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Awnnoranms. PaccmarpuBaercs urposas 3a1ada AByX Jinl, (Urpokos). IBa urpoka Imo-
0YEPETHO BHIOMPAIOT CBOU CTPATETHHU U3 COOTBETCTBYIOMNX MHOXKeCTB. CHavYasIa mepBbIit
WIPOK BBIOMPAET CBOIO CTPATErHIO, 3aTeM, 3Hasl CTPATErHIO MEPBOrO UIPOKA, BTOPOI
WI'POK BBIOMPAET CBOIO cTpaTeruio. MHOXKECTBO CTpaTeruii BTOPOro UIrpPOKa 3aBUCUT OT
CTpaTeruu MepBOrO UI'pPoKa. 1pebyercsi ompene/inTh: CYIIECTBYeT Jiu Jjist Jitoboi cTpa-
TEruy IEePBOr0 MI'POKa COOTBETCTBYIOIIAsA CTpareruss Broporo urpoka? lamnas zamada
penraeTcs ¢ IOMOIIBIO CIEUAJbHON JINHEHHOU MAaKCHMHWHHOIN 3a/la4Ud CO CBA3aHHBIMU
nepeMeHHBbIMU, pelleHrne KOTOPOU CBOJAUTCS K OIPEeeJIEHHI0 MaKCUMAJLHOTO 3HAYEHUS
1eJIeBO (PYHKIMY JBONCTBEHHOM K Hell 3a/1a9i Ha CIENUAJIbHBIX cTpaTerusx. [Ipusemen
aJICOPUTM PENIEHUsT PACCMaTPUBAEMOM 3a/a491, JIBA IPUMEPa, WLITIOCTPUPYIOIIUE PaboTy
AJITOPUTMA, & TaKXKe Pe3yJIbTAThl YUCJACHHBIX IKCIIEPUMEHTOB.

KuroueBsblie ciioBa: urpoBasi 3a/a4a, 3ajada mepBoit has3bl, IBOWCTBEHHAS 33/1a9a, OI0-
pa, aJI'OPUTM

Cconka gasi nqurupoBanus: Mamatov A. R. Algorithm for Solving the Problem of
the First Phase in a Game Problem with Arbitrary Situations // W3sectust Upkyrckoro
rocynapcreennoro yausepcurerta. Cepus Maremaruka. 2024. T. 48. C. 3-20.
https://doi.org/10.26516/1997-7670.2024.48.3

1. Introduction

As is known [4], the problem of the nonemptiness of the set of feasible
solutions for the problem of linear programming, can be solved using a
special linear programming problem - the problem of the first phase. Anal-
ogycal problems could be involved also for game problems with connected
variables [1;2;7;12;13].

Consider the sets

X={z|fi<ae<f}and Y(z)={y| g« <y <g",Ar + By = b},

where @ = 2(J), fo = fo(J), f* = [*(J) € R, y = y(K), g. = g.(K),

g* =g" (K1) €RL,A=A(I,J) € R™" B = B(I, K;) € R™*! rankB =

—m<lLb=>bI)eR™I={1,2,...m},J={1,2,...n}, K1 = {1,2,...,1}.
The following game problems with connected variables: game problems

with favorable situations [11]; game problems with arbitrary situations [7],

[12] can be considered on sets X and Y (z).

WsBectus MpkyTcKoro rocy1apCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2024. T. 48. C. 3—20



ALGORITHM FOR SOLVING OF THE FIRST PHASE IN A GAME PROBLEM 5

When X = {z | fx <z < f*,Y(z) # @} we can also consider game prob-
lems with forbidden situations [1;2;13]. Note that the weak linear bilevel
programming problem [3;9;10; 15; 16] with the same objective functions
at the upper and lower levels is a game problem with connected variables
(linear maximin (minimax) problem with connected variables). In [3;10] the
weak linear bilevel programming problem is reduced to a linear game prob-
lem with connected variables. Various algorithms [1-3;9;10;12;13;15;16],
have been developed to solve game problems with connected variables,
as well as weak problems of linear bilevel programming. The analysis of
these algorithms shows that, in a certain sense, it is not possible to avoid
enumeration.

It is known [4] that the Duality Theory of linear programming problems
is based on the existence theorem, the duality theorem and the duality
relations between the solutions of the primal and dual problems that arising
from them.

For game problems with favorable situations, sufficient optimality condi-
tions similar to those from duality theory of linear programming, generally
speaking, not true. Moreover, here it is not always possible to speak of
local optimality [14].

To develop efficient algorithms for solving game problems with arbitrary
situations [7;12], as well as game problems with forbidden situations [1],
[2], [13] it is important to find conditions under which Vz € X, Y (z) # @
or dz* € X, Y (2*) = @.

Based on this, in the paper the problem which arises in game problems
with connected variables is under research [1;2;7;12;13],that is the prob-
lem of determining whether the set of strategies of the second player is
nonempty for any strategy of the first player is studied.

Following the theory of linear programming has been formulated and
proved the lemma on the nonemptiness of the set strategies of the second
player for any strategy of the first player.

In the work [12] for a game problem with arbitrary situations (with
connected variables) [7], a dual algorithm for solving it theoretically sub-
stantiated and developed. The algorithm from [12] consists of two parts.
The first part of the algorithm defines z° € X such that Y (2°) = @ or we
conclude that Vz € X, Y (x) # @.

In this paper, an improved version of the first part of the [12] algorithm
is also proposed. In this algorithm, based on a new kind of dual problem for
a special problem of the first phase of the game with arbitrary situations,
as well as special “supporting” properties of the problem, the number of
mathematical operations has been reduced significantly.
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2. Problem statement. Preliminary information from the
theory of game problems with favorable situations

Let there be two players who choose vectors x and y, respectively, from
the sets X, Y (x) in turn, first the first player chooses z, then, knowing z,
the second player chooses y.

The goal of the first player is to find & that gives the maximum value
for the function

o(r) = min ¥(z,y),z € X,ie. ¢(Z) = maxp(z),
yeY (z) zeX

the second player’s goal is to find ¢ that minimizes the function

U(2,y),y € Y(2),ile ¥(2,9) = min ¥(Z,y).
yeY (2)

dr+dy, ifzec X,ycY(x),cecR" decRl

Here W(z,y) =
ere W(z,y) {Jroo, if € X,Y(z) = 2.

Then we have a maximin problem with connected variables [7;12]:

— min ¥(z,y) — max. 2.1

o(x) ,in (z,y) — max (2.1)

Definition 1. The vector x € X is called a strategy (a feasible strategy)
of the first player.

Definition 2. The vectory € Y (x) is called a strategy (a feasible strategy)
of the second player, corresponding to the first player’s strategy = (in short,
the second player’s x-strategy).

Note that problem (2.1) refers to games with arbitrary situations. Addi-
tionally, note that if when solving problem (2.1) & € X, (%) < oo, then &
is the solution of the game problem with forbidden situations [1], [2], [13]:

(@) = min ((z+dy) - max, X = {z| fu <z < [*,Y(2) £ 2},
yeY (z) reX

As noted earlier, to develop an efficient algorithm for solving the problem
(2.1), as well as game problems with forbidden situations, it is important
to find conditions under which Vo € X,Y (z) # @ or J2* € X, Y (2*) = @.

Based on the above, consider the following problem.

It is required to determine, for any strategy of the first player x € X,
whether there exists a corresponding x-strategy of the second player, or

whether there exists a strategy of the first player z* € X, such that
Y(z*) =@, ie.

() VexeX,Y(x)#@?or (b) Tz*eX,Y(z") =07 (2.2)

WsBectus MpkyTcKoro rocy1apcTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2024. T. 48. C. 3—20
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The problem (2.2) can be considered from the point of view of linear
algebra, as the problem of determining the nonemptiness of the set of solu-
tions of systems of linear inequalities Y (z) = {y | g« <y < g*, Az+ By = b}
with parameters x for any parameter from a given region X or as a problem
of finding the parameter x* € X such as the set of solutions of systems of
linear inequalities Y (z*) = {y | g« <y < g%, Az* + By = b} is empty.

Along with problem (2.2), consider the maximin problem:

fz :g*%lgg Z|A (i, J)2(J) + B, K)y(Ky) = b(i)] — max. (2.3)

Theorem 1. [12] The optimal values of the objective functions in prob-
lems (2.3) and the problem

. / /
F(x) (y,g,%;lel}{(z)(e E+en) — max, (2.4)
H(z) ={(y.&,n) | Ax+ By —{+n=0b,9. <y <g",§ >0, >0},

= (1,1,...,1), are identical.

Problem (2.4) is a game problem with favorable situations, i.e for any
x € X,H(z) # 2.

Problems (2.3) and (2.4) are related to problem (2.2) by the fact that,
based on the solutions of these problems, we can conclude about solving
problem (2.2).

The algorithm from [12] consists of two parts. The first part of the
algorithm defines 2V € X such that Y (2) = @ or we conclude that for any
z € X,Y(x) # @ (Problem of the first part of the algorithm from [12]).
For this purpose, the following problem is considered

F(z)= min dy > max,Y(z)={y| Az +By=0b,3, <y <g*}. (2.5)
yeY (z) z€X

Here d = (Ek,k S F),Ek =0,k € Kl,Ek =1,ke Ko UKj3;y € Rl+2m,

E = (B - EE) € RmX(l+2m)7§ = (g*k’?k € F)v?*k = g*kak € K17

g*k_o keKQUK&g _(gkakeK) lc_glwkEthH»z_glerJrz Yis

%_f*<x<f*g*<y< A J)x(J) + B(i, K)y(K) = b(i)],i € I,

Ky={l+1,142, .. 04+m}Ks={l+m+11+m+2,...,142m},
K= KUKy U Ks.
The solution of the problem of the first part of the algorithm from [12]

is reduced to determining the positive value of the objective function of the
following problem

Yor) = min (Hp+go—g T+ fIA— fv) > max_, (26)
()\,V)GA(,U,,O',T) (}L,O’,T)GE
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={(p,0,7) e RmFlEm) |§/M—T+a:3;020,720},
Ap,o,7) = {(A\v) R | A'p—v+ X =0;v> 0,1 >0},

or determining that the optimal value of the objective function of a given
problem (2.1).

problem is equal to zero on special classes of strategies of players in this
problem, constructed using the support [5] of the internal problem of the

Problem (2.6) is called dual problem to problem (2.5) [12].

Following the theory of linear programming [4], we formulate the lemma
player problem (2.1).

3. Theoretical foundations for developing an algorithm for
of nonemptiness sets of second player strategies at any strategy of the first

solving the problem of the first phase

the problem (2.4).

Definition 3. The vector x € X is called a strateqy of the first player,
and the vector (y,&,n) € H(x) is called a x-strategy of the second player of

Lemma. If for any strategy of the first player x, x € X in the problem
(2.1) the set of x-strategies of the second player Y (x) is nonempty then in
the solution (x°,4°,£°,1m°) of the problem (2.4) the components £°,n° of the
strategy of the second player is zero. If in the solution of the problem (2.4)

(20, 4°,€% n°) components £°,1° strategy of the second player are equal to

zero, then for any strategy of the first player x, x € X in the problem (2.1)
the set of x-strategies of the second player Y (x) is nonempty.

Proof. Let Y(z) # @ Vx € X. Then the optimal value of the objective
function of problem (2.4) is equal to zero. Indeed, if the optimal value of the
objective function of problem (2.4) is positive for 2 € X, then according
to Theorem 1 from [12] Y (2°) = @. The optimal value of the objective
function of problem (2.4) is equali to zero only for &0 =0 € R™ n° =0 ¢
Rm

Let in the solution of the problem (2.4) (2°,4°,£%,7°),£% =% = 0 € R™.
Then, according to Theorem 3 from [12], the optimal value of the objective

function (2.3) is equal to zero. Therefore, by Theorem 2 from [12], for any
z e X,Y(x) # 2.

Remark 1. Thus, according to Theorem 1 and Lemma, if the optimal

O
value objective function of the problem (2.3) ((2.4)) is equal to zero, then
Vo € X,Y (x) # @, i.e. the problem (2.2) for the case (a) is solved. Taking
into account Theorem 1 from [12], and also that for each z € X, f(z) =

= F(z) we conclude that if the value of the objective function of the prob-
lem (2.3) ((2.4)) is positive for some z* € X, ie. f(z*) > 0(F(z*) > 0),

then Y (z*) = @, i.e. the problem (2.2) for the case (b) is solved.

N3zBecTus I/IpKyTCKOFO TroCy1apCTBEHHOI'O yHUBEPCUTETA.
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ALGORITHM FOR SOLVING OF THE FIRST PHASE IN A GAME PROBLEM 9

Recall that to determine both the emptiness and nonemptiness of the
set of feasible solutions to a linear programming problem, it is necessary
to solve the first phase problem. To determine the nonemptiness of the
set of strategies of the second player for some strategy of the first player
in a game problem with favorable situations, as mentioned above, in the
general case, it is not necessary to solve the problem (2.4). Based on this,
we introduce the following definitions.

Definition 4. Let us call problem (2.2) the problem of the first phase for
the problem (2.1).

Definition 5. Let us call problem (2.4) the special problem of the first
phase for the problem (2.1).

Definition 6. The problem of mazimizing the function ¥ (u,s,t) with
respect to (p,s,t) € 2, i.e.

Y s,t) =  min  (Vu+gls— g t+ A — flv) > max_, (3.1)
(Av)EA(p,st) (,,t)EE

E={(u,51) | Bu—t+s=0;5>0,t>0,—e < p<e},
Ap, s, t) ={(\v) | Alp—v+A=0;v>0,A >0},
will be called dual to the problem (2.4).

In this regard, problem (2.4) we will call the primal problem. In the
following theorem the connection between the primal and dual problems is
established.

Theorem 2. The optimal values of the objective functions in problems
(2.4) and (3.1) are identical.

Proof. Let us first prove that the optimal value of the objective functions
of the problem (2.4) and problem

(b—Az)p+g.s—g“t— max (3.2)
zeX,(p,s,t)EE

match up. Let x € X. Be the optimal value of the objective function of the
internal problem of the problem (2.4)

e+ en) — min
(Cetem = om0

can be considered as a function of the parameter x:

F(z) = min e+ en).
(@) (y,&n)EH(w)( . "
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The optimal value of the objective function of the problem is

(b— Az)p+g.s— gt — max |
(py8,t)EE
which is dual to the inner problem of problem (2.4), can also be considered
as a function of the z parameter: 3(x) = masti)eg((b—Aﬂ:)’u—Fgfks—g*/t).
According to the duality theory of linear programming [4], for a fixed
x € X, F(x) = B(z). This implies
F(z) = b— Az)p+gls—g"'t).
max F'(z) xexffﬁt)ea(( ) u+gis —g°t)
Similarly, it is proven that the optimal value of the objective functions
of problems (3.2) and (3.1) coincide, from which follows the proof of the
theorem. O

Definition 7. Vector (u,s,t) € = is called a strategy of the first player in
problem (3.1), and vector (\,v) € A(u,s,t) is called a (u,s,t)-strategy of
the second player in problem (3.1).

We emphasize that it is necessary to distinguish between the correspond-
ing players participating in problems (2.4) and (3.1). Namely, the first
player in problem (2.4) is also not the first player in problem (3.1), and the
second player in problem (2.4) is not the second player in problem (3.1).The
first player in problem (3.1) is the dual of the second player in problem
(2.4), and the second player in problem (3.1) is the dual of the first player
in problem (2.4). Problem (3.1) is formulated directly for problem (2.4),
and problem (2.6) is formulated for problem (2.5) for being equivalent to
problem (2.4), and obtained from problem (2.4) by adding fictitious upper
constraints for the strategies of the second player. The addition of fictitious
upper constraints entails an increase in the dimension of the dual problem.
This naturally affects the efficiency of the numerical solution of the dual
problem.

Let  be a strategy of the first player in problem (2.4).

Definition 8. The strategy (y,&,n) of the second player is called the
optimal x-strategy in problem (2.4), if it is a solution of the problem

eé+en— min . 3.3
¢ 7 (y:§m)€H (z) (3:3)

Set Kop = Kop(x) = Kopl U KopZ U Kop?) (Kopl C K, Kop2 C Ko,
Kops C K3, | K,p |=m) is called a support [5] of problem (3.3) if

detB(I,Ko) #0 (B(I,K) = (B(I,K1); —ekx—i,k € Ka;ex_i—m, k € K3)).

Based on the K,, support, construct the vectors u(I), A(K),V(J) as
follows:

N(E) = (DB E) - d(E),V'(J) = (DAL ), (34)

WsBectus VpkyTcKOro rocy1apCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremaruras. 2024. T. 48. C. 3—20
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W (1) =d (Kop)[B(I, Kop)) ™"

We present the optimality conditions for the z-strategy of the second player
(y,&,n) of problem (2.4), i.e., internal problem of the problem (2.4) (prob-
lem (3.3)), which is a linear programming problem.

According to [4-6], the following theorem is valid.

Theorem 3. The strategy (y,&,n) € H(x) is the optimal x-strategy of
the second player if and only if there exist a support K., such that, for

the vector A(K) constructed by formula (3.4), the following relations are
satisfied:
Ap <0 for yp=gu;Ax 20 for v =g

A =0 for  gu <uyr < gl:’k € K1 = Kl\Kopl;
A <0 for &, =0; A, =0 for & > 0,k € Ko = Ko\ Kopo; (3.5)
A <0 formy =0; A =0 forne > 0,k € Kpz = K3\ Kgp3.

Proof. Sufficiency. Let the conditions of the theorem be satisfied. Note
that Ajvp = —pp — L, Appmar = px — 1,k = 1, m. Hence, —e < u < e. We
construct vectors s,t as follows:

Sk:O,tk:Ak if AkZO;Sk:—Ak,thOif Ak<0,k‘€K1. (36)

We have the equality

— y(Kopl) - y(Knl)
6’/5 + 6/77 =d (KOp) ‘S(K0p2) +d (Kn) §(Kn2) =
N(Kop3) n(Kn3)
- o _ y(Kn1)
=d (KO;D)[ (I, KOp)]_l[b — Ax — B(I, Knl U Kn2 U Kn3) f(Kn2) ]"’
n(Kn?))
- Y(Kn1) ,
+d (Ky) | &(Kn2) | = (b~ Az)'u+gis —g"t. (3.7)
n(HKn3)

Then, it follows from the duality theory of linear programming [4] that
strategy (y,&,n) € H(x) is the optimal z-strategy of the second player.
The proof of the necessary part of the theorem is similar to the proof of
the optimality criterion [6] (Part 1, Ch. 6, §1. ). O

The support K, is called the z-optimal support (corresponding to the
optimal z-strategy (y,&,n) in problem (3.3)), if relation (3.5) are satisfied
on the pair {(y,&, 1), Kop}-

Let us present the optimality conditions for the strategy of the first
player z in the problem (2.4).
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Theorem 4. Let x be the optimal strategy of the first player in problem
(2.4). Then, there is an x-optimal support Koy, of the problem (3.3), where
for the vector V(J), constructed according to formula (3.4), the following
relations are fulfilled:

V; <0 for z;= fj’-k;Vj >0 for z; = fi;
VjZO for f*j<xj<f;,j€J. (3.8)

Proof. Let x be an optimal strategy of the first player in problem (2.4).
Solving problem (3.3) by the adaptive method [5], [6] (Part 3), we obtain
an z-optimal strategy (v, &, n) and an z-optimal support K,,(x). From the
support K,,(x) we construct the vectors (i, s,t) according to (3.4), (3.6).
Then, according to (3.7) we have:

deten=—Va+bu+g.s—g*t.

Since z is an optimal strategy of the first player in problem (2.4), then for
a fixed (u, s,t) it is a solution of the problem

~V'z+bp+gls—g”t — max.
rzeX

The optimality conditions for the vector z for this problem are (3.8). [
Definition 9. Vectors §(K) and V(J),

== =

'(K) = W/ ()B(I, K) — d (K),V (J) = p'()A(L, J), (3.9)

constructed from the component p strategies of the first player (p,s,t) in
problem (8.1) are called the costrategies of the first and second players,
correspondingly, for problem (2.4).

Note that
S(K) = A(K),V(J) = V(J) at 4 (1) = d (Kop)[BU, Kop)] .
Definition 10. Terms
s = 0,t = 0 if 0 > 055, = =0, tx =0 if 0 < 0,k € Kq;
v; =V A\j=0ifV;>00,=0,\=-V; ifV;<0;j€J, (3.10)
let us call the matching conditions for the strategies of the players (u, s,t),

(A, v) of problem (3.1) with the costrategies (K ),V (J) of problem (2.4).

In this case, we have:

Vp+ghs—g t= max (Vu+g.5—g"t);
(1,3,t)€EE

WsBectus VMpkyTcKOro rocy1apCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2024. T. 48. C. 3—20
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FA=flv= min  (fYX—fo). (3.11)
(AD)EA(1,5,t)
Indeed, let (u,3,7) € Z,(\,7) € A(u,3,7) are arbitrary strategies of the
players in the problem (3.1), (u,s,t) € E,(\,v) € A(u,s,t) are agreed
strategies of the players in the problem (3.1). The to the strategies of the
first player (u,s,t) € Z,(u,s,t) € Z corresponds to the same costrategy
§(K). Similar to the strategies of the second player (\,v) € A(u,s,t),
(\,7) € A(u,5,t) also corresponds to the same costrategy V(.J).
Consequently,

Bu—t+s=0Bpu—-1t+5=0Aup—v+2x=0Apu—-v+X1=0.

Then we have

Vi+gls— g t=bpu— Z Gxk0k — Z 910k =

ke K1,0,<0 keK1,0,>0
=Vp— Y gal-s)— D gi(ti—s) >
keK1,0,<0 k€ K1,0,>0
>Vp— Y (Gite—gast)— Y (Gitk—guSk) = Vutgis—g"t;
keK1,0,<0 k€K1,0,>0

Similarly, we have f*\ — flv < f*X — f/m.
Therefore, for studying problem (2.6), it is sufficient to consider only the
agreed strategies of the players.

Definition 11. The pair 8 = (§,V) we call a cosituation of problem (2.4).

Definition 12. The pair {3, Kop} from the cosituation B and the support
K,p, we call the support cosituation of the problem (2.4).

Definition 13. The vector (,£€,7) satisfying the relation By — & +7 =
= b— AT is called a pseudostrategy of the second player in problem (2.4) cor-
responding to the strategy T of the first player (shortly, T-pseudostrategy).

Given the support cosituation {3, Kop}, we construct the corresponding
the strategy of the first player 7 and 7 is a pseudostrategy of the second
player (7,&,7) of problem (2.4):

Tj = fuoj for V;j>0;T;=f; for V; <0;
fj:f*j\/f;fO’f’ﬁj:O,jGJ;
Up = gk for ok <0; Y = gi for 0 > 0;
U = gsk V g, for 0, =0,k € Kpa; (3.12)
=0 for k€ Kpo; M, =0 for k€ Kpa;
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Q(Kc)pl) _ —
g(KOPQ) = [B(I7K0P)]_1[b_Af_B(Ia Knl)y(Kn )]
ﬁ(KOPS)

Let us present the conditions under which the value of the objective
functions of problems (2.4) and (3.1) for the strategies of the players cor-
responding to the support cosituation {3, K,,} and consistent with the
cosituation 8 coincide.

Theorem 5. Let us {3, Kop} the supporting cosituation of problem (2.4),
(i, s,t), (A, v) are players’ strategies of the problem (2.6), consistent with
cosituation B,7, (7,€,7) is the strategy of the first player and T - pseu-
dostrategy of the second player of the problem (2.6), corresponding to the
supporting cosituation {8, Kop}. If the relations

Y = gxk for 6, <0; Yy = gi for 6 > 0;
Y. € [g*kag;::] fO’/“ 0, =0,k € Kopl;
=0 for 6, <0; &§=>0 for 5k:07k6K0p2;
=0 for 0, <0; mp>0 for 6 =0k Kygs,
is satisfied then the equality F(T) = ¥ (u, s,t).

Proof. If the conditions of the theorem are satisfied, similarly to (3.7) we
obtain B /
E+en=(b—AT)pn+g.s —g"t.
Therefore we have
F@) =eE+ef=bu+gs—gt+uAz=bpu+gls—g"t+ A= flv.
Considering (3.11), we have

Y(p, s,t) =b'p+gls — g*/t + f*/)\ — flv.

Consequently F(Z) = ¢(u, s,1). O

4. Algorithm for solving the problem of the first phase

Thus, according to the lemma, remark 1 and theorems 2-5, the solution
of problem (2.2) for case (b) can be determined, by finding such a support
Kgp of problem (3.3), under which the value of the objective function of
problem (3.1) are positive on the agreed strategies of the players, con-
structed using the support K9 according by formulas (3.9), (3.10) with

' = d(KG,)[B(I, KD,
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Indeed, first, the value of the objective function of the problem (2.3)
is nonnegative, and second, the optimal values of the objective functions
of problems (2.3), (2.4), and (3.1) coincide. Therefore, if the value of
the objective function of the problem (3.1) is positive for some (u,s,t),
(1, s,t) € E, then the value of the objective functions of the problems
(2.3), (2.4) are also positive for some T € X and vice versa. Third, for
the optimal strategy of the first player, there exists some support Kgp
under which the conditions of Theorems 3 and 4 are satisfied. Fourth,
the number of possible supports of problem (3.3) is, of course, no more

than ¢ = C7%,, = % When studying problem (3.1), it is enough to
consider only the agreed strategies of the players in the problem. Based
on the above that it suffices to consider only the agreed strategies of the

players of problem (3.1) constructed using support K gp according by formu-
las (3.9), (3.10) with u/ = E/(Kgp)[ﬁ(l, Kp,)]7!. The first player’s strategy
T corresponding to the supporting cosituation {ﬁ,Kgp} is a solution to
problem (2.2) for case (b), because

f(@) = F(®) = max ((b—AZ)i+g.5—¢"T) >

(5,t)€EE
> (b— A7) p+gis— gt =bpu+gls— g t+ A= flv>0.
Similarly, the solution of problem (2.2) for case (a) can be determined
as follows: if the maximum value of the objective function of problem
(3.1) is equal to zero on the agreed strategies of the players built using the
support K by formulas (3.9), (3.10) with 4/ = E/(Kgp)[E(I, K,)]7!, then
Ve e X,Y (x) # @.

Remark 2. From (3.9), and (3.10) it follows that the value of the ob-
jective function of problem (3.1) for u/ = E’(Kop)[E(I, Kop)] Y Kop C Ky
equals zero. Note that the elements k € Ka,j € K3 for which it is appro-
priate k + m = j cannot be simultaneously in some support, because the
corresponding matrix will be degenerate.

Let us present an algorithm for solving problem (2.2).
Denote by Kgp,Kgp,...,Kgp,q = C{%y, the lexicographic order [8] of
possible supports of problem (3.3).

Step 1. Set z := 1,kl :=1,2" := z, Kg, = Kg,, f := —o0. Define and

construct the matrix B = (B: — E:E).

Step 2. If all elements of the set Kj, from Kj or the environment of
its elements contains elements k, gl such as k+m = ¢ql,k € Ko,ql € K3,
then go to step 6.

Step 3. Calculate detB(I, K7,). If det B(I, K,) = 0, then go to step 6.

Step 4. For K, construct the vector p'(1) = El(KOp)[E(I,Kop)]_I. If
i, € I, |pi=| > 1, then go to step 6.
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Step 5. Using formulas (3.4), (3.9), (3.10), and (3.12), construct the
vectors (i1, s,t), (A, ), Z, and calculate the value F = ¥ pu+gl.s—g* t+ f* A—
— fiv. If F > 0, then set k1 := 0,2 := 2, K, := K7, 2° == 7T, f := 400
and go to step 7.

Step 6. If z < ¢, then set z := 2z + 1 go to step 2.

Step 7. The algorithm stops. If k1 = 0, then for z° Y (z°) = @. If,
k1 =1, then Vo € X, Y (z) # @.

Example 1. Consider problem (2.2) with the following values of the
parameters:

m=2n=3,1=5,f =(=5-30;0), f* = (3;25;40),

g. = (—109; —6; —101; —10; —3), g* = (44;6;298; 10; 15),
10 -1 632314
A‘(o 11 )’B <42 1 23> b=(:4).
We haLeI:{l,Q},J:{LQ,s},Kl {1,2,3,4,5}, Ky = {6,7}, K3 =
:{879}1K:{17213a4a576777879}7K { a2}7 K36_{8 9}
We apply the described algorithm.

_ 63234—-10 10
L '_ 0._ -
Step 1. z:=1,kl:=1,z -—ZvB—<42123 0 —101>’

K, :={1,2}, f := —oo. Step 2. K, = {1,2}. Step 6. z :=2. ... Step 6.
z:= 5. Step 2. K2 = {1,6}. Step 3 detB(I,K},) = 4. Step 4. i/ =
= (-1;1,5). .. Step 6. z := 36. Step 2. Step 3. detB(I, K3%) = 1. Step 4.
w' = (1;1). Step 5. F' = —1475. Step 6. Step 7. k1 = 1,Vz € X,Y (x) # @.
The number of possible supports of problem (3.3) is 36, and the number
of calculated determinants of support matrices (B(I, KZ,)) of problem (3.3)
is 23. Out of 23, in 13 cases it was necessary to calculate the value of the
objective function of the problem (3.1).

Example 2. Consider example 1 for f* = (3;25;50).
We apply the described algorithm.

= 63234-1010
o 1 0. _
Step 1. z:=1,k1:=1,z2 .—z,B—<42123 0 101),

KS, = {1,2},f := —oo. Step 2. K}, = {1,2}. Step 6. z := 2. Step 2.
= {1,3}. Step 6. z := 3. Step 2. K3, = {1,4}. Step 6. z := 4.
Step 2. Kglp = {1,5}. Step 6. z := 5. Step 2. K05p = {1,6}. Step 3.
detB(I, K2 ,) = 4. Step 4. p/ = (—=1;1,5). Step 6. z := 6. Step 2. Step 3.
detB(I, KG ,) = —6. Step 4. p/ = (2/3;-1). Step 5. F = 10,667, f = 4oc.
Step 7. k1 =0, f = +o0,2° = (—5;25;50),Y (2") = @.
The number of possible supports of problem (3.3) is 36, and the number
of calculated determinants of support matrices (B(I, K;,)) of problem (3.3)
is 2. Out of 2, in 1 cases it was necessary to calculate the value of the
objective function of the problem (3.1).
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5. Numerical experiment

The algorithm was implemented in the Simple Fortran 2.26 environ-
ment. A numerical experiment was set up on a PC (Windows 7; Intel(R)
Celeron(R) CPUN2930 (1.83 GHz); 4GB RAM; system type:32-bit OS).
There are two types of generated problems.

a) Elements of Problem (2.2) are generated by a random number gen-
erator. The elements of the matrices A, B were chosen from the segment
[-10,10]. The coordinates vectors fy, g«, were chosen from segment [-10, 0],
and the coordinates of vectors f*, g*, were chosen from the segment [0,10].
The vector b was assumed to be equal to b = Az? + By°. Here 20,40,
vectors, whose coordinates were assumed to be equal x? = (fs +17)/2,
{1, 2,n} ) = (g + 95)/2,k € {1,2,...,1}.

b) If after generating the elements of the problem in case a) the first m
components of the vectors g., g* redefine as follows:

P = max ha(b(I) — A(I, J)x(J) — B, K,)y(Ky)),
I = e g B < iy HOD) = AW T)2(T) = BT Kan)y(Ka))

Gxi f*gwﬁf*,g*(KI;SISny(Kn)Sg*(Kn) hZ(b(I) A(Iv J)$(J) B(I, Kn)y(Kn))v
i = 1,m; hy, i-th row of the matrix B,!,i € I ={1,2,...m}, K, = {l—m+
1,1 = m+2,...,1} then problems are formed for which Vz € X,Y (z) # @.

The resulting problems were solved by the proposed algorithm, and also
for comparison with the first part of the algorithm [12].

The results are shown in the table 1, where p; = 9231,po = 1321,
p12 = 12524,p3 = 10712,py = 1914,p3s = 184756,p5 = 69206565,
pg = 1647237, p7 = 440630280, ps = 9632608.

The following designations are accepted: N, determines the type of prob-
lem (2.2) generation for given m, n, [; K, is the number of possible supports
of the problem (3.3), for which it was necessary to calculate the determinant
of the corresponding matrices; K, is the number of calculated values of the
objective function of the problem (3.1); k1 is the outcoming result of the
algorithm; K is the number of possible supports of the problem (3.3), for
which it was necessary to calculate the determinant of the corresponding
matrices when solving the problem by the first part of the [12] algorithm
(in this case, K, is also the number of calculated values of the objective
function of the problem (2.6)); t is time of solving the problem (2.2) by
the proposed algorithm; ¢; is time to solve the problem (2.2) according to
the first part of the algorithm [12]; ”-” means that problem (2.2) was not
solved in 10 hours.

From the values of K, K,, K,1,t,t1 in the table it follows that the
proposed algorithm is more effective than the first part of the algorithm
from [12].

The applicability limit of the algorithm (specifically achievable values
m,n and [) depends on the generation of parameters problem (2.2). In the
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numerical experiment carried out, when time was no more than 10 hours,
in case b) it was equal to m = 10, n = 20 and [ = 20, in case a)it was equal
to m = 3000, n = 10000 and [ = 5000.

m n l | Ky | Ky | k1| Kpq t t1
2 3 5 a | 23 | 14| 1| 36 | 0:00:00.00 | 0:00:00.00
2 3 5 b | 23| 13| 1| 36 | 0:00:00.00 | 0:00:00.00
2 5 5 a | 6 | 3|0 ] 13 | 0:00:00.00 | 0:00:00.00
2 5 5 b | 23|14 | 1| 36 | 0:00:00.00 | 0:00:00.00
5 10 10 | a | p1 | p2 | 0] pip | 0:00:00.00 | 0:00:00.00
5 10 10 | b | p3 | pa | 1 | paa | 0:00:05.25 | 0:00:15.51
10 10 15 | b | ps | ps | 1 | Ci0 | 2:51:44.32 | 7:33:14.05
10 20 20 | b | pr | ps | 1 | CLY | 08:36:12.94 -
10 20 30 [ a | 10| 1 | 0| 31 | 0:00:00.00 | 0:00:00.00
30 50 60 | a | 2 | 1 | 0] 33 |0:00:00.003 | 0:00:00.04
60 80 120 | a | 35 | 1 | 0 | 80 | 0:00:00.28 | 0:00:01.01
80 130 | 150 | a | 26 | 1 | 0 | 90 | 0:00:00.92 | 0:00:04.14
100 | 200 | 200 | a [ 56 | 1 | O | 119 | 0:00:02.34 | 0:00:04.42
100 | 200 | 300 | a [ 56 | 1 | 0 | 219 | 0:00:01.39 | 0:00:05.83
200 | 200 | 300 | a | 40 | 1 | O | 123 | 0:00:07.98 | 0:01:46.79
200 | 500 | 300 | a | 76 | 1 | O | 104 | 0:00:15.90 | 0:00:24.49
300 | 500 | 1000 | a |[121| 1 | O | 729 | 0:05:10.91 | 0:31:03.15
500 | 800 | 2500 | a |[193| 1 | 0 | 2139 | 1:26:34.59 | 4:27:03.47
600 | 800 |3000 | a |516| 1 | 0 | 2917 | 3:31:40.75 -
1000 | 10000 | 5000 | a | 74 | 1 | 0 | 4075 | 0:08:21.18 -
3000 | 10000 | 5000 | a | 216 | 1 | 0 | 1215 | 09:55:25.28 -

Table 1. Rezults of numerical experiment

6. Conclusion

In this paper, we studied the problem of determining the nonemptiness of
the set of strategies of the second player for any strategy of the first player,
which arises in game problems with connected variables. A lemma similar
to the lemma on the nonemptiness of the set of feasible solutions for a linear
programming problem is formulated and proved. An algorithm for solving
the problem under consideration has been proposed, which differs from the
first part of the [12] algorithm by a significant reduction in the number of
mathematical operations for solving the problem under consideration. The
algorithm can be used or modified both for solving a game problem with
arbitrary situations [7;12] and for solving a game problem with forbidden
situations [1;2;13], and also for solving weak problems of linear bilevel
programming [3;9;10;15;16].
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