Ключевые слова: определимое замыкание, семантическая жесткость, синтаксиче-
ская жесткость, степень жесткости, упорядоченная теория

Благодарности: Работа выполнена при финансовой поддержке Комитетом науки
Министерства науки и высшего образования Республики Казахстан, грант
№ AP19674850, а также в рамках государственного задания Института математики
им. С.Л. Соболева, проект № FWNF-2022-0012.

Ссылка для цитирования: KulpeshovB. Sh., Sudoplatov S. V. Variations of Rigidity
for Ordered Theories // Известия Иркутского государственного университета. Серия
Математика. 2024. Т. 48. C. 129–144.
https://doi.org/10.26516/1997-7670.2024.48.129

We continue to study variations of algebraic closures [14;15] considering
and describing semantic and syntactic possibilities for definable closures.
A general approach studying algebraic and definable characteristics, in
particular, variations of rigidity is applied for ordered theories.

We use the standard model-theoretic terminology [6; 10; 11; 13; 16], no-
tions and notations in [14;15].

The paper is organized as follows. In Section 1, preliminary notions,
notations and assertions are collected, as well as values for indexes of
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rigidity for linearly ordered structures are described. In Section 2, values
of rigidity degrees for well-ordered sets and some their modifications are
described. In Sections 3 and 4, we describe rigidity characteristics for
discrete and dense orders, respectively. In Section 5, rigidity characteristics
for countable models of ℵ0-categorical weakly o-minimal theories are found.
In Section 6, rigidity characteristics for mixed, discrete–dense orders are
described, and Theorem describing possibilities for degrees of rigidity for
countable linear orderings is proved.

1. Preliminaries and indices of rigidity for ordered structures

Let 𝐿 be a countable first-order language. Throughout the paper we
consider 𝐿-structures and their complete elementary theories, and assume
that 𝐿 contains a symbol of binary relation <, which is interpreted as a
linear order in these structures.

Definition 1. [15]. For a set 𝐴 in a structureℳ,ℳ is called semantically
𝐴-rigid or automorphically 𝐴-rigid if any 𝐴-automorphism 𝑓 ∈ Aut(ℳ) is
identical. The structureℳ is called syntactically 𝐴-rigid if 𝑀 = dcl(𝐴).

Obviously, if ℳ is an arbitrary structure, ℳ is both semantically 𝑀 -
rigid and syntactically 𝑀 -rigid. Also, ℳ is syntactically 𝐴-rigid for any
𝐴 ⊆𝑀 with 𝑀 ∖ dcl(∅) ⊆ 𝐴. Ifℳ is an arbitrary infinite linearly ordered
structure,ℳ is semantically 𝐴-rigid for any co-finite 𝐴 ⊆𝑀 .

A structure ℳ is called ∀-semantically / ∀-syntactically 𝑛-rigid (re-
spectively, ∃-semantically / ∃-syntactically 𝑛-rigid), for 𝑛 ∈ 𝜔, if ℳ is
semantically / syntactically 𝐴-rigid for any (some) 𝐴 ⊆𝑀 with |𝐴| = 𝑛.

The least 𝑛 such that ℳ is 𝑄-semantically / 𝑄-syntactically 𝑛-rigid,
where 𝑄 ∈ {∀,∃}, is called the 𝑄-semantical / 𝑄-syntactical degree of

rigidity, it is denoted by deg𝑄-semrig (ℳ) and deg𝑄-syntrig (ℳ), respectively. Here

if a set 𝐴 produces the value of 𝑄-semantical / 𝑄-syntactical degree then
we say that 𝐴 witnesses that degree. If such 𝑛 does not exist we put
deg𝑄-semrig (ℳ) =∞ and deg𝑄-syntrig (ℳ) =∞, respectively.

Definition 2. [15]. For a set 𝐴 in ℳ and an expansion ℳ𝐴 of ℳ
by constants in 𝐴, the least 𝑛 such that ℳ𝐴 is 𝑄-semantically / 𝑄-
syntactically 𝑛-rigid, where 𝑄 ∈ {∀, ∃}, is called the (𝑄,𝐴)-semantical

/ (𝑄,𝐴)-syntactical degree of rigidity, it is denoted by deg𝑄-semrig,𝐴 (ℳ) and

deg𝑄-syntrig,𝐴 (ℳ), respectively. If such 𝑛 does not exist we put deg𝑄-semrig,𝐴 (ℳ) =
∞ and

deg𝑄-syntrig,𝐴 (ℳ) =∞,

respectively.
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Any expansionℳ𝐴 ofℳ with deg∃-𝑠rig (ℳ𝐴) = 0, for 𝑠 ∈ {sem, synt}, is
called a 𝑠-rigiditization or simply a rigiditization ofℳ.

Following [15] for a structureℳ we denote by deg4(ℳ) the tetrad(︁
deg∃-semrig (ℳ),deg∃-syntrig (ℳ), deg∀-semrig (ℳ),deg∀-syntrig (ℳ)

)︁
.

Remark 1. If ℳ is a structure of pure linear order then for the dual
structureℳ*, which is antiisomorphic toℳ, deg4(ℳ*) = deg4(ℳ). It is
satisfied since the duality moves the automorphism group to the isomorphic
one, and it preserves the set of formulae witnessing the definable closure.

Fact 1. [15]. Letℳ be an arbitrary structure. Then
1. deg∃-semrig (ℳ) ≤ deg∀-semrig (ℳ).

2. deg∃-syntrig (ℳ) ≤ deg∀-syntrig (ℳ).

3. deg∃-semrig (ℳ) ≤ deg∃-syntrig (ℳ).

4. deg∀-semrig (ℳ) ≤ deg∀-syntrig (ℳ).

5. deg∀-semrig (ℳ) = 0 iff deg∃-semrig (ℳ) = 0.

6. deg∀-syntrig (ℳ) = 0 iff deg∃-syntrig (ℳ) = 0.

Definition 3. [15]. For a set 𝐴 in a structure ℳ the index of rigidity
of ℳ over 𝐴, denoted by indrig(ℳ/𝐴), is the supremum of cardinalities
for the sets of solutions of algebraic types tp(𝑎/𝐴) for 𝑎 ∈ 𝑀 . We put
indrig(ℳ) = indrig(ℳ/∅). Here we assume that indrig(ℳ) = 0 ifℳ does
not have algebraic types tp(𝑎) for 𝑎 ∈𝑀 .

Proposition 1. For any linearly ordered structureℳ, either indrig(ℳ) =
0 or indrig(ℳ) = 1. If ∅ ≠ 𝐴 ⊆𝑀 then indrig(ℳ/𝐴) = 1.

Proof. Letℳ be linearly ordered with the order <. Then any algebraic
type has a unique solution. Thus, either indrig(ℳ) = 0, if ℳ does not
have algebraic types, or indrig(ℳ) = 1, if these types exists. If ∅ ≠ 𝐴 ⊆𝑀
then an algebraic type tp(𝑎/𝐴) exists, taking arbitrary 𝑎 ∈ 𝐴. Therefore,
indrig(ℳ/𝐴) = 1.

2. Rigidity characteristics and their values for well-ordered sets
and some their modifications

Lemma 1. If ℳ = ⟨𝑀,<⟩ is a well-ordered set, 𝐴 ⊆ 𝑀 is ∅-definable
then any its finite initial segment is contained in dcl(∅).

Proof. Let 𝜙(𝑥) be a formula without parameters defining 𝐴. Sinceℳ
is well-ordered, its restrictionℳ|𝐴 to the set 𝐴 is well-ordered, too. Then
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each formula

𝜓𝑛(𝑥) = ∃𝑥1, . . . ,∃𝑥𝑛[
𝑛⋀︁

𝑖=1

𝜙(𝑥𝑖) ∧ ∀𝑦(𝜙(𝑦)→ 𝑥1 ≤ 𝑦) ∧
𝑛−1⋀︁
𝑖=1

{𝑥𝑖 < 𝑥𝑖+1∧

∧∀𝑦(𝜙(𝑦) ∧ 𝑥𝑖 ≤ 𝑦 ≤ 𝑥𝑖+1 → 𝑦 ≈ 𝑥𝑖 ∨ 𝑦 ≈ 𝑥𝑖+1} ∧ 𝑥𝑛 ≈ 𝑥]
expresses 𝑛-th element of 𝐴, 𝑛 ∈ 𝜔, and its solution 𝑎𝑛, if it exists, is con-
tained in dcl(∅). Clearly, the sets {𝑎0, . . . , 𝑎𝑛} form finite initial segments,
as required.

Notice that if ℳ is isomorphic, by an isomorphism 𝑓 , to a non-limit
ordinal 𝛼 + 𝑛 then {𝑓−1(𝛼), 𝑓−1(𝛼 + 1), . . . , 𝑓−1(𝛼 + (𝑛 − 1))} ⊆ dcl(∅).
Indeed, all elements 𝑓−1(𝛼 + 𝑖) are defined by formulae describing the
number of predecessors from the largest element 𝑓−1(𝛼 + 𝑛). Since these
elements are ∅-definable, by Lemma 1 we conclude:

Corollary 1. If ℳ is a well-ordered structure isomorphic to a non-limit
ordinal then both the element corresponding to the largest limit ordinal in
ℳ and its successors belong to dcl(∅).

Lemma 2. Ifℳ = ⟨𝑀,<⟩ is a well-ordered set then dcl(∅) consists of all
finite initial segments of ∅-definable subsets inℳ.

Proof. Let 𝑍 be the union of all finite initial segments of ∅-definable
subsets inℳ. By Lemma 1 we have 𝑍 ⊆ dcl(∅). Conversely, any element
𝑎 ∈ dcl(∅) forms the ∅-definable singleton {𝑎} which is contained in 𝑍 by
the definition. Thus, 𝑍 = dcl(∅).

Corollary 2. For any well-ordered setℳ = ⟨𝑀,<⟩ ifℳ consists of finite
initial segments of ∅-definable sets then deg4(ℳ) = (0, 0, 0, 0).

Proof. It is known [4] that well-ordered sets do not have non-identical
automorphisms. Therefore, deg∃-semrig (ℳ) = deg∀-semrig (ℳ) = 0. We have

deg∃-syntrig (ℳ) = deg∀-syntrig (ℳ) = 0 in view of Lemma 2. Thus, deg4(ℳ) =

(0, 0, 0, 0).

Remark 2. Let ℳ be a well-ordered 𝐿-structure with a well order <.
For a 𝐿-formula 𝜙 = 𝜙(𝑥) we define the formula

𝜓𝜙(𝑥) = 𝜙(𝑥) ∧ ∀𝑦 (𝑦 < 𝑥 ∧ 𝜙(𝑥)→ ∃𝑧(𝑦 < 𝑧 < 𝑥 ∧ 𝜙(𝑧)))

saying that for any realization 𝑎 of 𝜙 either 𝑎 is a minimal element satis-
fying 𝜙 or it is not minimal and there are densely many smaller elements
satisfying 𝜙, i.e. 𝑎 does not have predecessors with respect to 𝜙. We also
consider the 𝐿-formula

𝜃(𝑥) = ∀𝑦(𝑦 < 𝑥→ ∃𝑧(𝑦 < 𝑧 < 𝑥))
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defining the set of all elements without predecessors.
Now we define a sequence (𝜙𝑛(𝑥))𝑛∈𝜔 of formulae such that 𝜙0(𝑥) = 𝜃(𝑥)

and 𝜙𝑛+1(𝑥) = 𝜓𝜙𝑛(𝑥), 𝑛 ∈ 𝜔. Using these formulae we obtain that:
i) the first initial segment in ℳ consisting of the least element and all

its successors are contained in dcl(∅);
ii) finite initial segments of 𝜙𝑛(ℳ) are contained in dcl(∅), 𝑛 ∈ 𝜔.
In particular, the ordinals 𝑘, 𝜔𝑙 ·𝑚, for 𝑘, 𝑙,𝑚 ∈ 𝜔, and their well-ordered

finite sums are contained in their dcl(∅).

Theorem 1. For any well-ordered set ℳ = ⟨𝑀,<⟩ either deg4(ℳ) =
(0, 0, 0, 0), if ℳ is at most countable, or deg4(ℳ) = (0,∞, 0,∞), if ℳ is
uncountable.

Proof. By the argument for Corollary 2 we have

deg∃-semrig (ℳ) = deg∀-semrig (ℳ) = 0

for any well-ordered setℳ = ⟨𝑀,<⟩.
Letℳ be at most countable. Then there exists 𝑘 < 𝜔 such thatℳ has

the ordering type 𝜔𝑘 · 𝑙1+𝜔𝑘−1 · 𝑙2+ . . .+𝜔 · 𝑙𝑘+𝑚 for some 𝑙1, 𝑙2, . . . , 𝑙𝑘,𝑚 ∈
𝜔 [8]. In view of Remark 2 we have deg∃-syntrig (ℳ) = deg∀-syntrig (ℳ) = 0

implying deg4(ℳ) = (0, 0, 0, 0).

If ℳ is uncountable then deg∃-syntrig (ℳ) = deg∀-syntrig (ℳ) = ∞ since the
definable closures of finite sets can not cover 𝑀 as there are countably
many formulae using finitely many fixed constants. Thus, in such a case
deg4(ℳ) = (0,∞, 0,∞).

In view of Remark 1 the dichotomy in Theorem 1 is preserved under
transformations of well-ordered sets ℳ to dual ones ℳ*. Moreover, it is
preserved under the sumℳ+𝒩 * for well-ordered setsℳ and 𝒩 :

Corollary 3. For any well-ordered setsℳ and 𝒩 either deg4(ℳ+𝒩 *) =
(0, 0, 0, 0), ifℳ+𝒩 * is at most countable, or deg4(ℳ+𝒩 *) = (0,∞, 0,∞),
ifℳ+𝒩 * is uncountable.

Example 1. By Theorem 1, Remark 1 and Corollary 3,

deg4(𝜔) = deg4(𝜔
*) = deg4(𝜔 + 𝜔*) = (0, 0, 0, 0).

At the same time, for Z = 𝜔* + 𝜔, deg4(Z) = (1, 1, 1, 1), since dcl(∅) = ∅,
the automorphism group Aut(Z) is transitive, dcl({𝑎}) = Z and Z{𝑎} is
semantically rigid for any 𝑎 ∈ Z.
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3. Rigidity characteristics for discrete orders

In this section we consider some discrete orders different from well-
ordered and dual ones.

Letℳ = ⟨Z · 𝑛,<⟩ for 𝑛 ∈ 𝜔 ∖ {0}. We have

deg∃-semrig (ℳ) = deg∃-syntrig (ℳ) = 𝑛

sinceℳ is rigid with respect to finite sets containing elements in each copy

of Z. Besides, as noticed above, deg∀-semrig (ℳ) = deg∀-syntrig (ℳ) = 1 for

𝑛 = 1. At the same time, for 𝑛 ≥ 2, deg∀-semrig (ℳ) = deg∀-syntrig (ℳ) = ∞
since elements in a copy of Z do not define elements of other copies. Thus
we obtain either deg4(ℳ) = (1, 1, 1, 1) or deg4(ℳ) = (𝑛, 𝑛,∞,∞), for
𝑛 ∈ 𝜔 ∖ {0, 1}.

Taking a pure linearly ordered structureℳ as a sum of infinitely many
copies of Z we obtain deg4(ℳ) = (∞,∞,∞,∞) since finite sets 𝐴 in ℳ
do not fix automorphisms for copies of Z which do not contain elements in
𝐴.

Thus we obtain the following:

Theorem 2. For any disjoint sum ℳ of copies of Z the following possi-
bilities hold:

1) deg4(ℳ) = (1, 1, 1, 1), ifℳ = Z;
2) deg4(ℳ) = (𝑛, 𝑛,∞,∞), ifℳ = Z · 𝑛 for 𝑛 ∈ 𝜔 ∖ {0, 1};
3) deg4(ℳ) = (∞,∞,∞,∞), ifℳ consists of infinitely many copies of

Z.

Remark 3. The values of deg4(ℳ) in Theorem 2 are preserved if the set
of components Z forℳ are extended by finitely many finite linear orders,
say deg4(Z +𝑚+ Z) = (2, 2,∞,∞) for any 𝑚 ∈ 𝜔.

Remark 4. The characteristics deg4(ℳ) in Theorem 2 give the lower
bounds for orders containing sums for copies of Z. For instance, if ℳ =
ℳ1 + Z + Z +ℳ2 for some linear ordersℳ1,ℳ2 then deg∃-semrig (ℳ) ≥ 2,

deg∃-syntrig (ℳ) ≥ 2,deg∀-semrig (ℳ) =∞, deg∀-syntrig (ℳ) =∞.

Lemma 3. For any natural 𝑚 ≥ 1 there exists an infinite linear ordering
ℳ = ⟨𝑀,<⟩ such that deg4(ℳ) = (𝑚,𝑚,∞,∞).

Proof of Lemma 3. Consider the following infinite linear ordering for
any natural 𝑚 ≥ 1:

ℳ = ⟨𝜔 + Z + . . .+ Z⏟  ⏞  , <⟩.
𝑚 times

Obviously, deg4(ℳ) = (𝑚,𝑚,∞,∞).
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Lemma 4. For any natural 𝑚 ≥ 1 there exists an infinite linear ordering
ℳ = ⟨𝑀,<⟩ such that deg4(ℳ) = (1, 1,𝑚,𝑚).

Proof of Lemma 4. If ℳ = ⟨Z, <⟩ then by Theorem 2 deg4(ℳ) =
(1, 1, 1, 1). Consider the following infinite linear ordering for any natural
𝑚 ≥ 1:

ℳ = ⟨𝑚+ Z, <⟩.
Obviously, deg4(ℳ) = (1, 1,𝑚+ 1,𝑚+ 1).

4. Rigidity characteristics for dense orders

Let ℳ = ⟨Q, <⟩. Clearly, for an arbitrary 𝐴 ⊆ Q the structure ℳ is
syntactically 𝐴-rigid iff 𝐴 = Q. Moreover, for any finite 𝐴 ⊂ Q, dcl(𝐴) =
𝐴 ̸= Q. Therefore we have the following:

Proposition 2. For the structureℳ = ⟨Q, <⟩,

deg∃-syntrig (ℳ) = deg∀-syntrig (ℳ) =∞.

Now we consider values deg∃-semrig (ℳ) and deg∀-semrig (ℳ) based on the
automorphism group Aut(⟨Q, <⟩). Notice that this group and its properties
are studied in [2; 3; 5; 17].

Taking a finite subset 𝐴 ⊂ Q we have a dense part (in fact, infinitely
many ones) in Q ∖ 𝐴 producing many 𝐴-automorphisms 𝑓 ∈ Aut(ℳ). It
implies that there are non-identical 𝐴-automorphisms. Thus we have the
following:

Proposition 3. For the structureℳ = ⟨Q, <⟩,

deg∃-semrig (ℳ) = deg∀-semrig (ℳ) =∞.

Propositions 2 and 3 immediately imply the following:

Corollary 4. deg4(⟨Q, <⟩) = (∞,∞,∞,∞).

Since sums of linear orders with Q preserve the definable closures and
automorphisms on Q we have:

Corollary 5. Ifℳ =ℳ1+Q+ℳ2 for some linear ordersℳ1,ℳ2 then
deg4(ℳ) = (∞,∞,∞,∞).

Since there are many 𝐴-automorphisms if Q ∖ 𝐴 has an infinite convex
set, we have also the following:

Corollary 6. If Q ∖𝐴 has an infinite convex subset then deg4(⟨Q, <⟩𝐴) =
(∞,∞,∞,∞).
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In view of Corollary 6 the description of values deg4(⟨Q, <⟩𝐴) is reduced
to the case when Q∖𝐴 does not have infinite convex sets, i.e., if all elements
in Q ∖𝐴 are isolated. In such a case Q ∖𝐴 is either finite or countable and
we obtain the following possibilities:

1. deg4(⟨Q, <⟩𝐴) = (0, 𝑛, 0,∞), if |Q∖𝐴| = 𝑛 ∈ 𝜔 (since ⟨Q, <⟩𝐴 does not
have non-identical automorphisms, and we obtain dcl(Q ∖𝐴) = Q, whereas
the definable closures of finite subsets of 𝐴 do not cover Q).

2. deg4(⟨Q, <⟩𝐴) = (0,∞, 0,∞), if |Q ∖ 𝐴| = 𝜔 (since ⟨Q, <⟩𝐴 does not
have non-identical automorphisms, and the definable closures of finite sets
do not cover Q).

Collecting the described possibilities we obtain:

Theorem 3. For any subset 𝐴 ⊆ Q the following holds:
(1) deg4(⟨Q, <⟩𝐴) = (∞,∞,∞,∞) iff Q∖𝐴 has an infinite convex subset;
(2) deg4(⟨Q, <⟩𝐴) = (0, 𝑛, 0,∞) iff |Q ∖𝐴| = 𝑛 ∈ 𝜔 ∖ {0};
(3) deg4(⟨Q, <⟩𝐴) = (0,∞, 0,∞) iff |Q∖𝐴| = 𝜔 and Q∖𝐴 has no infinite

convex subsets;
(4) deg4(⟨Q, <⟩𝐴) = (0, 0, 0, 0) iff Q = 𝐴.

5. Rigidity characteristics for ℵ0-categorical weakly o-minimal
structures

An open interval in a linearly ordered structure ℳ is a parametrically
definable subset of 𝑀 of the form 𝐼 = {𝑐 ∈ 𝑀 : ℳ |= 𝑎 < 𝑐 < 𝑏} for
some 𝑎, 𝑏 ∈ 𝑀 ∪ {−∞,∞} with 𝑎 < 𝑏. Similarly, we may define closed,
half open-half closed, etc., intervals in ℳ. An arbitrary point 𝑎 ∈ 𝑀 we
can also represent as an interval [𝑎, 𝑎]. By an interval inℳ we shall mean,
ambiguously, any of the above types of intervals in ℳ. A subset 𝐴 of
a linearly ordered structure ℳ is convex if for any 𝑎, 𝑏 ∈ 𝐴 and 𝑐 ∈ 𝑀
whenever 𝑎 < 𝑐 < 𝑏 we have 𝑐 ∈ 𝐴.

This section deals with the notion of weak o-minimality, which initially
deeply studied by H.D. Macpherson, D. Marker, and C. Steinhorn in [9].
A weakly o-minimal structure is a linearly ordered structure ℳ = ⟨𝑀,=
, <, . . .⟩ such that any definable (with parameters) subset of the structure
ℳ is a finite union of convex sets in ℳ. Recall that such a structure ℳ
is said to be o-minimal if any definable (with parameters) subset of 𝑀 is a
union of finitely many intervals and points inℳ. Thus, weak o-minimality
generalizes the notion of o-minimality. Real closed fields with a proper
convex valuation ring provide an important example of weakly o-minimal
(not o-minimal) structures.

Let 𝑇 be a weakly o-minimal theory, ℳ |= 𝑇 , 𝐴 ⊆ 𝑀 , 𝑝, 𝑞 ∈ 𝑆1(𝐴) be
non-algebraic. We say that 𝑝 is not weakly orthogonal to 𝑞 (denoting this by
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𝑝 ̸⊥𝑤 𝑞) if there exist an 𝐿𝐴-formula 𝐻(𝑥, 𝑦), 𝛼 ∈ 𝑝(ℳ) and 𝛽1, 𝛽2 ∈ 𝑞(ℳ)
such that 𝛽1 ∈ 𝐻(ℳ, 𝛼) and 𝛽2 ̸∈ 𝐻(ℳ, 𝛼).

In other words, 𝑝 is weakly orthogonal to 𝑞 (denoting this by 𝑝 ⊥𝑤 𝑞) if
𝑝(𝑥) ∪ 𝑞(𝑦) has a unique extension to a complete 2-type over 𝐴.

Lemma 5. [1] Let 𝑇 be a weakly o-minimal theory, ℳ |= 𝑇 , 𝐴 ⊆ 𝑀 .
Then the relation of non-weak orthogonality ̸⊥𝑤 is an equivalence relation
on 𝑆1(𝐴).

Proposition 4. Let 𝑇 be an ℵ0-categorical o-minimal theory, ℳ |= 𝑇 .
Suppose that 𝑝 ̸⊥𝑤 𝑞 for any non-algebraic 𝑝, 𝑞 ∈ 𝑆1(∅). Then ℳ is
syntactically 𝐴-rigid for any 𝐴 ⊆ 𝑀 containing the set of realizations of
an arbitrary non-algebraic 𝑝 ∈ 𝑆1(∅).

Proof of Proposition 4. Firstly, by the ℵ0-categoricity of 𝑇 the definable
closure of the empty set is finite, and there are only finitely many non-
algebraic 1-types over ∅. Also, if 𝑝 ̸⊥𝑤 𝑞 for some 𝑝, 𝑞 ∈ 𝑆1(∅), there is a
unique ∅-definable strictly monotonic bijection between 𝑝(ℳ) and 𝑞(ℳ),
whence dcl(𝐴) =𝑀 .

The following example shows that Proposition 4 is not true for ℵ0-
categorical weakly o-minimal theories in general.

Example 2. [9] Letℳ = ⟨𝑀 ;<,𝑃 1
1 , 𝑃

1
2 , 𝑓

1⟩ be a linearly ordered struc-
ture such that 𝑀 is a disjoint union of the interpretations of unary pred-
icates 𝑃1 and 𝑃2, where 𝑃1(ℳ) < 𝑃2(ℳ). We identify the interpretation
of 𝑃2 with the set of rational numbers Q, ordered as usual, and the in-
terpretation of 𝑃1 with Q × Q, lexicographically ordered. The symbol 𝑓
is interpreted by a partial unary function with 𝐷𝑜𝑚(𝑓) = 𝑃1(ℳ) and
𝑅𝑎𝑛𝑔𝑒(𝑓) = 𝑃2(ℳ) and defines by the equality 𝑓((𝑛,𝑚)) = 𝑛 for all
(𝑛,𝑚) ∈ Q× Q.

It can be proved that Th(ℳ) is a weakly o-minimal (not o-minimal)
theory. Let 𝑝(𝑥) := {𝑃1(𝑥)}, 𝑞(𝑥) := {𝑃2(𝑥)}. Obviously, 𝑝, 𝑞 ∈ 𝑆1(∅),
𝑝 ̸⊥𝑤 𝑞, and there are no other non-algebraic 1-types over ∅, i.e., the
hypothesis that 𝑝 ̸⊥𝑤 𝑞 for any non-algebraic 𝑝, 𝑞 ∈ 𝑆1(∅) holds. But if
we take the set 𝐴 as the set of realizations of 𝑞, we have that ℳ is not
syntactically 𝐴-rigid.

Proposition 5. There exists an ℵ0-categorical weakly o-minimal theory
𝑇 such that 𝑝 ̸⊥𝑤 𝑞 for any non-algebraic 𝑝, 𝑞 ∈ 𝑆1(∅) and for any 𝑀 |=
𝑇 there are 𝐴 ⊆ 𝑀 and 𝑝 ∈ 𝑆1(∅) with 𝑝(ℳ) ⊆ 𝐴 so that ℳ is not
syntactically 𝐴-rigid.

Proposition 6. Let 𝑇 be an ℵ0-categorical o-minimal theory, ℳ |= 𝑇 .
Then there exist 𝑘 < 𝜔 and pairwise weakly orthogonal non-algebraic 𝑝1, 𝑝2,
. . . , 𝑝𝑘 ∈ 𝑆1(∅) such that 𝐴 = 𝑝1(ℳ) ∪ 𝑝2(ℳ) ∪ . . . ∪ 𝑝𝑘(ℳ) and ℳ is
syntactically 𝐴-rigid.
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Proof of Proposition 6. Since there are only finitely many non-algebraic
1-types over ∅, any family of pairwise weakly orthogonal non-algebraic 1-
types over ∅ is also finite.

Theorem 4. Let 𝑇 be an ℵ0-categorical weakly o-minimal theory. Then
deg4(ℳ) = (∞, ∞, ∞, ∞) for any countableℳ |= 𝑇 .

Proof of Theorem 4. For any ℳ |= 𝑇 and any finite set 𝐴 ⊂ 𝑀 there
exists at least one non-algebraic 𝑝 ∈ 𝑆1(𝐴) such that 𝑝(ℳ) is a densely
ordered convex set. It implies that neither 𝐴 can cover 𝑀 by dcl(𝐴) nor
produce a singleton Aut(ℳ𝐴). Thus deg4(ℳ) = (∞, ∞, ∞, ∞).

6. Rigidity characteristics for mixed orders

In this section we consider rigidity characteristics for mixed orders, i.e.,
dense orders composed by discrete parts, where discrete parts replace ele-
ments of dense orders.

In view of Theorem 2 if a linearly ordered set ℳ has infinitely many
copies of Z then deg4(ℳ) = (∞,∞,∞,∞). Besides, each additional copy

of Z increases finite values of both deg∃-semrig (ℳ) and deg∃-syntrig (ℳ) by one,

such that Z with infinite complement and positive deg∀-semrig and deg∀-syntrig

gives deg∀-semrig (ℳ) = deg∀-syntrig (ℳ) =∞. So describing deg4(ℳ) it suffices
to consider mixed orders without copies of Z, i.e., discrete parts consisting
of finite linear orders only.

Proposition 7. Ifℳ is a countable mixed ordered set without parts Z and

with maximal finite discrete parts of bounded lengths then deg∃-syntrig (ℳ) =

deg∀-syntrig (ℳ) = ∞. If additionally ℳ is homogeneous then deg4(ℳ) =

(∞,∞,∞,∞).

Proof. Sinceℳ does not have parts Z and maximal finite discrete parts
have bounded lengthsℳ contains a dense suborder 𝑆 whose maximal finite
parts have same lengths and the quotient by these parts is isomorphic to
Q. It implies that no finite family 𝐴 of finite discrete parts can not define
all elements of ℳ. Indeed, any finite family 𝐴 defines elements in finite
parts such that these parts are situated distinctly with respect to other
parts. Since these parts are finite, it means that there are distinct finite
possibilities of mixtures of these parts. But by the conjecture there are
finitely many isomorphism types for finite parts and 𝑆 is dense, configu-
rations for the mixtures describing distinct parts should be repeated for
distinct parts 𝑃1, 𝑃2 ∈ 𝑆 with respect to 𝐴, i.e., tp(𝑃1/𝐴) = tp(𝑃2/𝐴),
implying 𝑃1 ∪ 𝑃2 * dcl(𝐴).
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It is checked by routine considerations of cases. For instance, let 𝐴
consists of two parts 𝑃0, 𝑃

′
0 and 𝑅1, 𝑅2 ∈ 𝑆 with 𝑃0, < 𝑅1 < 𝑅2 < 𝑃 ′

0 and
there are 𝑘𝑖 pairwise isomorphic parts 𝑈𝑗 ̸≃ 𝑅𝑖 between 𝑃0 and 𝑅𝑖, 𝑖 = 1, 2,
𝑘1 < 𝑘2, and 𝑘′𝑖 pairwise isomorphic parts 𝑈 ′

𝑗′ ̸≃ 𝑅𝑖 between 𝑅𝑖 and 𝑃 ′
0,

𝑖 = 1, 2, 𝑘′1 > 𝑘′2, 𝑈𝑗 ≃ 𝑈 ′
𝑗′ . Taking elements 𝑉 of 𝑆 between 𝑅1 and 𝑅2 we

have both finitely many possibilities for 𝑘1, 𝑘2, 𝑘
′
1, 𝑘

′
2 and infinitely many 𝑉 .

Thus 𝑆 contains distinct parts 𝑃1, 𝑃2 between 𝑅1, 𝑅2 with same number
of copies of 𝑈𝑗 and 𝑈 ′

𝑗′ with respect to 𝐴. Considering similar finiteness

conditions we choose distinct parts 𝑃1, 𝑃2 ∈ 𝑆 with tp(𝑃1/𝐴) = tp(𝑃2/𝐴).

Thus we obtain deg∃-syntrig (ℳ) =∞. By Fact 1 we have deg∀-syntrig (ℳ) =
∞, too.

If ℳ is homogeneous then for any finite 𝐴 ⊂ 𝑀 there are many 𝐴-
automorphisms for 𝑆 implying deg∃-semrig (ℳ) = deg∀-semrig (ℳ) = ∞ and
deg4(ℳ) = (∞,∞,∞,∞).

The following example shows that maximal finite discrete parts of un-
bounded lengths can produce rigid mixed linearly ordered setsℳ, i.e., with
deg4(ℳ) = (0, 0, 0, 0).

Example 3. Let 𝐶𝑛, 𝑛 ∈ 𝜔, be disjoint finite linear orders of pairwise
distinct lengths. Now we enumerate the order Q: Q = {𝑎𝑛 | 𝑛 ∈ 𝜔} and
replace each 𝑎𝑛 by 𝐶𝑛. The obtained linearly ordered set ℳ is required.
Indeed, we have both dcl(∅) = 𝑀 since each part 𝐶𝑛 is defined by its
length. We have also |Aut(ℳ)| = 1 since no elements in ℳ can not be
moved into another one: any two distinct elements in ℳ have distinct
types, as two distinct elements in one part 𝐶𝑛 have distinct distances from
the least element of 𝐶𝑛, and elements in distinct parts 𝐶𝑚 and 𝐶𝑛 defines
their distinct cardinalities. Thus, in view of Fact 1, deg4(ℳ) = (0, 0, 0, 0).

The ℵ0-categorical linear orders were classified by Joseph Rosenstein
in [12], where he constructed them from finite linear orders using two
operations.

Definition 4. ⟨Q𝑛, <Q𝑛 , 𝐶
1
1 , . . . , 𝐶

1
𝑛⟩ is the Fräıssé generic n-colored linear

order, i.e. the countable dense linear order with 𝑛 colors which occur
interdensely (for all 𝑥 and 𝑦 there are 𝑧1, . . . , 𝑧𝑛 between 𝑥 and 𝑦 such
that 𝐶𝑖(𝑧𝑖) holds for each 𝑖).

Definition 5. Let ⟨𝐿1, <1⟩, . . . , ⟨𝐿𝑛, <𝑛⟩ be linear orders. For each 𝑞 ∈ Q𝑛

we define 𝐿(𝑞) to be a copy of ⟨𝐿𝑖, <𝑖⟩ if Q𝑛 |= 𝐶𝑖(𝑞). The Q𝑛-shuffle
of ⟨𝐿1, <1⟩, . . . , ⟨𝐿𝑛, <𝑛⟩, denoted by Q𝑛(𝐿1, . . . , 𝐿𝑛), is the linear order
⟨
⋃︀

𝑞∈Q𝑛
𝐿(𝑞), <⟩, where

𝑎 < 𝑏 iff ([𝑎, 𝑏 ∈ 𝐿(𝑞) ∧ 𝑎 <𝑖 𝑏] or [𝑎 ∈ 𝐿(𝑞), 𝑏 ∈ 𝐿(𝑝) ∧ 𝑞 <Q𝑛 𝑝])

For example, Q1(1) is the set of rational numbers Q, Q1(2) is the set of du-
plets ordered by the order type Q, Q2(2, 3) is the set of duplets and triplets
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ordered by the order type Q, and et cetera. Obviously, ifℳ = Q𝑛(𝑡1, . . . , 𝑡𝑛)
for some linear orders 𝑡1, . . . , 𝑡𝑛 then deg4(ℳ) = (∞,∞,∞,∞).

Theorem 5. [12] ℳ is an ℵ0-categorical linear order iff ℳ can be
constructed from singletons by a finite number of concatenations or shuffles.

Also, in [7] a criterion for Ehrenfeuchtness of 𝑃 -combinations of count-
ably many copies of an ℵ0-categorical structure of pure linear order in terms
of shuffles was obtained.

The following theorem describes all the possibilities for degrees of se-
mantical and syntactical rigidity for an infinite countable linear ordering.

Theorem 6. Let ℳ = ⟨𝑀,<⟩ be an infinite countable linear ordering.
Then only the following values for deg4(ℳ) are possible:

(1) (0, 0, 0, 0);
(2) (1, 1,𝑚,𝑚), where 𝑚 ∈ 𝜔 ∖ {0};
(3) (𝑚,𝑚,∞,∞), where 𝑚 ∈ 𝜔 ∖ {0};
(4) (∞,∞,∞,∞).

Proof of Theorem 6. The case (1) is guarantied by Theorem 1. The case
(2) is guarantied by Lemma 4. The case (3) is guarantied by Lemma 3.
The case (4) is guarantied by Theorem 2 and Corollary 4.

Prove now that there is no other values for deg4(ℳ). Obviously, if
ℳ contains at least one copy of Q then deg4(ℳ) = (∞,∞,∞,∞). Ob-
viously, if ℳ contains at least one shuffle Q𝑛(𝑡1, . . . , 𝑡𝑛) for some 1 ≤
𝑛 < 𝜔 and some linear orders 𝑡1, . . . , 𝑡𝑛 then we also have deg4(ℳ) =
(∞,∞,∞,∞). Also, by Theorem 2 ifℳ contains infinitely many copies of
Z then deg4(ℳ) = (∞,∞,∞,∞).

Therefore, further we suppose thatℳ contains only finitely many copies
of Z and does not have neither copies of Q nor copies of Q𝑛(𝑡1, . . . , 𝑡𝑛).

Suppose now that ℳ contains infinitely many copies of 𝜔. Such a set
of copies of 𝜔 can be ordered by the order type 𝜔, 𝜔*, Z or their mixed
variations.

Ifℳ = ⟨𝜔𝑘 · 𝑙1+𝜔𝑘−1 · 𝑙2+ . . .+𝜔 · 𝑙𝑘+𝑚,<⟩ for some 𝑘, 𝑙1, . . . , 𝑙𝑘,𝑚 ∈ 𝜔
then by Theorem 1 deg4(ℳ) = (0, 0, 0, 0).

Ifℳ = ⟨𝜔𝑘 · Z, <⟩ for some natural 𝑘 ≥ 1 then deg4(ℳ) = (1, 1, 1, 1).
Ifℳ contains finitely many copies of kind 𝜔𝑘 · Z, for example:

ℳ = ⟨𝜔𝑘1 · Z + 𝜔𝑘2 · Z + . . .+ 𝜔𝑘𝑚 · Z, <⟩

for some natural 𝑘1, . . . , 𝑘𝑚 ∈ 𝜔, 𝑚 ≥ 2 and 𝑘2𝑖1 + 𝑘2𝑖2 ̸= 0 for some 1 ≤
𝑖1 < 𝑖2 ≤ 𝑚 then deg4(ℳ) = (𝑚,𝑚,∞,∞). If there exist infinitely many
copies of kind 𝜔𝑘 · Z inℳ, we have deg4(ℳ) = (∞,∞,∞,∞).

Ifℳ = ⟨𝜔𝑘1 ·𝜔*+𝜔𝑘2 ·𝜔*+ . . .+𝜔𝑘𝑚 ·𝜔*, <⟩ for some 𝑚, 𝑘1, . . . , 𝑘𝑚 ∈ 𝜔
then we can also prove that deg4(ℳ) = (0, 0, 0, 0).
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We have similar reasonings for copies of 𝜔* ordered by 𝜔, 𝜔* or Z.
We also have the same degrees of rigidity for the case when ℳ contains
infinitely many copies of both 𝜔 and 𝜔*.

Ifℳ contains 𝑚1 copies of 𝜔, 𝑚2 copies of 𝜔* and finitely many finite
linear orderings for some 𝑚1,𝑚2 ∈ 𝜔 with 𝑚2

1 +𝑚2
2 ̸= 0, then dcl(∅) = 𝑀

and we have deg4(ℳ) = (0, 0, 0, 0). If ℳ contains 𝑚1 copies of 𝜔, 𝑚2

copies of 𝜔*, 𝑚3 copies of Z and finitely many finite linear orderings for
some 𝑚1,𝑚2,𝑚3 ∈ 𝜔 with 𝑚2

1 + 𝑚2
2 ̸= 0 and 𝑚3 ≥ 1 then deg4(ℳ) =

(𝑚3,𝑚3,∞,∞).

7. Conclusion

We described possibilities for the semantical and syntactical degrees
of rigidity and indices for various ordered theories including well-ordered
sets, discrete, dense, and mixed orders, and for countable models of ℵ0-
categorical weakly o-minimal theories. All possibilities for degrees of rigid-
ity for countable linear orderings are described. It would be natural to
describe basic characteristics of rigidity for uncountable ordered structures,
circularly and spherically ordered structures.
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