
ДИНАМИЧЕСКИЕ СИСТЕМЫ И ОПТИМАЛЬНОЕ
УПРАВЛЕНИЕ

DYNAMIC SYSTEMS AND OPTIMAL CONTROL

Серия «Математика»
2024. Т. 48. С. 3—20

Онлайн-доступ к журналу:
http://mathizv.isu.ru

И З В Е С Т И Я
Иркутского

государственного
университета

Research article

УДК 519.6, 519.83
MSC 49M05, 91A05

DOI https://doi.org/10.26516/1997-7670.2024.48.3

Algorithm for Solving the Problem

of the First Phase in a Game Problem

with Arbitrary Situations

AkmalR.Mamatov 1B

1 Samarkand State University named after Sh. Rashidov, Samarkand, Uzbekistan
B akmm1964@rambler.ru

Abstract. The game problem of two persons (players) is considered. The two players
alternately choose their strategies from the appropriate sets. First, the first player chooses
his strategy, then, knowing the strategy of the first player, the second player chooses his
strategy. The set of strategies of the second player depends on the strategy of the first
player. It is required to determine the following: for any strategy of the first player, does
there exist a corresponding strategy of the second player? This problem is solved using a
special linear maximin problem with connected variables, the solution of which is reduced
to determining the maximum value of the objective function of the problem’s dual to it
on special strategies. The algorithm for solving the problem considered is given. Two
examples that illustrate the algorithm and the results of numerical experiment is given.

Keywords: game problem, first phase problem, dual problem, support, algorithm

For citation: MamatovA.R. Algorithm for Solving the Problem of the First Phase in
a Game Problem with Arbitrary Situations. The Bulletin of Irkutsk State University.
Series Mathematics, 2024, vol. 48, pp. 3–20.
https://doi.org/10.26516/1997-7670.2024.48.3



4 A. R. MAMATOV

Научная статья

Алгоритм решения задачи первой фазы в игровой задаче
с произвольными ситуациями
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Аннотация. Рассматривается игровая задача двух лиц (игроков). Два игрока по-
очередно выбирают свои стратегии из соответствующих множеств. Сначала первый
игрок выбирает свою стратегию, затем, зная стратегию первого игрока, второй
игрок выбирает свою стратегию. Множество стратегий второго игрока зависит от
стратегии первого игрока. Требуется определить: существует ли для любой стра-
тегии первого игрока соответствующая стратегия второго игрока? Данная задача
решается с помощью специальной линейной максиминной задачи со связанными
переменными, решение которой сводится к определению максимального значения
целевой функции двойственной к ней задачи на специальных стратегиях. Приведен
алгоритм решения рассматриваемой задачи, два примера, иллюстрирующие работу
алгоритма, а также результаты численных экспериментов.

Ключевые слова: игровая задача, задача первой фазы, двойственная задача, опо-
ра, алгоритм
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1. Introduction

As is known [4], the problem of the nonemptiness of the set of feasible
solutions for the problem of linear programming, can be solved using a
special linear programming problem - the problem of the first phase. Anal-
ogycal problems could be involved also for game problems with connected
variables [1; 2; 7; 12;13].

Consider the sets

𝑋 = {𝑥 | 𝑓* ≤ 𝑥 ≤ 𝑓*} and 𝑌 (𝑥) = {𝑦 | 𝑔* ≤ 𝑦 ≤ 𝑔*, 𝐴𝑥+𝐵𝑦 = 𝑏},

where 𝑥 = 𝑥(𝐽), 𝑓* = 𝑓*(𝐽), 𝑓
* = 𝑓*(𝐽) ∈ R𝑛, 𝑦 = 𝑦(𝐾1), 𝑔* = 𝑔*(𝐾1),

𝑔* = 𝑔*(𝐾1) ∈ R𝑙, 𝐴 = 𝐴(𝐼, 𝐽) ∈ R𝑚×𝑛, 𝐵 = 𝐵(𝐼,𝐾1) ∈ R𝑚×𝑙, 𝑟𝑎𝑛𝑘𝐵 =
= 𝑚 < 𝑙, 𝑏 = 𝑏(𝐼) ∈ R𝑚, 𝐼 = {1, 2, ...,𝑚}, 𝐽 = {1, 2, ..., 𝑛},𝐾1 = {1, 2, ..., 𝑙}.

The following game problems with connected variables: game problems
with favorable situations [11]; game problems with arbitrary situations [7],
[12] can be considered on sets 𝑋 and 𝑌 (𝑥).
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When𝑋 = {𝑥 | 𝑓* ≤ 𝑥 ≤ 𝑓*, 𝑌 (𝑥) ̸= ∅} we can also consider game prob-
lems with forbidden situations [1; 2; 13]. Note that the weak linear bilevel
programming problem [3; 9; 10; 15; 16] with the same objective functions
at the upper and lower levels is a game problem with connected variables
(linear maximin (minimax) problem with connected variables). In [3;10] the
weak linear bilevel programming problem is reduced to a linear game prob-
lem with connected variables. Various algorithms [1–3; 9; 10; 12; 13; 15; 16],
have been developed to solve game problems with connected variables,
as well as weak problems of linear bilevel programming. The analysis of
these algorithms shows that, in a certain sense, it is not possible to avoid
enumeration.

It is known [4] that the Duality Theory of linear programming problems
is based on the existence theorem, the duality theorem and the duality
relations between the solutions of the primal and dual problems that arising
from them.

For game problems with favorable situations, sufficient optimality condi-
tions similar to those from duality theory of linear programming, generally
speaking, not true. Moreover, here it is not always possible to speak of
local optimality [14].

To develop efficient algorithms for solving game problems with arbitrary
situations [7; 12], as well as game problems with forbidden situations [1],
[2], [13] it is important to find conditions under which ∀𝑥 ∈ 𝑋,𝑌 (𝑥) ̸= ∅
or ∃𝑥* ∈ 𝑋,𝑌 (𝑥*) = ∅.

Based on this, in the paper the problem which arises in game problems
with connected variables is under research [1; 2; 7; 12; 13],that is the prob-
lem of determining whether the set of strategies of the second player is
nonempty for any strategy of the first player is studied.

Following the theory of linear programming has been formulated and
proved the lemma on the nonemptiness of the set strategies of the second
player for any strategy of the first player.

In the work [12] for a game problem with arbitrary situations (with
connected variables) [7], a dual algorithm for solving it theoretically sub-
stantiated and developed. The algorithm from [12] consists of two parts.
The first part of the algorithm defines 𝑥0 ∈ 𝑋 such that 𝑌 (𝑥0) = ∅ or we
conclude that ∀𝑥 ∈ 𝑋,𝑌 (𝑥) ̸= ∅.

In this paper, an improved version of the first part of the [12] algorithm
is also proposed. In this algorithm, based on a new kind of dual problem for
a special problem of the first phase of the game with arbitrary situations,
as well as special “supporting” properties of the problem, the number of
mathematical operations has been reduced significantly.
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2. Problem statement. Preliminary information from the
theory of game problems with favorable situations

Let there be two players who choose vectors 𝑥 and 𝑦, respectively, from
the sets 𝑋,𝑌 (𝑥) in turn, first the first player chooses 𝑥, then, knowing 𝑥,
the second player chooses 𝑦.

The goal of the first player is to find �̂� that gives the maximum value
for the function

𝜙(𝑥) = min
𝑦∈𝑌 (𝑥)

Ψ(𝑥, 𝑦), 𝑥 ∈ 𝑋, i.e. 𝜙(�̂�) = max
𝑥∈𝑋

𝜙(𝑥),

the second player’s goal is to find 𝑦 that minimizes the function

Ψ(�̂�, 𝑦), 𝑦 ∈ 𝑌 (�̂�), i.e. Ψ(�̂�, 𝑦) = min
𝑦∈𝑌 (�̂�)

Ψ(�̂�, 𝑦).

Here Ψ(𝑥, 𝑦) =

{︃
𝑐′𝑥+ 𝑑′𝑦, if 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 (𝑥), 𝑐 ∈ R𝑛, 𝑑 ∈ R𝑙;

+∞, if 𝑥 ∈ 𝑋,𝑌 (𝑥) = ∅.

Then we have a maximin problem with connected variables [7; 12]:

𝜙(𝑥) = min
𝑦∈𝑌 (𝑥)

Ψ(𝑥, 𝑦)→ max
𝑥∈𝑋

. (2.1)

Definition 1. The vector 𝑥 ∈ 𝑋 is called a strategy (a feasible strategy)
of the first player.

Definition 2. The vector 𝑦 ∈ 𝑌 (𝑥) is called a strategy (a feasible strategy)
of the second player, corresponding to the first player’s strategy 𝑥 (in short,
the second player’s 𝑥-strategy).

Note that problem (2.1) refers to games with arbitrary situations. Addi-
tionally, note that if when solving problem (2.1) �̂� ∈ 𝑋,𝜙(�̂�) <∞, then �̂�
is the solution of the game problem with forbidden situations [1], [2], [13]:

𝜙(𝑥) = min
𝑦∈𝑌 (𝑥)

(𝑐′𝑥+ 𝑑′𝑦)→ max
𝑥∈𝑋

, 𝑋 = {𝑥 | 𝑓* ≤ 𝑥 ≤ 𝑓*, 𝑌 (𝑥) ̸= ∅}.

As noted earlier, to develop an efficient algorithm for solving the problem
(2.1), as well as game problems with forbidden situations, it is important
to find conditions under which ∀𝑥 ∈ 𝑋,𝑌 (𝑥) ̸= ∅ or ∃𝑥* ∈ 𝑋,𝑌 (𝑥*) = ∅.

Based on the above, consider the following problem.
It is required to determine, for any strategy of the first player 𝑥 ∈ 𝑋,

whether there exists a corresponding 𝑥-strategy of the second player, or
whether there exists a strategy of the first player 𝑥* ∈ 𝑋, such that
𝑌 (𝑥*) = ∅, i.e.

(𝑎) ∀𝑥 ∈ 𝑋,𝑌 (𝑥) ̸= ∅? or (𝑏) ∃𝑥* ∈ 𝑋,𝑌 (𝑥*) = ∅? (2.2)
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The problem (2.2) can be considered from the point of view of linear
algebra, as the problem of determining the nonemptiness of the set of solu-
tions of systems of linear inequalities 𝑌 (𝑥) = {𝑦 | 𝑔* ≤ 𝑦 ≤ 𝑔*, 𝐴𝑥+𝐵𝑦 = 𝑏}
with parameters 𝑥 for any parameter from a given region 𝑋 or as a problem
of finding the parameter 𝑥* ∈ 𝑋 such as the set of solutions of systems of
linear inequalities 𝑌 (𝑥*) = {𝑦 | 𝑔* ≤ 𝑦 ≤ 𝑔*, 𝐴𝑥* +𝐵𝑦 = 𝑏} is empty.

Along with problem (2.2), consider the maximin problem:

𝑓(𝑥) = min
𝑔*≤𝑦≤𝑔*

∑︁
𝑖∈𝐼
|𝐴(𝑖, 𝐽)𝑥(𝐽) +𝐵(𝑖,𝐾1)𝑦(𝐾1)− 𝑏(𝑖)| → max

𝑥∈𝑋
. (2.3)

Theorem 1. [12] The optimal values of the objective functions in prob-
lems (2.3) and the problem

𝐹 (𝑥) = min
(𝑦,𝜉,𝜂)∈𝐻(𝑥)

(𝑒′𝜉 + 𝑒′𝜂)→ max
𝑥∈𝑋

, (2.4)

𝐻(𝑥) = {(𝑦, 𝜉, 𝜂) | 𝐴𝑥+𝐵𝑦 − 𝜉 + 𝜂 = 𝑏, 𝑔* ≤ 𝑦 ≤ 𝑔*, 𝜉 ≥ 0, 𝜂 ≥ 0},
𝑒′ = (1, 1, ..., 1), are identical.

Problem (2.4) is a game problem with favorable situations, i.e for any
𝑥 ∈ 𝑋,𝐻(𝑥) ̸= ∅.

Problems (2.3) and (2.4) are related to problem (2.2) by the fact that,
based on the solutions of these problems, we can conclude about solving
problem (2.2).

The algorithm from [12] consists of two parts. The first part of the
algorithm defines 𝑥0 ∈ 𝑋 such that 𝑌 (𝑥0) = ∅ or we conclude that for any
𝑥 ∈ 𝑋,𝑌 (𝑥) ̸= ∅ (Problem of the first part of the algorithm from [12]).
For this purpose, the following problem is considered

𝐹 (𝑥) = min
𝑦∈𝑌 (𝑥)

𝑑
′
𝑦 → max

𝑥∈𝑋
, 𝑌 (𝑥) = {𝑦 | 𝐴𝑥+𝐵𝑦 = 𝑏, 𝑔* ≤ 𝑦 ≤ 𝑔*}. (2.5)

Here 𝑑 = (𝑑𝑘, 𝑘 ∈ 𝐾), 𝑑𝑘 = 0, 𝑘 ∈ 𝐾1, 𝑑𝑘 = 1, 𝑘 ∈ 𝐾2 ∪𝐾3; 𝑦 ∈ R𝑙+2𝑚,

𝐵 = (𝐵
...− 𝐸

...𝐸) ∈ R𝑚×(𝑙+2𝑚), 𝑔* = (𝑔*𝑘, 𝑘 ∈ 𝐾), 𝑔*𝑘 = 𝑔*𝑘, 𝑘 ∈ 𝐾1,

𝑔*𝑘 = 0, 𝑘 ∈ 𝐾2∪𝐾3; 𝑔
* = (𝑔*𝑘, 𝑘 ∈ 𝐾), 𝑔*𝑘 = 𝑔*𝑘, 𝑘 ∈ 𝐾1, 𝑔

*
𝑙+𝑖 = 𝑔*𝑙+𝑚+𝑖 = 𝛾𝑖,

𝛾𝑖 = max
𝑓*≤𝑥≤𝑓*,𝑔*≤𝑦≤𝑔*

|𝐴(𝑖, 𝐽)𝑥(𝐽) +𝐵(𝑖,𝐾)𝑦(𝐾)− 𝑏(𝑖)|, 𝑖 ∈ 𝐼,

𝐾2 = {𝑙 + 1, 𝑙 + 2, ..., 𝑙 +𝑚},𝐾3 = {𝑙 +𝑚+ 1, 𝑙 +𝑚+ 2, ..., 𝑙 + 2𝑚},
𝐾 = 𝐾1 ∪𝐾2 ∪𝐾3.

The solution of the problem of the first part of the algorithm from [12]
is reduced to determining the positive value of the objective function of the
following problem

𝜓(𝜇, 𝜎, 𝜏) = min
(𝜆,𝜈)∈Λ(𝜇,𝜎,𝜏)

(𝑏′𝜇+ 𝑔′*𝜎 − 𝑔*
′
𝜏 + 𝑓*

′
𝜆− 𝑓 ′*𝜈)→ max

(𝜇,𝜎,𝜏)∈Ξ
, (2.6)
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Ξ = {(𝜇, 𝜎, 𝜏) ∈ R𝑚+2(𝑙+𝑚) | 𝐵′
𝜇− 𝜏 + 𝜎 = 𝑑;𝜎 ≥ 0, 𝜏 ≥ 0},

Λ(𝜇, 𝜎, 𝜏) = {(𝜆, 𝜈) ∈ R2𝑛 | 𝐴′𝜇− 𝜈 + 𝜆 = 0; 𝜈 ≥ 0, 𝜆 ≥ 0},
or determining that the optimal value of the objective function of a given
problem is equal to zero on special classes of strategies of players in this
problem, constructed using the support [5] of the internal problem of the
problem (2.1).

Problem (2.6) is called dual problem to problem (2.5) [12].

3. Theoretical foundations for developing an algorithm for
solving the problem of the first phase

Following the theory of linear programming [4], we formulate the lemma
of nonemptiness sets of second player strategies at any strategy of the first
player problem (2.1).

Definition 3. The vector 𝑥 ∈ 𝑋 is called a strategy of the first player,
and the vector (𝑦, 𝜉, 𝜂) ∈ 𝐻(𝑥) is called a 𝑥-strategy of the second player of
the problem (2.4).

Lemma. If for any strategy of the first player 𝑥, 𝑥 ∈ 𝑋 in the problem
(2.1) the set of 𝑥-strategies of the second player 𝑌 (𝑥) is nonempty then in
the solution (𝑥0, 𝑦0, 𝜉0, 𝜂0) of the problem (2.4) the components 𝜉0, 𝜂0 of the
strategy of the second player is zero. If in the solution of the problem (2.4)
(𝑥0, 𝑦0, 𝜉0, 𝜂0) components 𝜉0, 𝜂0 strategy of the second player are equal to
zero, then for any strategy of the first player 𝑥, 𝑥 ∈ 𝑋 in the problem (2.1)
the set of 𝑥-strategies of the second player 𝑌 (𝑥) is nonempty.

Proof. Let 𝑌 (𝑥) ̸= ∅ ∀𝑥 ∈ 𝑋. Then the optimal value of the objective
function of problem (2.4) is equal to zero. Indeed, if the optimal value of the
objective function of problem (2.4) is positive for 𝑥0 ∈ 𝑋, then according
to Theorem 1 from [12] 𝑌 (𝑥0) = ∅. The optimal value of the objective
function of problem (2.4) is equali to zero only for 𝜉0 = 0 ∈ R𝑚, 𝜂0 = 0 ∈
R𝑚.

Let in the solution of the problem (2.4) (𝑥0, 𝑦0, 𝜉0, 𝜂0), 𝜉0 = 𝜂0 = 0 ∈ R𝑚.
Then, according to Theorem 3 from [12], the optimal value of the objective
function (2.3) is equal to zero. Therefore, by Theorem 2 from [12], for any
𝑥 ∈ 𝑋,𝑌 (𝑥) ̸= ∅.

Remark 1. Thus, according to Theorem 1 and Lemma, if the optimal
value objective function of the problem (2.3) ((2.4)) is equal to zero, then
∀𝑥 ∈ 𝑋,𝑌 (𝑥) ̸= ∅, i.e. the problem (2.2) for the case (𝑎) is solved. Taking
into account Theorem 1 from [12], and also that for each 𝑥 ∈ 𝑋, 𝑓(𝑥) =
= 𝐹 (𝑥) we conclude that if the value of the objective function of the prob-
lem (2.3) ((2.4)) is positive for some 𝑥* ∈ 𝑋, i.e. 𝑓(𝑥*) > 0 (𝐹 (𝑥*) > 0),
then 𝑌 (𝑥*) = ∅, i.e. the problem (2.2) for the case (𝑏) is solved.

Известия Иркутского государственного университета.
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Recall that to determine both the emptiness and nonemptiness of the
set of feasible solutions to a linear programming problem, it is necessary
to solve the first phase problem. To determine the nonemptiness of the
set of strategies of the second player for some strategy of the first player
in a game problem with favorable situations, as mentioned above, in the
general case, it is not necessary to solve the problem (2.4). Based on this,
we introduce the following definitions.

Definition 4. Let us call problem (2.2) the problem of the first phase for
the problem (2.1).

Definition 5. Let us call problem (2.4) the special problem of the first
phase for the problem (2.1).

Definition 6. The problem of maximizing the function 𝜓(𝜇, 𝑠, 𝑡) with
respect to (𝜇, 𝑠, 𝑡) ∈ Ξ, i.e.

𝜓(𝜇, 𝑠, 𝑡) = min
(𝜆,𝜈)∈Λ(𝜇,𝑠,𝑡)

(𝑏′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡+ 𝑓*

′
𝜆− 𝑓 ′*𝜈)→ max

(𝜇,𝑠,𝑡)∈Ξ
, (3.1)

Ξ = {(𝜇, 𝑠, 𝑡) | 𝐵′𝜇− 𝑡+ 𝑠 = 0; 𝑠 ≥ 0, 𝑡 ≥ 0,−𝑒 ≤ 𝜇 ≤ 𝑒},

Λ(𝜇, 𝑠, 𝑡) = {(𝜆, 𝜈) | 𝐴′𝜇− 𝜈 + 𝜆 = 0; 𝜈 ≥ 0, 𝜆 ≥ 0},

will be called dual to the problem (2.4).

In this regard, problem (2.4) we will call the primal problem. In the
following theorem the connection between the primal and dual problems is
established.

Theorem 2. The optimal values of the objective functions in problems
(2.4) and (3.1) are identical.

Proof. Let us first prove that the optimal value of the objective functions
of the problem (2.4) and problem

(𝑏−𝐴𝑥)′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡→ max

𝑥∈𝑋,(𝜇,𝑠,𝑡)∈Ξ
(3.2)

match up. Let 𝑥 ∈ 𝑋. Be the optimal value of the objective function of the
internal problem of the problem (2.4)

(𝑒′𝜉 + 𝑒′𝜂)→ min
(𝑦,𝜉,𝜂)∈𝐻(𝑥)

can be considered as a function of the parameter 𝑥:

𝐹 (𝑥) = min
(𝑦,𝜉,𝜂)∈𝐻(𝑥)

(𝑒′𝜉 + 𝑒′𝜂).
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The optimal value of the objective function of the problem is

(𝑏−𝐴𝑥)′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡→ max

(𝜇,𝑠,𝑡)∈Ξ
,

which is dual to the inner problem of problem (2.4), can also be considered
as a function of the 𝑥 parameter: 𝛽(𝑥) = max(𝜇,𝑠,𝑡)∈Ξ((𝑏−𝐴𝑥)′𝜇+𝑔′*𝑠−𝑔*

′
𝑡).

According to the duality theory of linear programming [4], for a fixed
𝑥 ∈ 𝑋,𝐹 (𝑥) = 𝛽(𝑥). This implies

max
𝑥∈𝑋

𝐹 (𝑥) = max
𝑥∈𝑋,(𝜇,𝑠,𝑡)∈Ξ

((𝑏−𝐴𝑥)′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡).

Similarly, it is proven that the optimal value of the objective functions
of problems (3.2) and (3.1) coincide, from which follows the proof of the
theorem.

Definition 7. Vector (𝜇, 𝑠, 𝑡) ∈ Ξ is called a strategy of the first player in
problem (3.1), and vector (𝜆, 𝜈) ∈ Λ(𝜇, 𝑠, 𝑡) is called a (𝜇, 𝑠, 𝑡)-strategy of
the second player in problem (3.1).

We emphasize that it is necessary to distinguish between the correspond-
ing players participating in problems (2.4) and (3.1). Namely, the first
player in problem (2.4) is also not the first player in problem (3.1), and the
second player in problem (2.4) is not the second player in problem (3.1).The
first player in problem (3.1) is the dual of the second player in problem
(2.4), and the second player in problem (3.1) is the dual of the first player
in problem (2.4). Problem (3.1) is formulated directly for problem (2.4),
and problem (2.6) is formulated for problem (2.5) for being equivalent to
problem (2.4), and obtained from problem (2.4) by adding fictitious upper
constraints for the strategies of the second player. The addition of fictitious
upper constraints entails an increase in the dimension of the dual problem.
This naturally affects the efficiency of the numerical solution of the dual
problem.

Let 𝑥 be a strategy of the first player in problem (2.4).

Definition 8. The strategy (𝑦, 𝜉, 𝜂) of the second player is called the
optimal 𝑥-strategy in problem (2.4), if it is a solution of the problem

𝑒′𝜉 + 𝑒′𝜂 → min
(𝑦,𝜉,𝜂)∈𝐻(𝑥)

. (3.3)

Set 𝐾𝑜𝑝 = 𝐾𝑜𝑝(𝑥) = 𝐾𝑜𝑝1 ∪𝐾𝑜𝑝2 ∪𝐾𝑜𝑝3 (𝐾𝑜𝑝1 ⊂ 𝐾1,𝐾𝑜𝑝2 ⊆ 𝐾2,
𝐾𝑜𝑝3 ⊆ 𝐾3, | 𝐾𝑜𝑝 |= 𝑚) is called a support [5] of problem (3.3) if

𝑑𝑒𝑡𝐵(𝐼,𝐾𝑜𝑝) ̸= 0 (𝐵(𝐼,𝐾) = (𝐵(𝐼,𝐾1);−𝑒𝑘−𝑙, 𝑘 ∈ 𝐾2; 𝑒𝑘−𝑙−𝑚, 𝑘 ∈ 𝐾3)).

Based on the 𝐾𝑜𝑝 support, construct the vectors 𝜇(𝐼),Δ(𝐾),∇(𝐽) as
follows:

Δ′(𝐾) = 𝜇′(𝐼)𝐵(𝐼,𝐾)− 𝑑′(𝐾),∇′(𝐽) = 𝜇′(𝐼)𝐴(𝐼, 𝐽), (3.4)

Известия Иркутского государственного университета.
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𝜇′(𝐼) = 𝑑
′
(𝐾𝑜𝑝)[𝐵(𝐼,𝐾𝑜𝑝)]

−1.

We present the optimality conditions for the 𝑥-strategy of the second player
(𝑦, 𝜉, 𝜂) of problem (2.4), i.e., internal problem of the problem (2.4) (prob-
lem (3.3)), which is a linear programming problem.

According to [4–6], the following theorem is valid.

Theorem 3. The strategy (𝑦, 𝜉, 𝜂) ∈ 𝐻(𝑥) is the optimal 𝑥-strategy of
the second player if and only if there exist a support 𝐾𝑜𝑝 such that, for
the vector Δ(𝐾) constructed by formula (3.4), the following relations are
satisfied:

Δ𝑘 ≤ 0 for 𝑦𝑘 = 𝑔*𝑘; Δ𝑘 ≥ 0 for 𝑣𝑘 = 𝑔*𝑘;

Δ𝑘 = 0 for 𝑔*𝑘 < 𝑦𝑘 < 𝑔*𝑘, 𝑘 ∈ 𝐾𝑛1 = 𝐾1∖𝐾𝑜𝑝1;

Δ𝑘 ≤ 0 for 𝜉𝑘 = 0;Δ𝑘 = 0 for 𝜉𝑘 > 0, 𝑘 ∈ 𝐾𝑛2 = 𝐾2∖𝐾𝑜𝑝2; (3.5)

Δ𝑘 ≤ 0 for 𝜂𝑘 = 0;Δ𝑘 = 0 for 𝜂𝑘 > 0, 𝑘 ∈ 𝐾𝑛3 = 𝐾3∖𝐾𝑜𝑝3.

Proof. Sufficiency. Let the conditions of the theorem be satisfied. Note
that Δ𝑙+𝑘 = −𝜇𝑘 − 1,Δ𝑙+𝑚+𝑘 = 𝜇𝑘 − 1, 𝑘 = 1,𝑚. Hence, −𝑒 ≤ 𝜇 ≤ 𝑒. We
construct vectors 𝑠, 𝑡 as follows:

𝑠𝑘 = 0, 𝑡𝑘 = Δ𝑘 if Δ𝑘 ≥ 0; 𝑠𝑘 = −Δ𝑘, 𝑡𝑘 = 0 if Δ𝑘 < 0, 𝑘 ∈ 𝐾1. (3.6)

We have the equality

𝑒′𝜉 + 𝑒′𝜂 = 𝑑
′
(𝐾𝑜𝑝)

⎛⎝ 𝑦(𝐾𝑜𝑝1)
𝜉(𝐾𝑜𝑝2)
𝜂(𝐾𝑜𝑝3)

⎞⎠+ 𝑑
′
(𝐾𝑛)

⎛⎝ 𝑦(𝐾𝑛1)
𝜉(𝐾𝑛2)
𝜂(𝐾𝑛3)

⎞⎠ =

= 𝑑
′
(𝐾𝑜𝑝)[𝐵(𝐼,𝐾𝑜𝑝)]

−1[𝑏−𝐴𝑥−𝐵(𝐼,𝐾𝑛1 ∪𝐾𝑛2 ∪𝐾𝑛3)

⎛⎝ 𝑦(𝐾𝑛1)
𝜉(𝐾𝑛2)
𝜂(𝐾𝑛3)

⎞⎠]+

+𝑑
′
(𝐾𝑛)

⎛⎝ 𝑦(𝐾𝑛1)
𝜉(𝐾𝑛2)
𝜂(𝐾𝑛3)

⎞⎠ = (𝑏−𝐴𝑥)′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡. (3.7)

Then, it follows from the duality theory of linear programming [4] that
strategy (𝑦, 𝜉, 𝜂) ∈ 𝐻(𝑥) is the optimal 𝑥-strategy of the second player.
The proof of the necessary part of the theorem is similar to the proof of
the optimality criterion [6] (Part 1, Ch. 6, S1. ).

The support 𝐾𝑜𝑝 is called the 𝑥-optimal support (corresponding to the
optimal 𝑥-strategy (𝑦, 𝜉, 𝜂) in problem (3.3)), if relation (3.5) are satisfied
on the pair {(𝑦, 𝜉, 𝜂),𝐾𝑜𝑝}.

Let us present the optimality conditions for the strategy of the first
player 𝑥 in the problem (2.4).
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Theorem 4. Let 𝑥 be the optimal strategy of the first player in problem
(2.4). Then, there is an 𝑥-optimal support 𝐾𝑜𝑝 of the problem (3.3), where
for the vector ∇(𝐽), constructed according to formula (3.4), the following
relations are fulfilled:

∇𝑗 ≤ 0 for 𝑥𝑗 = 𝑓*𝑗 ;∇𝑗 ≥ 0 for 𝑥𝑗 = 𝑓*𝑗 ;

∇𝑗 = 0 for 𝑓*𝑗 < 𝑥𝑗 < 𝑓*𝑗 , 𝑗 ∈ 𝐽. (3.8)

Proof. Let 𝑥 be an optimal strategy of the first player in problem (2.4).
Solving problem (3.3) by the adaptive method [5], [6] (Part 3), we obtain
an 𝑥-optimal strategy (𝑦, 𝜉, 𝜂) and an 𝑥-optimal support 𝐾𝑜𝑝(𝑥). From the
support 𝐾𝑜𝑝(𝑥) we construct the vectors (𝜇, 𝑠, 𝑡) according to (3.4), (3.6).
Then, according to (3.7) we have:

𝑒′𝜉 + 𝑒′𝜂 = −∇′𝑥+ 𝑏′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡.

Since 𝑥 is an optimal strategy of the first player in problem (2.4), then for
a fixed (𝜇, 𝑠, 𝑡) it is a solution of the problem

−∇′𝑥+ 𝑏′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡→ max

𝑥∈𝑋
.

The optimality conditions for the vector 𝑥 for this problem are (3.8).

Definition 9. Vectors 𝛿(𝐾) and ∇(𝐽),

𝛿′(𝐾) = 𝜇′(𝐼)𝐵(𝐼,𝐾)− 𝑑′(𝐾),∇′
(𝐽) = 𝜇′(𝐼)𝐴(𝐼, 𝐽), (3.9)

constructed from the component 𝜇 strategies of the first player (𝜇, 𝑠, 𝑡) in
problem (3.1) are called the costrategies of the first and second players,
correspondingly, for problem (2.4).

Note that

𝛿(𝐾) = Δ(𝐾),∇(𝐽) = ∇(𝐽) at 𝜇′(𝐼) = 𝑑
′
(𝐾𝑜𝑝)[𝐵(𝐼,𝐾𝑜𝑝)]

−1.

Definition 10. Terms

𝑠𝑘 = 0, 𝑡𝑘 = 𝛿𝑘 if 𝛿𝑘 ≥ 0; 𝑠𝑘 = −𝛿𝑘, 𝑡𝑘 = 0 if 𝛿𝑘 < 0, 𝑘 ∈ 𝐾1;

𝜈𝑗 = ∇𝑗 , 𝜆𝑗 = 0 if ∇𝑗 ≥ 0; 𝜈𝑗 = 0, 𝜆𝑗 = −∇𝑗 if ∇𝑗 < 0; 𝑗 ∈ 𝐽, (3.10)

let us call the matching conditions for the strategies of the players (𝜇, 𝑠, 𝑡),
(𝜆, 𝜈) of problem (3.1) with the costrategies 𝛿(𝐾),∇(𝐽) of problem (2.4).

In this case, we have:

𝑏′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡 = max

(𝜇,𝑠,𝑡)∈Ξ
(𝑏′𝜇+ 𝑔′*𝑠− 𝑔*

′
𝑡);

Известия Иркутского государственного университета.
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𝑓*
′
𝜆− 𝑓 ′*𝜈 = min

(𝜆,𝜈)∈Λ(𝜇,𝑠,𝑡)
(𝑓*

′
𝜆− 𝑓 ′*𝜈). (3.11)

Indeed, let (𝜇, 𝑠, 𝑡) ∈ Ξ, (𝜆, 𝜈) ∈ Λ(𝜇, 𝑠, 𝑡) are arbitrary strategies of the
players in the problem (3.1), (𝜇, 𝑠, 𝑡) ∈ Ξ, (𝜆, 𝜈) ∈ Λ(𝜇, 𝑠, 𝑡) are agreed
strategies of the players in the problem (3.1). The to the strategies of the
first player (𝜇, 𝑠, 𝑡) ∈ Ξ, (𝜇, 𝑠, 𝑡) ∈ Ξ corresponds to the same costrategy
𝛿(𝐾). Similar to the strategies of the second player (𝜆, 𝜈) ∈ Λ(𝜇, 𝑠, 𝑡),
(𝜆, 𝜈) ∈ Λ(𝜇, 𝑠, 𝑡) also corresponds to the same costrategy ∇(𝐽).

Consequently,

𝐵′𝜇− 𝑡+ 𝑠 = 0, 𝐵′𝜇− 𝑡+ 𝑠 = 0;𝐴′𝜇− 𝜈 + 𝜆 = 0, 𝐴′𝜇− 𝜈 + 𝜆 = 0.

Then we have

𝑏′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡 = 𝑏′𝜇−

∑︁
𝑘∈𝐾1,𝛿𝑘<0

𝑔*𝑘𝛿𝑘 −
∑︁

𝑘∈𝐾1,𝛿𝑘≥0

𝑔*𝑘𝛿𝑘 =

= 𝑏′𝜇−
∑︁

𝑘∈𝐾1,𝛿𝑘<0

𝑔*𝑘(𝑡𝑘 − 𝑠𝑘)−
∑︁

𝑘∈𝐾1,𝛿𝑘≥0

𝑔*𝑘(𝑡𝑘 − 𝑠𝑘) ≥

≥ 𝑏′𝜇−
∑︁

𝑘∈𝐾1,𝛿𝑘<0

(𝑔*𝑘𝑡𝑘−𝑔*𝑘𝑠𝑘)−
∑︁

𝑘∈𝐾1,𝛿𝑘≥0

(𝑔*𝑘𝑡𝑘−𝑔*𝑘𝑠𝑘) = 𝑏′𝜇+𝑔′*𝑠−𝑔*
′
𝑡;

Similarly, we have 𝑓*
′
𝜆− 𝑓 ′*𝜈 ≤ 𝑓*

′
𝜆− 𝑓 ′*𝜈.

Therefore, for studying problem (2.6), it is sufficient to consider only the
agreed strategies of the players.

Definition 11. The pair 𝛽 = (𝛿,∇) we call a cosituation of problem (2.4).

Definition 12. The pair {𝛽,𝐾𝑜𝑝} from the cosituation 𝛽 and the support
𝐾𝑜𝑝, we call the support cosituation of the problem (2.4).

Definition 13. The vector (𝑦, 𝜉, 𝜂) satisfying the relation 𝐵𝑦 − 𝜉 + 𝜂 =
= 𝑏−𝐴𝑥 is called a pseudostrategy of the second player in problem (2.4) cor-
responding to the strategy 𝑥 of the first player (shortly, 𝑥-pseudostrategy).

Given the support cosituation {𝛽,𝐾𝑜𝑝}, we construct the corresponding
the strategy of the first player 𝑥 and 𝑥 is a pseudostrategy of the second
player (𝑦, 𝜉, 𝜂) of problem (2.4):

𝑥𝑗 = 𝑓*𝑗 for ∇𝑗 > 0; 𝑥𝑗 = 𝑓*𝑗 for ∇𝑗 < 0;

𝑥𝑗 = 𝑓*𝑗 ∨ 𝑓*𝑗 for ∇𝑗 = 0, 𝑗 ∈ 𝐽 ;

𝑦𝑘 = 𝑔*𝑘 for 𝛿𝑘 < 0; 𝑦𝑘 = 𝑔*𝑘 for 𝛿𝑘 > 0;

𝑦𝑘 = 𝑔*𝑘 ∨ 𝑔*𝑘 for 𝛿𝑘 = 0, 𝑘 ∈ 𝐾𝑛1; (3.12)

𝜉𝑘 = 0 for 𝑘 ∈ 𝐾𝑛2; 𝜂𝑘 = 0 for 𝑘 ∈ 𝐾𝑛3;
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𝜉(𝐾𝑜𝑝2)
𝜂(𝐾𝑜𝑝3)

⎞⎠ = [𝐵(𝐼,𝐾𝑜𝑝)]
−1[𝑏−𝐴𝑥−𝐵(𝐼,𝐾𝑛1)𝑦(𝐾𝑛1)].

Let us present the conditions under which the value of the objective
functions of problems (2.4) and (3.1) for the strategies of the players cor-
responding to the support cosituation {𝛽,𝐾𝑜𝑝} and consistent with the
cosituation 𝛽 coincide.

Theorem 5. Let us {𝛽,𝐾𝑜𝑝} the supporting cosituation of problem (2.4),
(𝜇, 𝑠, 𝑡), (𝜆, 𝜈) are players’ strategies of the problem (2.6), consistent with
cosituation 𝛽, 𝑥, (𝑦, 𝜉, 𝜂) is the strategy of the first player and 𝑥 - pseu-
dostrategy of the second player of the problem (2.6), corresponding to the
supporting cosituation {𝛽,𝐾𝑜𝑝}. If the relations

𝑦𝑘 = 𝑔*𝑘 for 𝛿𝑘 < 0; 𝑦𝑘 = 𝑔*𝑘 for 𝛿𝑘 > 0;

𝑦𝑘 ∈ [𝑔*𝑘, 𝑔
*
𝑘] for 𝛿𝑘 = 0, 𝑘 ∈ 𝐾𝑜𝑝1;

𝜉𝑘 = 0 for 𝛿𝑘 < 0; 𝜉𝑘 ≥ 0 for 𝛿𝑘 = 0, 𝑘 ∈ 𝐾𝑜𝑝2;

𝜂𝑘 = 0 for 𝛿𝑘 < 0; 𝜂𝑘 ≥ 0 for 𝛿𝑘 = 0, 𝑘 ∈ 𝐾𝑜𝑝3,

is satisfied then the equality 𝐹 (𝑥) = 𝜓(𝜇, 𝑠, 𝑡).

Proof. If the conditions of the theorem are satisfied, similarly to (3.7) we
obtain

𝑒′𝜉 + 𝑒′𝜂 = (𝑏−𝐴𝑥)′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡.

Therefore we have

𝐹 (𝑥) = 𝑒′𝜉 + 𝑒′𝜂 = 𝑏′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡+ 𝜇′𝐴𝑥 = 𝑏′𝜇+ 𝑔′*𝑠− 𝑔*

′
𝑡+ 𝑓*

′
𝜆− 𝑓 ′*𝜈.

Considering (3.11), we have

𝜓(𝜇, 𝑠, 𝑡) = 𝑏′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡+ 𝑓*

′
𝜆− 𝑓 ′*𝜈.

Consequently 𝐹 (𝑥) = 𝜓(𝜇, 𝑠, 𝑡).

4. Algorithm for solving the problem of the first phase

Thus, according to the lemma, remark 1 and theorems 2-5, the solution
of problem (2.2) for case (b) can be determined, by finding such a support
𝐾0

𝑜𝑝 of problem (3.3), under which the value of the objective function of
problem (3.1) are positive on the agreed strategies of the players, con-
structed using the support 𝐾0

𝑜𝑝 according by formulas (3.9), (3.10) with

𝜇′ = 𝑑
′
(𝐾0

𝑜𝑝)[𝐵(𝐼,𝐾0
𝑜𝑝)]

−1.

Известия Иркутского государственного университета.
Серия «Математика». 2024. Т. 48. С. 3–20



ALGORITHM FOR SOLVING OF THE FIRST PHASE IN A GAME PROBLEM 15

Indeed, first, the value of the objective function of the problem (2.3)
is nonnegative, and second, the optimal values of the objective functions
of problems (2.3), (2.4), and (3.1) coincide. Therefore, if the value of
the objective function of the problem (3.1) is positive for some (𝜇, 𝑠, 𝑡),
(𝜇, 𝑠, 𝑡) ∈ Ξ, then the value of the objective functions of the problems
(2.3), (2.4) are also positive for some 𝑥 ∈ 𝑋 and vice versa. Third, for
the optimal strategy of the first player, there exists some support 𝐾0

𝑜𝑝

under which the conditions of Theorems 3 and 4 are satisfied. Fourth,
the number of possible supports of problem (3.3) is, of course, no more

than 𝑞 = 𝐶𝑚
𝑙+2𝑚 = (𝑙+2𝑚)!

𝑚!(𝑙+𝑚)! . When studying problem (3.1), it is enough to

consider only the agreed strategies of the players in the problem. Based
on the above that it suffices to consider only the agreed strategies of the
players of problem (3.1) constructed using support𝐾0

𝑜𝑝 according by formu-

las (3.9), (3.10) with 𝜇′ = 𝑑
′
(𝐾0

𝑜𝑝)[𝐵(𝐼,𝐾0
𝑜𝑝)]

−1. The first player’s strategy

𝑥 corresponding to the supporting cosituation {𝛽,𝐾0
𝑜𝑝} is a solution to

problem (2.2) for case (𝑏), because

𝑓(𝑥) = 𝐹 (𝑥) = max
(𝜇,𝑠,𝑡)∈Ξ

((𝑏−𝐴𝑥)′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡) ≥

≥ (𝑏−𝐴𝑥)′𝜇+ 𝑔′*𝑠− 𝑔*
′
𝑡 = 𝑏′𝜇+ 𝑔′*𝑠− 𝑔*

′
𝑡+ 𝑓*

′
𝜆− 𝑓 ′*𝜈 > 0.

Similarly, the solution of problem (2.2) for case (a) can be determined
as follows: if the maximum value of the objective function of problem
(3.1) is equal to zero on the agreed strategies of the players built using the

support 𝐾0
𝑜𝑝 by formulas (3.9), (3.10) with 𝜇′ = 𝑑

′
(𝐾0

𝑜𝑝)[𝐵(𝐼,𝐾0
𝑜𝑝)]

−1, then
∀𝑥 ∈ 𝑋,𝑌 (𝑥) ̸= ∅.

Remark 2. From (3.9), and (3.10) it follows that the value of the ob-

jective function of problem (3.1) for 𝜇′ = 𝑑
′
(𝐾𝑜𝑝)[𝐵(𝐼,𝐾𝑜𝑝)]

−1,𝐾𝑜𝑝 ⊂ 𝐾1

equals zero. Note that the elements 𝑘 ∈ 𝐾2, 𝑗 ∈ 𝐾3 for which it is appro-
priate 𝑘 +𝑚 = 𝑗 cannot be simultaneously in some support, because the
corresponding matrix will be degenerate.

Let us present an algorithm for solving problem (2.2).
Denote by 𝐾1

𝑜𝑝,𝐾
2
𝑜𝑝, ...,𝐾

𝑞
𝑜𝑝, 𝑞 = 𝐶𝑚

𝑙+2𝑚, the lexicographic order [8] of
possible supports of problem (3.3).

Step 1. Set 𝑧 := 1, 𝑘1 := 1, 𝑧0 := 𝑧,𝐾𝑜
𝑜𝑝 := 𝐾𝑧

𝑜𝑝, 𝑓 := −∞. Define and

construct the matrix 𝐵 = (𝐵
...− 𝐸

...𝐸).
Step 2. If all elements of the set 𝐾𝑧

𝑜𝑝 from 𝐾1 or the environment of
its elements contains elements 𝑘, 𝑞1 such as 𝑘 +𝑚 = 𝑞1, 𝑘 ∈ 𝐾2, 𝑞1 ∈ 𝐾3,
then go to step 6.

Step 3. Calculate det𝐵(𝐼,𝐾𝑧
𝑜𝑝). If det𝐵(𝐼,𝐾𝑧

𝑜𝑝) = 0, then go to step 6.

Step 4. For 𝐾𝑧
𝑜𝑝 construct the vector 𝜇′(𝐼) = 𝑑

′
(𝐾𝑜𝑝)[𝐵(𝐼,𝐾𝑜𝑝)]

−1. If
∃𝑖* ∈ 𝐼, |𝜇𝑖* | > 1, then go to step 6.
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Step 5. Using formulas (3.4), (3.9), (3.10), and (3.12), construct the
vectors (𝜇, 𝑠, 𝑡), (𝜆, 𝜈), 𝑥, and calculate the value 𝐹 = 𝑏′𝜇+𝑔′*𝑠−𝑔*

′
𝑡+𝑓*

′
𝜆−

− 𝑓 ′*𝜈. If 𝐹 > 0, then set 𝑘1 := 0, 𝑧𝑜 := 𝑧,𝐾𝑜
𝑜𝑝 := 𝐾𝑧

𝑜𝑝, 𝑥
𝑜 := 𝑥, 𝑓 := +∞

and go to step 7.
Step 6. If 𝑧 < 𝑞, then set 𝑧 := 𝑧 + 1 go to step 2.
Step 7. The algorithm stops. If 𝑘1 = 0, then for 𝑥𝑜 𝑌 (𝑥𝑜) = ∅. If,

𝑘1 = 1, then ∀𝑥 ∈ 𝑋,𝑌 (𝑥) ̸= ∅.

Example 1. Consider problem (2.2) with the following values of the
parameters:

𝑚 = 2, 𝑛 = 3, 𝑙 = 5, 𝑓 ′* = (−5;−30; 0), 𝑓*′ = (3; 25; 40),

𝑔′* = (−109;−6;−101;−10;−3), 𝑔*′ = (44; 6; 298; 10; 15),

𝐴 =

(︂
1 0 −1
0 1 1

)︂
, 𝐵 =

(︂
6 3 2 3 4
4 2 1 2 3

)︂
, 𝑏 = (5; 4).

We have 𝐼 = {1, 2}, 𝐽 = {1, 2, 3},𝐾1 = {1, 2, 3, 4, 5},𝐾2 = {6, 7},𝐾3 =
= {8, 9},𝐾 = {1, 2, 3, 4, 5, 6, 7, 8, 9},𝐾1

𝑜𝑝 = {1, 2}, ...,𝐾36
𝑜𝑝 = {8, 9}.

We apply the described algorithm.

Step 1. 𝑧 := 1, 𝑘1 := 1, 𝑧0 := 𝑧,𝐵 =

(︂
6 3 2 3 4 −1 0 1 0
4 2 1 2 3 0 −1 0 1

)︂
,

𝐾𝑜
𝑜𝑝 := {1, 2}, 𝑓 := −∞. Step 2. 𝐾1

𝑜𝑝 = {1, 2}. Step 6. 𝑧 := 2. ... Step 6.

𝑧 := 5. Step 2. 𝐾5
𝑜𝑝 = {1, 6}. Step 3. det𝐵(𝐼,𝐾5

𝑜𝑝) = 4. Step 4. 𝜇′ =

= (−1; 1, 5). ...Step 6. 𝑧 := 36. Step 2. Step 3. det𝐵(𝐼,𝐾36
𝑜𝑝 ) = 1. Step 4.

𝜇′ = (1; 1). Step 5. 𝐹 = −1475. Step 6. Step 7. 𝑘1 = 1,∀𝑥 ∈ 𝑋,𝑌 (𝑥) ̸= ∅.
The number of possible supports of problem (3.3) is 36, and the number

of calculated determinants of support matrices (𝐵(𝐼,𝐾𝑧
𝑜𝑝)) of problem (3.3)

is 23. Out of 23, in 13 cases it was necessary to calculate the value of the
objective function of the problem (3.1).

Example 2. Consider example 1 for 𝑓*
′
= (3; 25; 50).

We apply the described algorithm.

Step 1. 𝑧 := 1, 𝑘1 := 1, 𝑧0 := 𝑧,𝐵 =

(︂
6 3 2 3 4 −1 0 1 0
4 2 1 2 3 0 −1 0 1

)︂
,

𝐾𝑜
𝑜𝑝 := {1, 2}, 𝑓 := −∞. Step 2. 𝐾1

𝑜𝑝 = {1, 2}. Step 6. 𝑧 := 2. Step 2.

𝐾2
𝑜𝑝 = {1, 3}. Step 6. 𝑧 := 3. Step 2. 𝐾3

𝑜𝑝 = {1, 4}. Step 6. 𝑧 := 4.

Step 2. 𝐾4
𝑜𝑝 = {1, 5}. Step 6. 𝑧 := 5. Step 2. 𝐾5

𝑜𝑝 = {1, 6}. Step 3.

det𝐵(𝐼,𝐾5
𝑜𝑝) = 4. Step 4. 𝜇′ = (−1; 1, 5). Step 6. 𝑧 := 6. Step 2. Step 3.

det𝐵(𝐼,𝐾6
𝑜𝑝) = −6. Step 4. 𝜇′ = (2/3;−1). Step 5. 𝐹 = 10, 667, 𝑓 = +∞.

Step 7. 𝑘1 = 0, 𝑓 = +∞, 𝑥0 = (−5; 25; 50), 𝑌 (𝑥0) = ∅.
The number of possible supports of problem (3.3) is 36, and the number

of calculated determinants of support matrices (𝐵(𝐼,𝐾𝑧
𝑜𝑝)) of problem (3.3)

is 2. Out of 2, in 1 cases it was necessary to calculate the value of the
objective function of the problem (3.1).
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5. Numerical experiment

The algorithm was implemented in the Simple Fortran 2.26 environ-
ment. A numerical experiment was set up on a PC (Windows 7; Intel(R)
Celeron(R) CPUN2930 (1.83 GHz); 4GB RAM; system type:32-bit OS).
There are two types of generated problems.

a) Elements of Problem (2.2) are generated by a random number gen-
erator. The elements of the matrices 𝐴,𝐵 were chosen from the segment
[-10,10]. The coordinates vectors 𝑓*, 𝑔*, were chosen from segment [-10, 0],
and the coordinates of vectors 𝑓*, 𝑔*, were chosen from the segment [0,10].
The vector 𝑏 was assumed to be equal to 𝑏 = 𝐴𝑥0 + 𝐵𝑦0. Here 𝑥0, 𝑦0,
vectors, whose coordinates were assumed to be equal 𝑥0𝑗 = (𝑓*𝑗 + 𝑓*𝑗 )/2,

𝑗 ∈ {1, 2, ..., 𝑛}, 𝑦0𝑘 = (𝑔*𝑘 + 𝑔*𝑘)/2, 𝑘 ∈ {1, 2, ..., 𝑙}.
b) If after generating the elements of the problem in case a) the first 𝑚

components of the vectors 𝑔*, 𝑔
* redefine as follows:

𝑔*𝑖 = max
𝑓*≤𝑥≤𝑓*,𝑔*(𝐾𝑛)≤𝑦(𝐾𝑛)≤𝑔*(𝐾𝑛)

ℎ𝑖(𝑏(𝐼)−𝐴(𝐼, 𝐽)𝑥(𝐽)−𝐵(𝐼,𝐾𝑛)𝑦(𝐾𝑛)),

𝑔*𝑖 = min
𝑓*≤𝑥≤𝑓*,𝑔*(𝐾𝑛)≤𝑦(𝐾𝑛)≤𝑔*(𝐾𝑛)

ℎ𝑖(𝑏(𝐼)−𝐴(𝐼, 𝐽)𝑥(𝐽)−𝐵(𝐼,𝐾𝑛)𝑦(𝐾𝑛)),

𝑖 = 1,𝑚;ℎ𝑖, 𝑖-th row of the matrix 𝐵−1
𝑜𝑝 , 𝑖 ∈ 𝐼 = {1, 2, ...,𝑚},𝐾𝑛 = {𝑙−𝑚+

1, 𝑙 −𝑚+ 2, ..., 𝑙} then problems are formed for which ∀𝑥 ∈ 𝑋,𝑌 (𝑥) ̸= ∅.
The resulting problems were solved by the proposed algorithm, and also

for comparison with the first part of the algorithm [12].
The results are shown in the table 1, where 𝑝1 = 9231, 𝑝2 = 1321,

𝑝12 = 12524, 𝑝3 = 10712, 𝑝4 = 1914, 𝑝34 = 184756, 𝑝5 = 69206565,
𝑝6 = 1647237, 𝑝7 = 440630280, 𝑝8 = 9632608.

The following designations are accepted: 𝑁𝑧 determines the type of prob-
lem (2.2) generation for given 𝑚,𝑛, 𝑙;𝐾𝑟 is the number of possible supports
of the problem (3.3), for which it was necessary to calculate the determinant
of the corresponding matrices; 𝐾𝑧 is the number of calculated values of the
objective function of the problem (3.1); 𝑘1 is the outcoming result of the
algorithm; 𝐾𝑟1 is the number of possible supports of the problem (3.3), for
which it was necessary to calculate the determinant of the corresponding
matrices when solving the problem by the first part of the [12] algorithm
(in this case, 𝐾𝑟1 is also the number of calculated values of the objective
function of the problem (2.6)); 𝑡 is time of solving the problem (2.2) by
the proposed algorithm; 𝑡1 is time to solve the problem (2.2) according to
the first part of the algorithm [12]; ”-” means that problem (2.2) was not
solved in 10 hours.

From the values of 𝐾𝑟,𝐾𝑧,𝐾𝑟1, 𝑡, 𝑡1 in the table it follows that the
proposed algorithm is more effective than the first part of the algorithm
from [12].

The applicability limit of the algorithm (specifically achievable values
𝑚,𝑛 and 𝑙) depends on the generation of parameters problem (2.2). In the
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numerical experiment carried out, when time was no more than 10 hours,
in case b) it was equal to 𝑚 = 10, 𝑛 = 20 and 𝑙 = 20, in case a)it was equal
to 𝑚 = 3000, 𝑛 = 10000 and 𝑙 = 5000.

𝑚 𝑛 𝑙 𝑁𝑧 𝐾𝑟 𝐾𝑧 𝑘1 𝐾𝑟1 𝑡 𝑡1
2 3 5 a 23 14 1 36 0:00:00.00 0:00:00.00

2 3 5 b 23 13 1 36 0:00:00.00 0:00:00.00

2 5 5 a 6 3 0 13 0:00:00.00 0:00:00.00

2 5 5 b 23 14 1 36 0:00:00.00 0:00:00.00

5 10 10 a 𝑝1 𝑝2 0 𝑝12 0:00:00.00 0:00:00.00

5 10 10 b 𝑝3 𝑝4 1 𝑝34 0:00:05.25 0:00:15.51

10 10 15 b 𝑝5 𝑝6 1 𝐶10
35 2:51:44.32 7:33:14.05

10 20 20 b 𝑝7 𝑝8 1 𝐶10
40 08:36:12.94 -

10 20 30 a 10 1 0 31 0:00:00.00 0:00:00.00

30 50 60 a 2 1 0 33 0:00:00.003 0:00:00.04

60 80 120 a 35 1 0 80 0:00:00.28 0:00:01.01

80 130 150 a 26 1 0 90 0:00:00.92 0:00:04.14

100 200 200 a 56 1 0 119 0:00:02.34 0:00:04.42

100 200 300 a 56 1 0 219 0:00:01.39 0:00:05.83

200 200 300 a 40 1 0 123 0:00:07.98 0:01:46.79

200 500 300 a 76 1 0 104 0:00:15.90 0:00:24.49

300 500 1000 a 121 1 0 729 0:05:10.91 0:31:03.15

500 800 2500 a 193 1 0 2139 1:26:34.59 4:27:03.47

600 800 3000 a 516 1 0 2917 3:31:40.75 -

1000 10000 5000 a 74 1 0 4075 0:08:21.18 -

3000 10000 5000 a 216 1 0 1215 09:55:25.28 -

Table 1. Rezults of numerical experiment

6. Conclusion

In this paper, we studied the problem of determining the nonemptiness of
the set of strategies of the second player for any strategy of the first player,
which arises in game problems with connected variables. A lemma similar
to the lemma on the nonemptiness of the set of feasible solutions for a linear
programming problem is formulated and proved. An algorithm for solving
the problem under consideration has been proposed, which differs from the
first part of the [12] algorithm by a significant reduction in the number of
mathematical operations for solving the problem under consideration. The
algorithm can be used or modified both for solving a game problem with
arbitrary situations [7; 12] and for solving a game problem with forbidden
situations [1; 2; 13], and also for solving weak problems of linear bilevel
programming [3; 9; 10;15;16].
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