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AnHoTtaiuga. PaccmarpuBaercss mpobsiemMa HeCTaOUJIBHOCTH HMCTUHHOCTHBIX 3HAYEHHUI
dopwmyit. Uccmeayercst BpeMeHHast MOIaIbHAST JIOTUKA HA ITPEIMET OMMCAHUS HAIEKHOCTH
nadopmanuu. Jloruka cama mo cebe MMOPOXK/IEHA CTAHIAPTHBIMEI MOIEISAMU JIMHEHHOTO
BpeMmenu. PaccmaTpuBaroTcss MHTEpPBaJIbl HECTAOMIBHOCTH UCTUHHOCTH (DOPMYJT B ITUX
MOJIEJISIX. DTO 03HAYAET, YTO (DOPMYJIa IEPMAHEHTHO U B PA3yMHO 0OJIBIIIOE BPEMSI MEHSIET
CBOIO MCTHHHOCTH C MCTWHBI Ha JIOXKBb U Ha060poT. Co3maercst crenuaibHasi TEXHUKA U
HAXOJUTCs aJITOPUTM, KOTOPBIii IT03BOJIUT PACIIO3HABATH IEPMAHEHTHYIO HECTaOUILHOCTD
WCTUHHOCTHU (DOPMYIT.
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1. Introduction

Usage of modal, temporal and other non-classical logics has a long
and fruitful history. Origin of such many-valued logics may be dated to
Lukasiewicz (1917) and his three-valued and many-valued propositional
calculi, as well as to Goedel (1932), who refuted the finite — validness of
intuitionistic logic. Later A. Tarski (1951) and S. Kripke (1960th) sug-
gested semantical models for the studies of modal and temporal logics such
as topological boolean algebras and relational models (Kripke-Hintikka
models).

Conception of knowledge may be dated to the end of 1950. At 1962
Hintikka printed the manuscript: Knowledge and Belief, that was about
the first book-length work involving modalities to represent the semantics
of knowledge. That book contributed a good first addendum for the subject
area, but a great deal of research has taken place since that time. One of
logics in that line of research was temporal logic (cf. for historical outlook
for reasonably close days Gabbay, Hodkinson, Reynolds [2;3], Goldblat [4],
Goranko [5], van Benthem [16], Yde Venema [19]).

Among various extensions of temporal logic, the linear temporal logic
LTL with operation U - until — introduced by Amir Pnueli — was especially
popular for applications and due to interesting mathematical base. Besides,
it is a good idea to mention automaton technique for solution satisfiability
in this logic developed by Vardi [17;18]. From reasonably modern results
concerning this logic we would mention the solution for admissibility prob-
lem for LTL in Rybakov [6;7], the basis for admissible rules of LTL was
obtained in Babenyshev and Rybakov [1]. The unification problem for LTL
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was solved in [11]. Concerning applications of logical methods in AI and
CS, the tools around temporal logic work well for analysis in multi-agent
environment (cf. eg. [8;9]).

Another popular direction in Information Sciences studies representa-
tion of knowledge via multi-agent environment using usually many agent
modal logics. That concerns diverse subjects of multi-agent environment
— interaction and autonomy, effects of cooperation etc. For example tools
for representation agents’ interaction for the logic LTL of linear time were
developed in Rybakov [8;9]. In current time this logic was investigated
from many viewpoints, in particular extensions of LTL for the case of
non-transitive models, were studied in Rybakov [12;15] for the case of the
interval versions of the logic. Also modelling multi-agent reasoning via
temporal models was applied in Rybakov [10;13; 14] for the versions of
liner logic.

In this our short paper we consider reasonably new logical problem in
information sciences. We attempt to formalize what means that informa-
tion (presumably written by modal formulas) is not stable, permanently
not stable. We suggest in approach using Kripke-like linear models and
technique of realizers sets of formulas. The aim is to find an algorithm
which would recognize permanently nonstable formulas. The algorithm is
constructed and we prove that it solves the pointed task.

2. Satisfiability in Logic £(My)

Formulas of our logic £(My) will be defined as the set of special formu-
las, which are true at states of certain relational Kripke-like model.

Alphabet for the language of our logic £L(My) is defined in a standard
way and consists of denumerable set of propositional letters (variables),
parenthesises, logical Boolean operations, and modal operations O and ¢
and also special time operation Next (unary operator << NextTime >>).

We remind, that every modal operation O can be defined by means of
modal operation ¢ as follows O = —={—. Now we give inductive definition
of the formulas in the language of our logic L(My).

1) Any propositional variable p € Prop is formula.
2) If A is formula, then —A is formula also.

3) If A and B are formulas, then (A A B), (AV B) and (A — B) are
formulas as well.

4) If A is formula, then O A is a formula also.

5) If A is formula, then N'A is formula as well.

WsBectus MpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
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There is no other formulas in the language of logic £L(My). Now we turn
to the definition of our Kripke-like models. Let we have not empty set W,
binary relation R on this set, R C W?2, and the set Prop of propositional
variables.

Relational model is a model:

M= (W, R, V),

where the valuation V' of any propositional variable p from a fixed chosen
set of variables is defined as a some chosen subset V' (p) from W.

We will first consider models where W is the set of all natural numbers
N. So, the relation Next is binary relation where a Nextb if and only if
b= a+ 1. It is convenient to write Next(a) = b. Now we precisely define
the truth value of formulas in arbitrary model M as follows.

For any a, b, c € M the truth relations are as follows, let < is the
standard linear order on N and

Vp € Prop: alby p < a € V(p),
ally ~¢p <= a ¥y @,
alby (pAY) <= alFy ¢ and alky 9,
alby N <= Vb[(aNextb) = blry ¢],
alFy Op <= Vb[(a<b) = (blFy ¢)],
alFy O <= 3b[(a<b)A DIy 9).

So, in accordance with our notation, a linear relational model My is a
model:
Mn = (N, <, Next, V).

The set of all formulas written in the language of model My and which
are true in it, is called a logic, generated by model My. Notice that this
definition differs from standard definition of logics, because the our one not
to be compulsory closed w.r.t. substitutions.

Formula ¢ is said to be satisfiable in the logic £(My), if there can be
find a state a € My such as a IFy . Formula ¢ is called not satisfiable in
the logic £L(Mp), if there is no a € My such as a IFy . Formula ¢ is said
to be refutable in the logic £(My), if there exist a state a € My such as
a ¥y . Respectively a formula ¢ is said to be true in the logic £L(My) if
it is true at any state a from My. Recall that formula ¢ is a theorem of
the logic £(My) if and if only —¢ is not satisfiable formula in that logic.

Construction of the model M;

We need now some axillary technique. Let us consider the formula

Ala) = BOp(a) ABOp(ma) (1)
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where
ola) = <a AN(@AN(@A - A N(a)...))),

p(~a) = (~a AN(=a A N(ma A+ AN(=a)..)).
Here every big parentheses contain exactly k& formulas «. In what follows,
always the formula o does not contain temporal operation A that is «
is pure modal formula (we will speak about permanent non-stability only
such formulas).

Let for some z € N formula A(«) is true, so it is satisfiable in the state .

Common picture representing this event, may be depicted like this:

o eccan o) ]

Here every interval include exactly k states where formula « or —a to be
true.

Without loss of generality, keeping intuition, we can express such a-
intervals precisely in these sequences. If formula A(«) is satisfiable in a
state of a model My, then formula « is called permanently unstable formula
(or information).

To solve the question of the satisfiability of formula A(a) we need to
construct some finite models Ms and show, that this formula is satisfiable
in some model My if and only if it is satisfiable in some this model Ma
with effectively computable number of states.

At first we shell consider some auxiliary considerations. So, let we
assume that the formula A(a) = O0p(a) A OQp(—a) is true at some sate
b from our model.

Lemma 1.
Vb, Ve, ((c > b) = 35(S C Sub(a)) AVB[(B € S) = (clFy B)]A
AVB € Sub(a)((blFy B) = (8 € 5))). 2)

Proof follows by simple direct evaluation of possible truth values of
formulas from Sub(«).

The state b is called the realiser of the subset S, and S is realised in
the state b. Equivalence (2) does mean that for any given natural number
b only some realizers from some finite set of subsets S of the set of all
sub-formulas from Sub (A(«)) are accessible.

In ascending order from any b, the variety of subsets realizers S decreases
and therefore there exists the state c¢ such that in all states y > ¢ only
some subsets S from the fixed finite set {S7,S2,...,S5,} are exactly to be
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all possible realizers (starting from the state ¢) and these realizers to be
infinitely many times repeated in the future. That means that for any
x > ¢, for any S € {S1,59,...,5,} there is some y > z such that y is
realizer for S. Also it is clear that S as a realizer is unique. We need now
to construct certain intermediate model M7 with some desirable properties.
Basic set of the new model M; will begin from the state ¢y > ¢, where
cp the earliest state after ¢ where formula A(«a) is true, that is ¢ IFy A(a).
Then, in the basic set, we leave finite increasing set of all fixed states-
realizers for all sets from {57, 5s,...,S5,} situated between first interval

Inty:=[..«...]
after cg where « is true and next interval
Inty :==1[...ma...],
where —« is true; then we take the first interval
Inty:=[..a...]

after Inty = [...—c...] where « is true; next we delete all other states
starting from cg and direct the state x the final one in Ints to the state z
which is next one in the obtained model after the final state w in the interval
Int1. In the resulting model the relation < and valuation V remain to be
as before. We can then observe now following picture:

deoocac o oma ]

Lemma 2. For any natural number b > co, where b € My, and any
subformulas B € Sub(«) the next statement holds:

(MnD) IFy B <= (M1, b), IFy B

Proof. The proof follows by induction on the length ¢ of subformulas
B € Sub(a).
1. £ = 0. For the propositional variables it is evident.
2. Let the statement is true for V¢ < r. We shell prove for £ = r.
Inductive steps for the Boolean logical operations are evident. In the
case, when 8 = ¢~ or § = O~, the inductive steps easy follow from the
presence of all possible realizers. Lemma is proved. O

If a formula

Aar) = BOwp(a) ABOp(-a)

is satisfiable in a model Mj, it is also satisfiable in some usual model (it
easy follows by standard unravelling technique).
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As we may see, the model M has a finite size computable from the
length of the formulas

Aa) = O0p(a) A OQp(~a).
Therefore from Lemma 1 and Lemma 2 we obtain our main result:

Theorem 1. The problem of satisfiability formulas A(«) is decidable
and therefore the problem of recognizing permanent unstable formulas is
solvable.

3. Conclusion

In this paper we considered problem of nonstable truth values of for-
mulas. We investigated temporal modal logic £(My) for description of
reliability information. The logic £(My) itself is generated by standard
model My = (N, <, Next, V) on linear time. We considered intervals of
nonstable truth values of formulas, when formula permanently changes its
truth from true to false and vice versa. We constructed certain technique
and offered algorithm which may recognize permanently unstable formulas.
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