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Abstract. The article concerns the problem of covering the lateral surface of a right
circular cylinder or a cone with equal balls. The surface is required to belong to their
union, and the balls’ radius is minimal. The centers of the balls must lie on the covered
surface. The problem is relevant for mathematics and for applications since it arises in
security and communications. We develop heuristic algorithms for covering construction
based on a geodesic Voronoi diagram. The construction of a covering is a non-trivial task
since the line of intersection of a cylinder or a cone with a sphere is a closed curve of the
fourth order. To compare the numerical results with the known ones, we unroll the surface
of revolution onto a plane. Another feature is that, we use both Euclidean distance and
a special non-Euclidean metric, which can describe the speed of signal propagation in a
heterogeneous medium. We also perform a numerical experiment and discuss its results.
Meanwhile, it is shown that with a small number of circles covering a planification of the
cylindrical surface, their radius is significantly less than for a similar rectangle.
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Amnnoranus. PaccmarpuBaercs 3aj1a4a 0 HIOKPBITAN PABHBIMHE IIIAPpAMHU OOKOBOI IIOBEPX-
HOCTH TIPSIMOTO KPYTOBOTO IIUJINH/IPA UK KOHyCa. 1 pedyercs, YTOObI MOBEPXHOCTH JIEYKA-
Jla B UX OObeJUHEHUN IIPU MUHUMAJBHOM pajauyce. LleHTpbI mapoB JOKHBI HAXOIUTHCS
Ha TIOKPBIBAEMOIT TOBEPXHOCTHU. 33/1a9a TPEJCTABIISIET HHTEPEC KAK C TOYKHU 3PEHUST MaTe-
MAaTHKH, TaK U JJIs IPUJIOKEHUH, IIOCKOIBKY BO3SHHKAET B 00JIaCTH O€30IIaCHOCTHU U CBA3U.
Paspaboranbl 9BpuCTHYECKIE AJTOPUTMBI OTHICKAHNUS UCKOMBIX MOKPBITHI, OCHOBaHHBIE
Ha reo/ie3uvdecKux auarpammax Boponoro. IlocTpoenne HMOKPBITHS sIBISIETCS HETPUBH-
aJIbHOM 3a/adeil, MOCKOJbKY JIMHUEH IepecevdeHus IMUINHApa WU KOHyca co cdepoit
SIBJISIETCSI 3aMKHYTasi KpuBasi 4-10 mopsiika. JIjst Toro 94robbl CpaBHUTH pPE3yJIbTaThI C
U3BECTHBIMU, IPEJIO?KEH MEeTO/I Pa3BePThIBAHNA KPUBOJIMHEHHBIX IOBEPXHOCTE Ha IIJIOC-
KOCTb. [loMIMO OOBITHOTO €BKJIMIOBOTO PACCTOSIHUSI, IPUMEHSIETCST TaKKe CIlelrabHast
HEeBKJIN/I0Bas MeTPHUKa, KOTOpas MOXKeT XapaKTepU30BaTb CKOPOCTh PaCIPOCTPaHEHUd
CUT'HAJIa B HEOJHOPOJIHOU cpere. BhInmosiHeHa cepusi BBIMUCIUTEILHBIX SKCIIEPUMEHTOB,
0 pe3yabTaTaM KOTOPBIX yAAJOCh CAejlaTh HEKOTOPBIE CoAeprKaTe/IbHbIe BBIBO/IbI.
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rpamma Bopororo
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1. Introduction

Constructing minimal (thinnest) coverings and maximum (dense) pack-
ings belong to the classical formulations of computational geometry [24].
Such problems have been studied, without exaggeration, for a century
but remain relevant [2;23]. Most often, coverings of a plane shape with
circles [21] in different variants are considered [4;16;17]. The problem of
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optimal covering of a curved surface with a given number of equal balls
is much less studied. The most obvious application of such statements
is the placement of the same type of wireless sensors and the design of
global navigation and communication systems [20]. In all cases, the covered
surface is a surface of revolution [5;9]. Another application is the image
transfer from a curved surface onto a plane for laser dimensional processing
of surfaces of revolution through a plane mask [10]. Let us note that signal
distortion can occur in all of these applied tasks, leading to a violation of
the spherical shape of the sensor’s or transmitter’s range of action. As a
rule, this property is omitted. Previously, we proposed using a special non-
Euclidean metric to take into account such effects. It reflects the properties
of the environment by replacing the physical distance with the time required
to pass it [12;13].

The simplest and most natural form of a surface of revolution is a sphere.
Papers [7;9] concern the construction of coverings of a sphere in three-
dimensional space, present the thinnest coverings with a given number of
balls, and estimate their redundancy.

Some scientists also consider coverings of spheres in spaces of arbitrary
dimension d. For instance, paper [5] designs a covering that gives the
covering density of order (dlnd)/2 for a sphere of any radius r > 1 for
growing dimension d. In [1], the authors show that for a sufficiently large
number n, it is possible to arrange n equal covering figures so that no point
belongs to more than a constant number of them, which depends only on d
and the size of the covering figure. In addition, [11] claims that for d > 3,
the unit sphere S¢ can be covered in such a way that each of its points
is covered at most 400d1nd times. Moreover, if the sphere S¢ is covered
by d + 3 equal spheres, then the found arrangement is optimal. We also
deal with a similar formulation [14;25] using geometric methods and the
optical-geometric approach [12].

The subjects of this study are the cylinder and cone, the other two
commonly occurring surfaces of revolution. Note that the lines along which
the cylinder and cone intersect with the sphere are spatial curves of the
fourth order [15;19]. This fact significantly complicates the construction of
coverings, even in comparison with a sphere. We have managed to find only
one paper concerning the cylinder covering problem [3], which, in particular,
proves that the highest density of the thinnest covering of a cylinder with
balls is equal to /2. This short article is theoretical and does not present
numerical calculations.

This study aims to fill the mentioned gap. We consider the problem of
the thinnest covering of a cylinder and a cone by equal balls and propose
heuristic algorithms based on a geodesic Voronoi diagram and optical-
geometrical approach. We perform a numerical experiment and discuss
it.
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2. Formulation

Let we are given a metric space X, a surface S(z,y,z) C X, defined
parametrically as {z = z(o,u),y = y(a,u),z = z(a,u) | a € [0,27];u €
(—o0;+00)}. Let we also have a continuous function 0 < f(z,y,2) < 3,
which is instantaneous speed of movement at each point (z,y,2) € X. If
f(xi,yi, z;) = 0, then the point (z;, y;, ;) is impassible. Then, the minimum
time of movement between two points a,b € X can be determined as a
solution to the problem

b) 2.1
plab) Ferglgb /f (x,y,z (2.1)

where G(a, b) is the set of continuous curves that belong to X and connect
points a and b. In other words, we will consider the shortest path between
two points to be the curve that takes the least time to move along [14].

The ball covering problem is to locate n balls C;(O;) with centers O; =
(x4, Yi, zi) and the equal radii R so that the surface S belongs to the union
of the balls, and the radius is minimal. Radius R is called ‘coverage radius’.
Then we have the following optimization problem

R — min, (2.2)

Vp € S,3i: p(Oi,p) < R, (2.3)
OieS,i:ﬁ, (24)

)

Objective function (2.2) minimizes the coverage radius. Constraint (2.3
provides that any point of the surface S belongs to at least one covering
ball, and condition (2.4) means that all balls’ centers are placed on S.

3. Solution method

To solve problem (2.1)—(2.4), we apply our traditional approach [12—
14], based on the analogy between the propagation of a light wave in an
optically inhomogeneous medium and the search for a global extremum of
functional (2.1). This optical-geometric analogue follows from physical laws
of Fermat and Huygens [6]. According to Fermat law, a photon moves from
the starting point to the target using a route that minimizes the travel time.
Huygens’s principle claims that each point reached by any photon becomes
a new source of waves. Therefore, we can consider the envelope of the wave
fronts of all secondary sources as the wave front at the certain moment. An
algorithm that describes the propagation of light waves in homogeneous
and inhomogeneous media and the construction of a generalized Voronoi
diagram on its basis is presented in more detail in [12].
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In order to reduce the problem of covering with n balls to a series of
problems of covering with a ball, we partition the surface S into n cell,
known as Dirichlet cells, using the Voronoi diagram. For each cell we need
to determine edge points, which are the points simultaneously reached by
more than two waves. Next, we initiate light waves from all edge points
for every cell and find their Hausdorff center [14]. This center is also the
center of covering ball having the minimum radius.

Voronoi diagram for cylindrical and conical surfaces. For a set
of n points O; = (z;,y;,2) € S,i = 1,n, Voronoi cells V; with centers O;
forming a Voronoi diagram are defined as follows: V; = {a € S: p(a,0;) <
p(a,0j;),¥j # i}. The most famous algorithm for constructing a Voronoi
diagram is Fortune’s algorithm [8], but this algorithm works only on a plane.
In this section, we propose modified versions for the surfaces considered.

The lateral surface of a right cylinder with the base radius r and the
height h can be described as

{r=rcosa,y=rsina,z=u:ac|0,2n);u € [0,h]}, (3.1)

where « is the rotation angle, and u is the height.
Then, the length of the shortest curve connecting two points a(a,uy)
and b(ag,uz2) on the cylindrical surface is following;:

deyi(a,b) = /72 (a1 — a)? + (ug — ug)?. (3.2)
The conical surface with the same parameters takes the form
{x =wucosa,y =usina,z =h (1 - %) ca €]0,2m);u € [0,7"]} ,  (3.3)
where « is the rotation angle, and w is the radius to height ratio.

In this case, the length of the shortest curve connecting points a(a,u1)
and b(aa, u2) is calculated as

h? rlag — as
deon(a,b) = \/<1 + 72) (u% + ug — 2uqug cos \‘/WT‘J> (3.4)

Algorithm 1 for constructing a ‘geodesic’ Voronoi diagram

Let we are given n points O;, i = 1, n.

Step 1: Introduce a uniform mesh with an angle step sa and a height
step su: S(sa, su) C S. This mesh is the same for a cylinder and a cone.

Step 2: Initiate a light wave from each point O; € S(sa, su), i = 1,n. In
contrast to the traditional optical-geometric method [12], the geodesic dis-
tance (3.2) is used here if we cover the cylinder and (3.4) — for the cone. As
a result, we calculate the time 7;(s) spending to reach all points s(sa, su) €
S(sa, su), which allows us to find the vector T'(s) = {T;(s),i = 1,n}.

WsBectus MpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
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Step 3: For each point s € S(sa, su), determine indexes of waves that
reached this point first. The indexes form the set D(s) = {k: Ty(s) =
min7;(s) }. For each s, D(s) contains at least one element.

(2

Step 4: Voronoi cells V; with respect to O;, i = 1, n, are constructed as
Vi={s e S(sa,su): i€ D(s)}.

Construction of coverings. The idea of the algorithm is to find the
fastest path between the two most distant points of the Voronoi cell. Its
middle is the center of the covering circle of minimum radius.

Algorithm 2 for constructing a covering of Voronoi cells

Step 1: Randomly generate points O; € S(sa, su), i = 1,n, which are
the initial centers of covering balls.

Step 2: Construct a Voronoi diagram by determining the cells V; with
respect to O;,7 = 1,n using Algorithm 1.

Step 3: Find a boundary dV; of the cells V; and approximate it by a
closed polyline with nodes at points v; 1,k = 1, m.

Step 4: Each point v; ;, initiates a light wave, which propagates according
to the algorithm proposed in [12]. It allows us for each s(sa,su) € V; to
figure out what wave reached it first and calculate the time spent as

T(Oé, u) = miLTk(aa u)a
k=1,m
where T} (o, u) is the propagation time of a light wave from v; i, till s(o, u) €
V.
Step 5: The radius and center of the covering balls of the area are
determined as

R-: T 5 ,O*: T 9 .
g T, OF —ang g, T

Steps 3-5 are carried out independently for each cell V.

Step 6: To guarantee complete coverage of the set S, the maximum

radius of the covering balls is chosen: R = max R;.
i=1,n

Steps 2-6 are being carried out as long as p(O;, Of) > 6,7 = 1,n, where
0 is given in advance.

Step 7: If the radius found at the current iteration is less than the previ-
ous one, the solution found is memorized as the best. A new generation of
initial positions is performed. The algorithm terminates when the specified
number of generations is reached.

As a result, we get a set of equal balls, which union completely covers
the surface S, and the balls’ radius is minimal.

Planification of lateral surfaces. It is necessary to unroll the lateral
surface to compare our results with the best-of-known results of solving the
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covering problem for a unit square. Besides, this procedure helps visualize
the coverings found.

The lateral surface and its planification (unrolling) are two geometric
figures having a one-to-one correspondence between their points. Therefore,
the straight line on the planification corresponds to the shortest path on
the surface.

The intersection of a surface of revolution with a sphere is a fourth-
order spatial curve. Therefore, when considering an unrolled surface of
revolution, the covering elements cannot be circles as for the classical 2-D
covering problem. This section proposes a procedure for constructing such
peculiar curves for a cylinder and a cone.

First, let us consider cylinder (3.1) and a sphere having the center
O(ap,up) and the radii R. In order to determine all points belonging
to the intersection of the sphere and the cylinder, we introduce the circle I,
which is the directrix passing through the point O. Next, from each point
M (apr,upr) € I, we draw a line on a cylindrical surface perpendicular to
the plane of the circle I until it intersects with the sphere at the point
N(an,un) (see Fig. 1). By construction, we have

MN =+ ON? -0M? = \/R2 _ 4r2gin2 M.

2

It is easy to see that up = uys since O and M belong the same directrix;
apr = ay because M and N lie on the same generatrix. Hence,

5 loo — ap|
—
When the point M runs through the arc ¢ of the circle I satisfying the
constraint

uN:uoi\/R2—4r2sin

. R
|ovo — apr| < 2 |aresin —|
2r

we get a set of intersection points:

Jeyi(0,u0) = {(a,u) ca€liu=up=* \/R2 — 472 sin? |0402—04‘

(3.5)

Second, let us consider conical surface (3.3) and a sphere having the

center O(ap,up) and the radii R. Here we also the circle I, which is the

directrix passing through the point O and for each point M (aps,upr) € I

draw a line passing through it and the cone apex D until it intersects with
the sphere at the point N(an,uy) (see Fig. 1).

Let us introduce the notation L = v/h? + r2. By construction, we have

L _
DM = DO = up=, MO = 2up in 120 — am|.
T
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Consequently, cos(ZMDO) = 1 — %. Thus, according to the cosine

theorem, we get the following quadratic equation to calculate DN:

) 2 2 ;. 2/ |lao—an| L 2
DN? — 2DNug <1— rsin(CE ) +<uor) ~R=0. (3.6)

T L2
To solve (3.6), let us find its discriminant

5 loo — an|
—

When the point M runs through the arc ¢ of the circle I satisfying the
constraint A > 0, we get a set of intersection points:

Jeon (0o, u0)) = {(a,u) ca€lu= %ki;L =Vh?+ 7“2} , (3.7)

where k4 are the roots of (3.6).

A = 4R?* — 8u} sin

Figure 1. Illustration for constructing the set of intersection points of a ball with
a cylinder and a cone

4. Computational experiment

In this section, we present some numerical results. The experiment is
carried out on a personal computer with Intel (R) Core(TM) i5-3337U (1.8
GHz, 4CPUs, 6 GB RAM) configuration and operating system Windows
10. The algorithms are implemented in C# programming language using
Visual Studio 2021.

Example 1. This example presents the best solutions to the covering
problem of a cylinder with radius r = % and height h = 1 withn =3, ..., 20
balls in the case of Euclidean metric, i.e., f(z,y,2) = 1.
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Assuming the lower base of the cylinder belongs to the Oxy plane and
its center is the origin, then the centers of covering balls (n = 20) are
following:

(0.1271,0.0958, 0.9000), (—0.1580,0.0194, 0.5200),
(0.1065, —0.1183,0.2800), (—0.1271, —0.0958, 0.2800),
(0.0465,0.1522, 0.6400), (0.1430, —0.0698, 0.0400),
(—0.0166, —0.1583, 0.4800), (—0.0958, —0.1271, 0.0800),
(0.0111,0.1588,0.4200), (0.0772, —0.1392, 0.9600),

(0.1576, —0.0222, 0.8400), (0.1530, —0.0439, 0.6000),
(0.0980, 0.1254, 0.1400), (—0.0331, —0.1557,0.7000),
(—0.1023,0.1219,0.0200), (—0.1288, 0.0935, 0.2400),
(—0.0698, 0.1430,0.9200), (—0.1465, 0.0622, 0.7200),
(—0.1454, —0.0647,0.9000), (0.1572, 0.0249, 0.4000)

The radius of the balls is R = 0.1535. Figure 2 shows the thinnest
covering with 20 balls.

1 \EAT\W
08} X
06 ° ~{
i 0.4 o ° ° y
02t \F )
W/

Figure 2. Covering of the cylinder (left) and its unrolled surface (right) with 20
equal balls and circles, respectively.

Unrolling cylindrical surface into a plane, we obtain a unit square. Next,
we compare the results obtained with the best coverings of the unit square
with equal circles [18;22] (see Table 1).

Here n is the number of covering balls or circles, respectively; R is
the best covering radius found using the algorithm proposed, R* is the
best-of-known radius from [18;22] for the corresponding number of circles;
AR(%) = £ % 100.

Table 1 shows that compared with [18;22], our results are better for
n < 11. The reason is that the cylindrical surface is transformed into a
square when unfolding, and one circle can cover two sides of the square.
Such a situation is impossible for classical covering problem. As the number

WsBectus VpkyTCcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
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Table 1
Covering of the cylindrical surface the unit square in the

Euclidean metric

R R |AR%) ||| n R R* |AR(%)
0.499710.5039| -0.83 1210.2032|0.2023 | 0.44
0.3397(0.3535| -3.90 13]0.1952|0.1943| 0.46
0.3117]0.3261 | -4.41 1410.1862|0.1855| 0.38
0.2900 | 0.2989| -2.98 |||15]0.1805|0.1797| 0.45
0.2736]0.2742 | -2.22 1610.1705|0.1694 | 0.65
0.2595|0.2605| -0.38 |||17]0.1668 |0.1657 | 0.66
0.2300 | 0.2306 | -0.26 18]0.1617|0.1606 | 0.69
0.21800.2182| -0.09 |||19]0.1592|0.1578 | 0.89
0.2129]0.2125| -0.19 2010.1535|0.1522| 0.85

Ol || U kx|lw|3

—_
o

=
—_

of circles increases, this advantage disappears. For n > 11, deviation from
the best-known radii increases but does not exceed 0.89%. Note, that it
directly depends on the mesh step.

Example 2. This example considers the same cylinder having r = =

2m
and h = 1 in the case of non-Euclidean metric with f(z,y,z) = 1+122. The
wave propagation velocity here decreases in the vertical direction when
moving from the lower base of the cylinder. If the ball’s center is located
closer to the lower base, then visually this ball looks large (see Fig. 3).
However, in the given metric, all balls have the same radius.

Table 2 shows the best coverings found. Here n is the number of covering
balls, r is the best radius, t is the executing time of the algorithm (in

seconds).

01 o 0.1 01 g o 01
01 01 0 01 -01
Y Y X

Figure 3. Covering of the cylinder with equal balls in Example 2 for n = 13,14, 15.
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Table 2
The best radii in Example 2

n R t n R t

3 | 0.8638 | 87.32 12 | 0.5003 | 113.23
4 | 0.7734 90.77 13 | 0.4902 | 119.02
5 0.6758 94.64 14 | 0.4624 | 126.24
6 0.6225 95.70 15 | 0.4211 | 127.23
7 105994 | 99.94 16 | 0.3744 | 129.83
8 0.5519 | 105.19 17 | 0.3704 | 132.74
9 0.5331 | 108.31 18 | 0.3629 | 134.85
10 | 0.5222 | 110.22 19 | 0.3616 | 135.36
11 | 0.5158 | 111.58 20 | 0.3585 | 137.03

Example 3. This example considers a cone with the base radius r =1
and the height h = 3. Let f(z,y,2z) = 1/(1+ 0.5z). The wave propagation
velocity here also decreases with moving from the lower base of the cone to
its apex. If the ball’s center is located closer to the base, then visually this
ball looks large (see Fig. 4). However, in the given metric, all balls have

the same radius. Table 3 shows the best coverings found.

Figure 4. Covering a conical surface with n = 13,14, 15 balls.

Table 3
Covering a conical surface with a non-Euclidean metric
n R t n R t
3 1.9337 50.64 12 1.0139 103.25
4 1.7885 54.34 13 0.9777 119.54
5 1.5209 66.04 14 0.9649 136.49
6 1.4429 70.70 15 0.9197 147.23
7 1.3116 73.59 16 0.8654 159.53
8 1.1952 80.98 17 0.8587 172.47
9 1.1652 84.31 18 0.8313 188.87
10 1.0659 87.22 19 0.7863 196.11
11 1.0478 92.58 20 0.7834 204.82
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5. Conclusion

The article contributes to research on covering surfaces of revolution
with equal balls. It is required that the surface lies inside the union of a
specified number of balls, the radii of which must be minimal. We con-
sider a particular non-Fuclidean metric as a measure of distance between
points. In applied problems, such a metric means signal propagation time
in ananisotropic medium.

Previously, we dealt with the case when the covered surface was a sphere,
and then its intersection with a covering element was a spherical cap. This
paper concerns the coverings of cylinders and cones. Their construction
is a much more time-consuming problem since the sections of the covering
elements have a complex shape. As for a cone, their shape depends signif-
icantly on the distance to the top. Therefore we couldn’t transfer directly
the approaches previously used for a sphere. In particular, constructing an
analogue of the Voronoi diagram, a key element of the algorithm proposed,
has become significantly more complicated. Nevertheless, all the difficulties
have been successfully overcome. A heuristic algorithm has been developed
that allows solving the considered problems in a wide range of parameters.
The algorithm is based on the modified optical-geometrical approach, which
takes into account the features of the formulations under consideration.

We have performed numerical calculations which have shown the appli-
cability of the proposed approach. Unfortunately, we have not managed to
find a material for comparison. However, judging by indirect signs, such as
covering density, the results are promising.

Further development of the research may be related to the complication
of the shape of the covered set. It seems advisable from the point of view
of security applications to consider torus and disks of various types.
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