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Awnnoranms. Vzydaercss MeTpu3yeMoCTb KOMIIAKTHBIX MHOXKECTB B IIPOCTPAHCTBAX pa-
JOHOBCKHX Mep co ciaboit Tomosorueit. [lokazamno, 9To eciiv BCce KOMIAKTHI B JAHHOM
BIIOJIHE PETYJIAPHOM TOIIOJOTUYECKOM IIPOCTPAHCTBE METPU3YEMBbI, TO BCAKOE PAaBHOMEPHO
IJIOTHOE KOMITIAKTHOE MHOXKECTBO B IIPOCTPAHCTBE PAJOHOBCKUX MEpD Ha 3TOM IIPOCTPAaH-
CTBe TakKe MeTpudyemo. JlokazaHo, ITO METPU3YEMOCTh KOMIIAKTHBIX MHOYKECTB MEp Ha
JIAHHOM ITPOCTPAHCTBE COXPaHAETCA U1 IPOU3BE/ICHN 3TOTI0 IIPOCTPAHCTBA C IIPOCTPAH-
CTBaMU, KOTOPbIE BKJIAJIBIBAIOTCS B cenapabesibHble METpUYeCKre MpocTpancTBa. Kpome
TOr'0, IIOCTPOEH IpUMep PaJOHOBCKOHM BEPOATHOCTHON Mepbl Ha IIPOCTPAHCTBE PaJOHOB-
CKUX BEPOSITHOCTHBIX Ha BITOJTHE PErYJISIDHOM IIPOCTPAHCTBE, JIJisi KOTOPO# GapuIleHTp He
SABJIAETCA PAJOHOBCKONH MEpO.

KuroueBrnie ciioBa: pa/IoHOBCKas Mepa, OapHIEHTD, METPU3yeMOe KOMIAKTHOE MHOXKe-
CTBO Mep
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1. Introduction

The goal of this paper is two-fold: we study metrizability of compact
sets of measures on general spaces and the Radon property of barycenters of
measures on spaces of measures. These two questions are connected through
the property of uniform tightness of measures, which involves naturally
Prohorov spaces in our discussion.
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ON RADON BARYCENTERS OF MEASURES ON SPACES OF MEASURES 21

The study of barycenters of measures on spaces of measures is of inde-
pendent interest, but is also motivated by recent investigations of nonlinear
Kantorovich problems of optimal transportation of measures, see [1;2;4;5;
10;11;13], and also the recent surveys [8] and [9].

Let us introduce some terminology and notation (see [6]). Throughout
X is a completely regular topological space (see [6] or [12]) and B(X) is
its Borel o-algebra. The space of bounded continuous functions on X is
denoted by Cp(X). A nonnegative Borel measure on X (all measures here
are bounded) is called Radon if for every ¢ > 0 there is a compact set K
such that u(X\K) < e. A signed measure u = u* — pu~ is called Radon if
its total variation |u| = p™ + p~ is Radon (equivalently, its positive and
negative parts u* and p~ are Radon). The total variation norm is defined
by [l = 1p](X).

The space of all Radon measures on X is denoted by M,.(X), the subset
of probability measures is denoted by P.(X). The space of measures is
equipped with the weak topology (see [6] or [7]) generated by all seminorms

of the form
/ fdu
F

Throughout compactness is meant in this topology.

A set of measures M C M,(X) is called uniformly tight if for every
e > 0 there is a compact set such that |u|(X\K) < e for all p € M.

According to the Prohorov theorem, a bounded uniformly tight set of
measures has compact closure in the weak topology (see [6, Theorem 8.6.7]).

A space X is called Prohorov if every weakly compact set of Radon
probability measures is uniformly tight. For example, all complete metric
spaces and all locally compact spaces are Prohorov. On the other hand,
there are very simple Souslin spaces that are not Prohorov, for example,
the space Q of rational numbers. The space X is called strongly Prohorov
if all compact sets of signed measures are uniformly tight.

The barycenter of a Radon measure p on a locally convex space E such
that all continuous linear functionals on F are u-integrable is defined as a
vector a € E for which

py(p) = . [ €Gy(X).

ta) = [ 1@ (o)

for every continuous linear functional ! (see |6, §7.14(xii)|). We consider
a particular case in which E is the space M,(X) of Radon measures on
a completely regular topological space X and P is a Radon probability
measure on the subset P, (X) of probability measures. In this case a broader
concept of barycenter is used: the barycenter of P is the Borel measure Sp
on X defined by the equality

Bp(B) = /P VB PED), B e BX)
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It is known that the function p — p(B) is Borel measurable on P,.(X), so the
integral is well-defined and Bp is a Borel measure, moreover, the measure Sp
is 7-additive (see [6, Proposition 8.9.8 and Corollary 8.9.9]). The measure Sp
is Radon if and only if the measure P is concentrated on a countable union of
uniformly tight compact sets in P.(X) (see |9, Proposition 3.1]). Therefore,
such a barycenter need not be an element of the space £ = M,(X), but
may belong to a larger space of Borel measures. However, on many spaces all
Borel measures are automatically Radon, for example, this is true for Souslin
spaces, but if X is Souslin, then M, (X) is also Souslin, hence in this case
barycenters are Radon. Another sufficient condition for the existence of a
Radon barycenter for all measures in P,.(P,(X)) is the Prohorov property of
the space X. Note that in [1;4;5] and some other works the term “intensity”
is used for barycenters of measures on spaces of measures.

Our first main result gives an example of a Radon measure on the space
of Radon probability measures for which the barycenter is not Radon. This
result gives a positive answer to the question posed in [9].

Our second main result describes a broad class of spaces X such that
all compacta in P.(X) are metrizable. In particular, this is true if X is
Prohorov and all compacta in X are metrizable. More precisely, we show
that if compacta in X are metrizable, then every uniformly tight compact
set in P,.(X) is also metrizable. However, we do not know whether the
metrizability of compacta in X implies alone the metrizability of compacta
in Pr(X). Finally, we show that if compacta in P,(X) and P,(Y) are
metrizable, then the same is true for P,(X x Y). A similar result is proved
for the whole space of measures M, (X x Y) if Y has a countable family
of continuous functions separating points (i.e., can be embedded into a
separable metric space).

Of course, a general necessary and sufficient condition for the metrizabi-
lity of a compact space is the existence of a countable family of continuous
functions on this space separating its points. But when we are speaking of
metrizability of all compacta in a given space, the assumption that such a
sequence exists on the whole space is too strong, so we are interested in
other conditions.

2. A non-Radon barycenter

The goal of this section is to construct a Radon measure on the space of
Radon probability measures such that its barycenter is not Radon.

Let us consider the product R regarded as the space of functions
{z:]0,1] — R} with the standard Tychonoff product topology (see [12]),
i.e., the topology of pointwise convergence of functions.

Theorem 1. There is a Radon probability measure P on the space P, (RIO1)
of Radon probability measures on RIOY such that its barycenter Bp is not a
Radon measure.

Wssectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
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Proof. Let §, denote Dirac’s measure at a. For every function z: [0,1] —
[0,1] we take the measure p, € P(RI%Y) defined as follows:

Ha = ® Vyt,

te(0,1]

(1 —2(t))do0 + ()61 /2 if (t) > 0,
50 if dx(t) = 0.

The product-measure u, is first defined on the cylindrical o-algebra of
the space RO but it extends to a Radon probability measure on the Borel
o-algebra B(RI%!), because it is tight: the outer measure  of the compact

set
K= 1T [0.9(=(®))],
]

te(0,1

where v, ; € Pr(R), Vgt =

where g(s) = 1/s if s > 0 and g(0) = 1, equals 1; see [6, Section 7.3] about
such extensions. The mapping J: x — p, is continuous from [0, 1][071] to
P, (RO, since the mapping = — vz ¢+ is continuous for each ¢ € [0, 1], so
the product-measure is also continuous in z (see |6, Theorem 8.4.10]). Let
P be the image of the power A% of Lebesgue measure A on [0, 1] under
the mapping z — p,. Then the measure P belongs to P,(P,(RI%!)) and is
concentrated on the compact set {pz: € [0, 1][0’1]}, which is the image of
the compact set [0, 1]1%! under J.

The barycenter Sp of P is the product-measure 5%, where 3 is the
barycenter of the image of Lebesgue measure A under the mapping

s+ (1 —s)do + 80175, [0,1] = Pr(R).
Thus,
1
g = / ((1 = 5)do + 801 5) ds.
0
We have 5({0}) =1/2 and
1 1 1
B([0,t]) :/ (1—s)ds+/ sds=1— - Vt>1
0 1/t 2t
It follows that 85 (K) = 0 for every compact set K C RO Indeed,

Kc [] =v®),y®)

tel0,1]

for some function y: [0,1] — R*T. There is N such that y(t) < N for
infinitely many points ¢ € {t;,j7 € N}. Then

Bp(K) < [ 810, N)) =0,
j=1



24 V. 1. BOGACHEV, S. N. POPOVA

because ([0, N]) < 1 for each N. Therefore, Sp is not a Radon measure,
moreover, it has no Radon extension from the cylindrical o-algebra. O

Remark 1. It is worth noting that the measure P has the following
property: there is no uniformly tight compact set K C PT(R[O’I]) with
P(K) > 0. Indeed, otherwise

K c {uePROUY: u(K)>1/2}
for some compact set K C RI%Y. We have K [Ticpoy[—y(®), y(¢)] for some
function y: [0,1] — Ry. Then
p(ﬂ e P (ROY): u(K) > 1/2)

< N0 (e 0,100 (T [0t p®)]) > 1/2).

te(0,1]

There is N such that the set {t € [0,1]: y(t) < N} is infinite. Let y(t) < N
for t € {tj,j € N}. Then

o ( TT 1=90,9(0)]) < T v, (=N ND) = T (),
te[0,1] Jj=1 J=1

where h(s) = 1 — s if 0 < s < 1/N and h(s) = 1 if # > 1/N. We have
2\[0.1] ({x e [o, 1][0,1]: x(t;) € [1/(2N),1/N) for infinitely many j) =1,
hence
A0 (a: € [0,1): h(x(t)) < 1-1/(2N) for infinitely many j) =1

Therefore, A0 <:U e [0, 101 p, (Hte[o,l][*y(t), y(t)]) = 0) = 1, which is

a contradiction.

3. Metrizability of compacta in spaces of measures

If all compacta in the space of probability measures P,.(X) are metrizab-
le, then the same is true for the space X itself, because it is homeomorphic
to the subset of Dirac measures. Apparently, the converse is not true, so the
following partial converse might be of interest.

Theorem 2. Suppose that all compact sets in X are metrizable. Then
uniformly tight compact sets in M, (X) are also metrizable.

Wssectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
Cepust «Maremarukas. 2023. T. 44. C. 19-30
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Proof. Let S € M,(X) be a uniformly tight compact set. We can assume
that all measures in S have total variation norms at most 1. For each n there
is a compact set K, C X such that |o|(X\K,) < 27" for all 0 € S. These
sets can be taken increasing. We show that there is a countable family of
continuous functions on S separating the elements of .S. For such functions
we pick linear functionals on M, (X)) of the form

u+—>/fn

with suitable bounded continuous functions f, on X. Since the compact
sets K, are metrizable, for each fixed n there are functions g,; € Cy(X)
with sup,ex |gn,i(®)| = sup,ek,, |9n,i(x)| = 1 and the following property:

vl = sup / gn i
7 Ky

for every Radon measure v on K,. Next, for every m > n we can find open
sets Uy,m,; in the metrizable compact space K, such that

00
Un,m,j+1 C Un,m,ja K, = m Un,m,j-

In the whole space X there are open sets W, ,,, ; for which
Un7m7j = Wn7m7j m Km'

Finally, for fixed n,m,j we take a function ¢, ; € Cp(X) such that

0 S SOn7m7j S 1) @n,m,j‘Kn = 17 (Pn,m,j X\Wn,m,j =0.

Such functions exist, since X is completely regular (see, e.g., [6, Lem-
ma, 6.1.5]). For the desired functions f, we take the functions ¢p m jgn,i
enumerated by a single index.

Let us show that the integrals of these functions separate measures
in S. Suppose that o1,09 € S are distinct. Then there is n such that the
restrictions of these measures to K, are distinct. Let

0 = |lo1|x, — o2lk, || > 0.

By our construction, there is a function g, ; such that

3
'/ Gn,idoy — / Gn,i doa| > —0.
K, Ky
Next, there is m > n such that
1
o1/ (X\Em) + |o2|(X\Km) < 20.
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Then

1
‘/ fndot| + ‘/ fndoa| < =6 VneN. (3.1)
X\Kpm X\Km 8
Since the sets Uy, y,,; decrease to K,,, there is j for which
1
|11 Unm i \En) + 02| (Unm i \Kn) < £0.
Therefore,
1
fndot| + fndos| <=6 VneN. (3.2)
Un,’m,j\Kn Un,7n,j\K’rL 8

Let us now compare the integrals of the function g, ;n, m,; With respect to
o1 and og. This function equals g, ; on K, so

‘/ IniPn,m,j doy — / 9n,iPn,m,j dos
n Kn

Next, we have (3.1) for this function and

> —0.

3
1

OO\»i

‘/ In,i¥Pn,m,j (|Ul| + |O-2’)‘

because ¢ i¢nm.j(x) = 0 if v € K,\Unm,; and (3.2) holds. Thus, the
difference of the integrals of gy ;¢n m,; over the whole space is at least /2.
O

It is unlikely that the assumption of uniform compactness can be omitted,
but we have no confirming examples. Standard examples of non-metrizable
spaces with metrizable compacta (say, with countable compacta, see, e.g.,
[3], [14]) do not work.

We also do not know whether the metrizability of compacta in the space
Pr(X) of probability measures is sufficient for the metrizability of compacta
in the whole space of measures. If compacta in M, (X) are uniformly tight
(i.e., X is strongly Prohorov), then the answer is obviously positive.

If the space X admits a continuous injection j into a completely regular
space Y such that compacta in M, (X) or P.(X) are metrizable, then X
also has the respective property, because j generates a continuous injection
M, (X) — M,(Y). In particular, compacta in P.(X) are metrizable if
X admits a continuous injection into a metric space Y, since P.(Y) is
metrizable (see [6, Theorem 8.3.2]).

The next result shows that the metrizability of compacta in the space of
measures is preserved by taking products with spaces possessing countable
families of continuous functions separating points (the latter is equivalent
to the existence of a continuous injection into a separable metric space).

Wssectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
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For the class of probability measures, it suffices that compacta in spaces of
probability measures on both factors be metrizable.

We need the following simple observation: if .S is a metrizable compact set
in M, (X), then there is a sequence {f,} of bounded continuous functions
on X such that the functionals

u*—>/ Indp
X

separate measures in S. Indeed, the family of all integrals of functions in
Cy(X) separate measures on X, hence on every compact set there is a
countable subfamily separating the elements of this subset.

Theorem 3. (i) Suppose that all compacta in the space M, (X) are metri-
zable. Then the same is true for M,(X x Y) provided that the space Y
possesses a countable family of continuous functions separating points.

(ii) Suppose that all compacta in the spaces of probability measures Py(X)
and Pr(Y') are metrizable. Then the same is true for P.(X x Y).

Proof. (i) Let {gn} be a sequence of continuous functions on Y separating
points. We can assume that these functions are bounded and that their
linear combinations with rational coefficients also belong to this sequence.
Then we can add to this countable family all finite products of its elements.
It is readily seen that the obtained family (again denoted by {g,}) separates
measures on Y (continuous functions on compact sets in Y are uniformly
approximated by functions from this family, which follows from the Stone—
Weierstrass theorem).

For a bounded continuous function ¢ on X x Y and a measure o on
X xY we denote by ¢ o the measure with the Radon—Nikodym density o
with respect to 0. Below we use such measures for functions ¢ depending
only on one argument.

Let S be a compact set in M,.(X x Y). For every function g, the set of
measures g, - i, it € S, is also compact. Hence its projection S,, on M,.(X) is
compact and then is metrizable by our assumption. As noted above, there is
a countable family {f,, 1} of bounded continuous functions on X such that
the integrals of these functions separate measures in .9,.

Let us show that the integrals of the functions f, x(2)gn(y) separate
measures in S. Suppose that 01,00 € S assign equal integrals to each
function f, x(x)gn(y). We verify that for every f € Cp(X) and every g €
Cy(Y) the integrals of f(z)g(y) with respect to o1 and o3 coincide. This will
imply the equality o1 = o2. We observe that for every fixed n the projections
of g,-01 and g, -02 on X assign equal integrals to all functions f, , because
the integral of f, r(x) with respect to the projection of g, - 0; on X is the
integral of fy, (2)gn(y) with respect to o;. Hence these projections coincide



28 V.1 BOGACHEV, S. N. POPOVA

and assign equal integrals to the function f, which means that

| r@mordzdy) = [ s@nls) oa(dady).

XxY XxY

We now look at the projections of the measures f - o1 and f - 09 on Y
and observe that by the previous identity they assign equal integrals to all
functions g,,. Due to our choice of {g,} this implies the coincidence of these
projections. Hence they assign equal integrals to g, which completes the
proof.

(ii) We need the following criterion of compactness due to Topsge [15]
(see also |7, Theorem 4.5.7]): a bounded subset M of the set M (X) of
nonnegative measures has compact closure precisely when for every € > 0
and each collection U of open sets with the property that every compact set
in X is contained in a set from U, there exist sets Uy, ..., U, € U such that

min{p(X\U;): 1<i<n}<e VpeM.

Let S C P,(X xY) be compact. By the cited result the set Sp of measures
of the form f-o, where 0 € S, f € C3(X) and 1 < f < 2, has compact
closure. Then the projection of Sy on Y is contained in a compact set My
of nonnegative measures on Y. Such sets are also metrizable under our
assumption that compacta in P.(Y) are metrizable. Indeed, the image of
My under the continuous mapping v — v/v(Y') is compact in P (Y). Let M;
be this image. Then Mj is contained in the image of the metrizable compact
set M7 x [1,2] under the continuous mapping (v, t) — tv, but this image is
also metrizable (see, e.g., [12, Theorem 4.4.15]). Now the same reasoning as
in (i) applies once we pick a sequence of functions g, € Cy(Y) separating
measures on My. The only difference is that now we consider functions
f(x)g(y) with 1 < f < 2 and obtain the equality of the integrals of such
functions, but this yields the same for any function f € Cy(X), because it
can be written as c; fi + co, where ¢y, ¢ are constants and 1 < f; <2. O

Remark 2. It is clear from the proof that the assumption about Y can be
replaced by the following one: compact sets in M,.(Y) are metrizable and
uniformly tight (i.e., Y has the strong Prohorov property). Indeed, under
these assumptions the family M of projections on Y of all measures of the
form f - o, where 0 € S and f € Cp(X), |f| < 1, is contained in the family
of measures ¢ - v, where v belongs to the projection Sy of S on Y and ¢ is
a Borel function with |p| < 1. The projection Sy is compact, hence in our
situation is uniformly tight, which implies the uniform tightness of M. Thus,
M is contained in a compact set My, which is metrizable by assumption, so
the functions g,, used above should be picked with the property to separate
measures in My rather than in the whole space M, (Y). However, we do
not know whether this theorem is true if we only assume that compacta in
M, (Y') are metrizable.
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