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Аннотация. Изучается метризуемость компактных множеств в пространствах ра-
доновских мер со слабой топологией. Показано, что если все компакты в данном
вполне регулярном топологическом пространстве метризуемы, то всякое равномерно
плотное компактное множество в пространстве радоновских мер на этом простран-
стве также метризуемо. Доказано, что метризуемость компактных множеств мер на
данном пространстве сохраняется для произведений этого пространства с простран-
ствами, которые вкладываются в сепарабельные метрические пространства. Кроме
того, построен пример радоновской вероятностной меры на пространстве радонов-
ских вероятностных на вполне регулярном пространстве, для которой барицентр не
является радоновской мерой.
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ство мер
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1. Introduction

The goal of this paper is two-fold: we study metrizability of compact
sets of measures on general spaces and the Radon property of barycenters of
measures on spaces of measures. These two questions are connected through
the property of uniform tightness of measures, which involves naturally
Prohorov spaces in our discussion.

Известия Иркутского государственного университета.
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The study of barycenters of measures on spaces of measures is of inde-
pendent interest, but is also motivated by recent investigations of nonlinear
Kantorovich problems of optimal transportation of measures, see [1; 2; 4; 5;
10;11;13], and also the recent surveys [8] and [9].

Let us introduce some terminology and notation (see [6]). Throughout
𝑋 is a completely regular topological space (see [6] or [12]) and ℬ(𝑋) is
its Borel 𝜎-algebra. The space of bounded continuous functions on 𝑋 is
denoted by 𝐶𝑏(𝑋). A nonnegative Borel measure on 𝑋 (all measures here
are bounded) is called Radon if for every 𝜀 > 0 there is a compact set 𝐾
such that 𝜇(𝑋∖𝐾) < 𝜀. A signed measure 𝜇 = 𝜇+ − 𝜇− is called Radon if
its total variation |𝜇| = 𝜇+ + 𝜇− is Radon (equivalently, its positive and
negative parts 𝜇+ and 𝜇− are Radon). The total variation norm is defined
by ‖𝜇‖ = |𝜇|(𝑋).

The space of all Radon measures on 𝑋 is denoted by ℳ𝑟(𝑋), the subset
of probability measures is denoted by 𝒫𝑟(𝑋). The space of measures is
equipped with the weak topology (see [6] or [7]) generated by all seminorms
of the form

𝑝𝑓 (𝜇) =

⃒⃒⃒⃒∫︁
𝐹
𝑓 𝑑𝜇

⃒⃒⃒⃒
, 𝑓 ∈ 𝐶𝑏(𝑋).

Throughout compactness is meant in this topology.
A set of measures 𝑀 ⊂ ℳ𝑟(𝑋) is called uniformly tight if for every

𝜀 > 0 there is a compact set such that |𝜇|(𝑋∖𝐾) < 𝜀 for all 𝜇 ∈𝑀 .
According to the Prohorov theorem, a bounded uniformly tight set of

measures has compact closure in the weak topology (see [6, Theorem 8.6.7]).
A space 𝑋 is called Prohorov if every weakly compact set of Radon

probability measures is uniformly tight. For example, all complete metric
spaces and all locally compact spaces are Prohorov. On the other hand,
there are very simple Souslin spaces that are not Prohorov, for example,
the space Q of rational numbers. The space 𝑋 is called strongly Prohorov
if all compact sets of signed measures are uniformly tight.

The barycenter of a Radon measure 𝜇 on a locally convex space 𝐸 such
that all continuous linear functionals on 𝐸 are 𝜇-integrable is defined as a
vector 𝑎 ∈ 𝐸 for which

𝑙(𝑎) =

∫︁
𝐸
𝑙(𝑥)𝜇(𝑑𝑥)

for every continuous linear functional 𝑙 (see [6, §7.14(xii)]). We consider
a particular case in which 𝐸 is the space ℳ𝑟(𝑋) of Radon measures on
a completely regular topological space 𝑋 and 𝑃 is a Radon probability
measure on the subset 𝒫𝑟(𝑋) of probability measures. In this case a broader
concept of barycenter is used: the barycenter of 𝑃 is the Borel measure 𝛽𝑃
on 𝑋 defined by the equality

𝛽𝑃 (𝐵) =

∫︁
𝒫𝑟(𝑋)

𝑝(𝐵)𝑃 (𝑑𝑝), 𝐵 ∈ ℬ(𝑋).
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It is known that the function 𝑝 ↦→ 𝑝(𝐵) is Borel measurable on 𝒫𝑟(𝑋), so the
integral is well-defined and 𝛽𝑃 is a Borel measure, moreover, the measure 𝛽𝑃
is 𝜏 -additive (see [6, Proposition 8.9.8 and Corollary 8.9.9]). The measure 𝛽𝑃
is Radon if and only if the measure 𝑃 is concentrated on a countable union of
uniformly tight compact sets in 𝒫𝑟(𝑋) (see [9, Proposition 3.1]). Therefore,
such a barycenter need not be an element of the space 𝐸 = ℳ𝑟(𝑋), but
may belong to a larger space of Borel measures. However, on many spaces all
Borel measures are automatically Radon, for example, this is true for Souslin
spaces, but if 𝑋 is Souslin, then ℳ𝑟(𝑋) is also Souslin, hence in this case
barycenters are Radon. Another sufficient condition for the existence of a
Radon barycenter for all measures in 𝒫𝑟(𝒫𝑟(𝑋)) is the Prohorov property of
the space 𝑋. Note that in [1;4;5] and some other works the term “intensity”
is used for barycenters of measures on spaces of measures.

Our first main result gives an example of a Radon measure on the space
of Radon probability measures for which the barycenter is not Radon. This
result gives a positive answer to the question posed in [9].

Our second main result describes a broad class of spaces 𝑋 such that
all compacta in 𝒫𝑟(𝑋) are metrizable. In particular, this is true if 𝑋 is
Prohorov and all compacta in 𝑋 are metrizable. More precisely, we show
that if compacta in 𝑋 are metrizable, then every uniformly tight compact
set in 𝒫𝑟(𝑋) is also metrizable. However, we do not know whether the
metrizability of compacta in 𝑋 implies alone the metrizability of compacta
in 𝒫𝑟(𝑋). Finally, we show that if compacta in 𝒫𝑟(𝑋) and 𝒫𝑟(𝑌 ) are
metrizable, then the same is true for 𝒫𝑟(𝑋 × 𝑌 ). A similar result is proved
for the whole space of measures ℳ𝑟(𝑋 × 𝑌 ) if 𝑌 has a countable family
of continuous functions separating points (i.e., can be embedded into a
separable metric space).

Of course, a general necessary and sufficient condition for the metrizabi-
lity of a compact space is the existence of a countable family of continuous
functions on this space separating its points. But when we are speaking of
metrizability of all compacta in a given space, the assumption that such a
sequence exists on the whole space is too strong, so we are interested in
other conditions.

2. A non-Radon barycenter

The goal of this section is to construct a Radon measure on the space of
Radon probability measures such that its barycenter is not Radon.

Let us consider the product R[0,1] regarded as the space of functions
{𝑥 : [0, 1] → R} with the standard Tychonoff product topology (see [12]),
i.e., the topology of pointwise convergence of functions.

Theorem 1. There is a Radon probability measure 𝑃 on the space 𝒫𝑟(R[0,1])
of Radon probability measures on R[0,1] such that its barycenter 𝛽𝑃 is not a
Radon measure.

Известия Иркутского государственного университета.
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Proof. Let 𝛿𝑎 denote Dirac’s measure at 𝑎. For every function 𝑥 : [0, 1] →
[0, 1] we take the measure 𝜇𝑥 ∈ 𝒫(R[0,1]) defined as follows:

𝜇𝑥 =
⨂︁
𝑡∈[0,1]

𝜈𝑥,𝑡,

where 𝜈𝑥,𝑡 ∈ 𝒫𝑟(R), 𝜈𝑥,𝑡 =

{︃
(1− 𝑥(𝑡))𝛿0 + 𝑥(𝑡)𝛿1/𝑥(𝑡) if 𝑥(𝑡) > 0,

𝛿0 if d𝑥(𝑡) = 0.

The product-measure 𝜇𝑥 is first defined on the cylindrical 𝜎-algebra of
the space R[0,1], but it extends to a Radon probability measure on the Borel
𝜎-algebra ℬ(R[0,1]), because it is tight: the outer measure 𝜇*𝑥 of the compact
set

𝐾 =
∏︁

𝑡∈[0,1]

[0, 𝑔(𝑥(𝑡))],

where 𝑔(𝑠) = 1/𝑠 if 𝑠 > 0 and 𝑔(0) = 1, equals 1; see [6, Section 7.3] about
such extensions. The mapping 𝐽 : 𝑥 ↦→ 𝜇𝑥 is continuous from [0, 1][0,1] to
𝒫𝑟(R[0,1]), since the mapping 𝑥 ↦→ 𝜈𝑥,𝑡 is continuous for each 𝑡 ∈ [0, 1], so
the product-measure is also continuous in 𝑥 (see [6, Theorem 8.4.10]). Let
𝑃 be the image of the power 𝜆[0,1] of Lebesgue measure 𝜆 on [0, 1] under
the mapping 𝑥 ↦→ 𝜇𝑥. Then the measure 𝑃 belongs to 𝒫𝑟(𝒫𝑟(R[0,1])) and is
concentrated on the compact set {𝜇𝑥 : 𝑥 ∈ [0, 1][0,1]}, which is the image of
the compact set [0, 1][0,1] under 𝐽 .

The barycenter 𝛽𝑃 of 𝑃 is the product-measure 𝛽[0,1], where 𝛽 is the
barycenter of the image of Lebesgue measure 𝜆 under the mapping

𝑠 ↦→ (1− 𝑠)𝛿0 + 𝑠𝛿1/𝑠, [0, 1] → 𝒫𝑟(R).

Thus,

𝛽 =

∫︁ 1

0
((1− 𝑠)𝛿0 + 𝑠𝛿1/𝑠) 𝑑𝑠.

We have 𝛽({0}) = 1/2 and

𝛽([0, 𝑡]) =

∫︁ 1

0
(1− 𝑠) 𝑑𝑠+

∫︁ 1

1/𝑡
𝑠 𝑑𝑠 = 1− 1

2𝑡2
∀ 𝑡 ≥ 1.

It follows that 𝛽*𝑃 (𝐾) = 0 for every compact set 𝐾 ⊂ R[0,1]. Indeed,

𝐾 ⊂
∏︁

𝑡∈[0,1]

[−𝑦(𝑡), 𝑦(𝑡)]

for some function 𝑦 : [0, 1] → R+. There is 𝑁 such that 𝑦(𝑡) ≤ 𝑁 for
infinitely many points 𝑡 ∈ {𝑡𝑗 , 𝑗 ∈ N}. Then

𝛽*𝑃 (𝐾) ≤
∞∏︁
𝑗=1

𝛽([0, 𝑁 ]) = 0,
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because 𝛽([0, 𝑁 ]) < 1 for each 𝑁 . Therefore, 𝛽𝑃 is not a Radon measure,
moreover, it has no Radon extension from the cylindrical 𝜎-algebra.

Remark 1. It is worth noting that the measure 𝑃 has the following
property: there is no uniformly tight compact set 𝒦 ⊂ 𝒫𝑟(R[0,1]) with
𝑃 (𝒦) > 0. Indeed, otherwise

𝒦 ⊂ {𝜇 ∈ 𝒫𝑟(R
[0,1]) : 𝜇(𝐾) > 1/2}

for some compact set 𝐾 ⊂ R[0,1]. We have 𝐾 ⊂
∏︀

𝑡∈[0,1][−𝑦(𝑡), 𝑦(𝑡)] for some
function 𝑦 : [0, 1] → R+. Then

𝑃
(︁
𝜇 ∈ 𝒫𝑟(R

[0,1]) : 𝜇(𝐾) > 1/2
)︁

≤ 𝜆[0,1]
(︁
𝑥 ∈ [0, 1][0,1] : 𝜇𝑥

(︁ ∏︁
𝑡∈[0,1]

[−𝑦(𝑡), 𝑦(𝑡)]
)︁
> 1/2

)︁
.

There is 𝑁 such that the set {𝑡 ∈ [0, 1] : 𝑦(𝑡) ≤ 𝑁} is infinite. Let 𝑦(𝑡) ≤ 𝑁
for 𝑡 ∈ {𝑡𝑗 , 𝑗 ∈ N}. Then

𝜇𝑥

(︁ ∏︁
𝑡∈[0,1]

[−𝑦(𝑡), 𝑦(𝑡)]
)︁
≤

∞∏︁
𝑗=1

𝜈𝑥,𝑡𝑗 ([−𝑁,𝑁 ]) =
∞∏︁
𝑗=1

ℎ(𝑥(𝑡𝑗)),

where ℎ(𝑠) = 1− 𝑠 if 0 ≤ 𝑠 < 1/𝑁 and ℎ(𝑠) = 1 if 𝑥 ≥ 1/𝑁 . We have

𝜆[0,1]
(︁
{𝑥 ∈ [0, 1][0,1] : 𝑥(𝑡𝑗) ∈ [1/(2𝑁), 1/𝑁) for infinitely many 𝑗

)︁
= 1,

hence

𝜆[0,1]
(︁
𝑥 ∈ [0, 1][0,1] : ℎ(𝑥(𝑡𝑗)) ≤ 1− 1/(2𝑁) for infinitely many 𝑗

)︁
= 1.

Therefore, 𝜆[0,1]
(︁
𝑥 ∈ [0, 1][0,1] : 𝜇𝑥

(︁∏︀
𝑡∈[0,1][−𝑦(𝑡), 𝑦(𝑡)]

)︁
= 0
)︁
= 1, which is

a contradiction.

3. Metrizability of compacta in spaces of measures

If all compacta in the space of probability measures 𝒫𝑟(𝑋) are metrizab-
le, then the same is true for the space 𝑋 itself, because it is homeomorphic
to the subset of Dirac measures. Apparently, the converse is not true, so the
following partial converse might be of interest.

Theorem 2. Suppose that all compact sets in 𝑋 are metrizable. Then
uniformly tight compact sets in ℳ𝑟(𝑋) are also metrizable.

Известия Иркутского государственного университета.
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Proof. Let 𝑆 ⊂ ℳ𝑟(𝑋) be a uniformly tight compact set. We can assume
that all measures in 𝑆 have total variation norms at most 1. For each 𝑛 there
is a compact set 𝐾𝑛 ⊂ 𝑋 such that |𝜎|(𝑋∖𝐾𝑛) ≤ 2−𝑛 for all 𝜎 ∈ 𝑆. These
sets can be taken increasing. We show that there is a countable family of
continuous functions on 𝑆 separating the elements of 𝑆. For such functions
we pick linear functionals on ℳ𝑟(𝑋) of the form

𝜇 ↦→
∫︁
𝑋
𝑓𝑛(𝑥)𝜇(𝑑𝑥)

with suitable bounded continuous functions 𝑓𝑛 on 𝑋. Since the compact
sets 𝐾𝑛 are metrizable, for each fixed 𝑛 there are functions 𝑔𝑛,𝑖 ∈ 𝐶𝑏(𝑋)
with sup𝑥∈𝑋 |𝑔𝑛,𝑖(𝑥)| = sup𝑥∈𝐾𝑛

|𝑔𝑛,𝑖(𝑥)| = 1 and the following property:

‖𝜈‖ = sup
𝑖

∫︁
𝐾𝑛

𝑔𝑛,𝑖 𝑑𝜈

for every Radon measure 𝜈 on 𝐾𝑛. Next, for every 𝑚 > 𝑛 we can find open
sets 𝑈𝑛,𝑚,𝑗 in the metrizable compact space 𝐾𝑚 such that

𝑈𝑛,𝑚,𝑗+1 ⊂ 𝑈𝑛,𝑚,𝑗 , 𝐾𝑛 =
∞⋂︁
𝑗=1

𝑈𝑛,𝑚,𝑗 .

In the whole space 𝑋 there are open sets 𝑊𝑛,𝑚,𝑗 for which

𝑈𝑛,𝑚,𝑗 =𝑊𝑛,𝑚,𝑗 ∩𝐾𝑚.

Finally, for fixed 𝑛,𝑚, 𝑗 we take a function 𝜙𝑛,𝑚,𝑗 ∈ 𝐶𝑏(𝑋) such that

0 ≤ 𝜙𝑛,𝑚,𝑗 ≤ 1, 𝜙𝑛,𝑚,𝑗 |𝐾𝑛 = 1, 𝜙𝑛,𝑚,𝑗 |𝑋∖𝑊𝑛,𝑚,𝑗
= 0.

Such functions exist, since 𝑋 is completely regular (see, e.g., [6, Lem-
ma 6.1.5]). For the desired functions 𝑓𝑛 we take the functions 𝜙𝑛,𝑚,𝑗𝑔𝑛,𝑖
enumerated by a single index.

Let us show that the integrals of these functions separate measures
in 𝑆. Suppose that 𝜎1, 𝜎2 ∈ 𝑆 are distinct. Then there is 𝑛 such that the
restrictions of these measures to 𝐾𝑛 are distinct. Let

𝛿 = ‖𝜎1|𝐾𝑛 − 𝜎2|𝐾𝑛‖ > 0.

By our construction, there is a function 𝑔𝑛,𝑖 such that⃒⃒⃒⃒∫︁
𝐾𝑛

𝑔𝑛,𝑖 𝑑𝜎1 −
∫︁
𝐾𝑛

𝑔𝑛,𝑖 𝑑𝜎2

⃒⃒⃒⃒
≥ 3

4
𝛿.

Next, there is 𝑚 > 𝑛 such that

|𝜎1|(𝑋∖𝐾𝑚) + |𝜎2|(𝑋∖𝐾𝑚) ≤ 1

8
𝛿.
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Then ⃒⃒⃒⃒∫︁
𝑋∖𝐾𝑚

𝑓𝑛 𝑑𝜎1

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁
𝑋∖𝐾𝑚

𝑓𝑛 𝑑𝜎2

⃒⃒⃒⃒
≤ 1

8
𝛿 ∀𝑛 ∈ N. (3.1)

Since the sets 𝑈𝑛,𝑚,𝑗 decrease to 𝐾𝑛, there is 𝑗 for which

|𝜎1|(𝑈𝑛,𝑚,𝑗∖𝐾𝑛) + |𝜎2|(𝑈𝑛,𝑚,𝑗∖𝐾𝑛) ≤
1

8
𝛿.

Therefore,⃒⃒⃒⃒∫︁
𝑈𝑛,𝑚,𝑗∖𝐾𝑛

𝑓𝑛 𝑑𝜎1

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁
𝑈𝑛,𝑚,𝑗∖𝐾𝑛

𝑓𝑛 𝑑𝜎2

⃒⃒⃒⃒
≤ 1

8
𝛿 ∀𝑛 ∈ N. (3.2)

Let us now compare the integrals of the function 𝑔𝑛,𝑖𝜙𝑛,𝑚,𝑗 with respect to
𝜎1 and 𝜎2. This function equals 𝑔𝑛,𝑖 on 𝐾𝑛, so⃒⃒⃒⃒∫︁

𝐾𝑛

𝑔𝑛,𝑖𝜙𝑛,𝑚,𝑗 𝑑𝜎1 −
∫︁
𝐾𝑛

𝑔𝑛,𝑖𝜙𝑛,𝑚,𝑗 𝑑𝜎2

⃒⃒⃒⃒
≥ 3

4
𝛿.

Next, we have (3.1) for this function and⃒⃒⃒⃒∫︁
𝐾𝑚∖𝐾𝑛

𝑔𝑛,𝑖𝜙𝑛,𝑚,𝑗 𝑑(|𝜎1|+ |𝜎2|)
⃒⃒⃒⃒
≤ 1

8
𝛿,

because 𝑔𝑛,𝑖𝜙𝑛,𝑚,𝑗(𝑥) = 0 if 𝑥 ∈ 𝐾𝑛∖𝑈𝑛,𝑚,𝑗 and (3.2) holds. Thus, the
difference of the integrals of 𝑔𝑛,𝑖𝜙𝑛,𝑚,𝑗 over the whole space is at least 𝛿/2.

It is unlikely that the assumption of uniform compactness can be omitted,
but we have no confirming examples. Standard examples of non-metrizable
spaces with metrizable compacta (say, with countable compacta, see, e.g.,
[3], [14]) do not work.

We also do not know whether the metrizability of compacta in the space
𝒫𝑟(𝑋) of probability measures is sufficient for the metrizability of compacta
in the whole space of measures. If compacta in ℳ𝑟(𝑋) are uniformly tight
(i.e., 𝑋 is strongly Prohorov), then the answer is obviously positive.

If the space 𝑋 admits a continuous injection 𝑗 into a completely regular
space 𝑌 such that compacta in ℳ𝑟(𝑋) or 𝒫𝑟(𝑋) are metrizable, then 𝑋
also has the respective property, because 𝑗 generates a continuous injection
ℳ𝑟(𝑋) → ℳ𝑟(𝑌 ). In particular, compacta in 𝒫𝑟(𝑋) are metrizable if
𝑋 admits a continuous injection into a metric space 𝑌 , since 𝒫𝑟(𝑌 ) is
metrizable (see [6, Theorem 8.3.2]).

The next result shows that the metrizability of compacta in the space of
measures is preserved by taking products with spaces possessing countable
families of continuous functions separating points (the latter is equivalent
to the existence of a continuous injection into a separable metric space).
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For the class of probability measures, it suffices that compacta in spaces of
probability measures on both factors be metrizable.

We need the following simple observation: if 𝑆 is a metrizable compact set
in ℳ𝑟(𝑋), then there is a sequence {𝑓𝑛} of bounded continuous functions
on 𝑋 such that the functionals

𝜇 ↦→
∫︁
𝑋
𝑓𝑛 𝑑𝜇

separate measures in 𝑆. Indeed, the family of all integrals of functions in
𝐶𝑏(𝑋) separate measures on 𝑋, hence on every compact set there is a
countable subfamily separating the elements of this subset.

Theorem 3. (i) Suppose that all compacta in the space ℳ𝑟(𝑋) are metri-
zable. Then the same is true for ℳ𝑟(𝑋 × 𝑌 ) provided that the space 𝑌
possesses a countable family of continuous functions separating points.

(ii) Suppose that all compacta in the spaces of probability measures 𝒫𝑟(𝑋)
and 𝒫𝑟(𝑌 ) are metrizable. Then the same is true for 𝒫𝑟(𝑋 × 𝑌 ).

Proof. (i) Let {𝑔𝑛} be a sequence of continuous functions on 𝑌 separating
points. We can assume that these functions are bounded and that their
linear combinations with rational coefficients also belong to this sequence.
Then we can add to this countable family all finite products of its elements.
It is readily seen that the obtained family (again denoted by {𝑔𝑛}) separates
measures on 𝑌 (continuous functions on compact sets in 𝑌 are uniformly
approximated by functions from this family, which follows from the Stone–
Weierstrass theorem).

For a bounded continuous function 𝜚 on 𝑋 × 𝑌 and a measure 𝜎 on
𝑋 × 𝑌 we denote by 𝜚 · 𝜎 the measure with the Radon–Nikodym density 𝜚
with respect to 𝜎. Below we use such measures for functions 𝜚 depending
only on one argument.

Let 𝑆 be a compact set in ℳ𝑟(𝑋 × 𝑌 ). For every function 𝑔𝑛 the set of
measures 𝑔𝑛 ·𝜇, 𝜇 ∈ 𝑆, is also compact. Hence its projection 𝑆𝑛 on ℳ𝑟(𝑋) is
compact and then is metrizable by our assumption. As noted above, there is
a countable family {𝑓𝑛,𝑘} of bounded continuous functions on 𝑋 such that
the integrals of these functions separate measures in 𝑆𝑛.

Let us show that the integrals of the functions 𝑓𝑛,𝑘(𝑥)𝑔𝑛(𝑦) separate
measures in 𝑆. Suppose that 𝜎1, 𝜎2 ∈ 𝑆 assign equal integrals to each
function 𝑓𝑛,𝑘(𝑥)𝑔𝑛(𝑦). We verify that for every 𝑓 ∈ 𝐶𝑏(𝑋) and every 𝑔 ∈
𝐶𝑏(𝑌 ) the integrals of 𝑓(𝑥)𝑔(𝑦) with respect to 𝜎1 and 𝜎2 coincide. This will
imply the equality 𝜎1 = 𝜎2. We observe that for every fixed 𝑛 the projections
of 𝑔𝑛 ·𝜎1 and 𝑔𝑛 ·𝜎2 on 𝑋 assign equal integrals to all functions 𝑓𝑛,𝑘, because
the integral of 𝑓𝑛,𝑘(𝑥) with respect to the projection of 𝑔𝑛 · 𝜎𝑖 on 𝑋 is the
integral of 𝑓𝑛,𝑘(𝑥)𝑔𝑛(𝑦) with respect to 𝜎𝑖. Hence these projections coincide
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and assign equal integrals to the function 𝑓 , which means that∫︁
𝑋×𝑌

𝑓(𝑥)𝑔𝑛(𝑦)𝜎1(𝑑𝑥 𝑑𝑦) =

∫︁
𝑋×𝑌

𝑓(𝑥)𝑔𝑛(𝑦)𝜎2(𝑑𝑥 𝑑𝑦).

We now look at the projections of the measures 𝑓 · 𝜎1 and 𝑓 · 𝜎2 on 𝑌
and observe that by the previous identity they assign equal integrals to all
functions 𝑔𝑛. Due to our choice of {𝑔𝑛} this implies the coincidence of these
projections. Hence they assign equal integrals to 𝑔, which completes the
proof.

(ii) We need the following criterion of compactness due to Topsøe [15]
(see also [7, Theorem 4.5.7]): a bounded subset 𝑀 of the set ℳ+

𝑟 (𝑋) of
nonnegative measures has compact closure precisely when for every 𝜀 > 0
and each collection 𝒰 of open sets with the property that every compact set
in 𝑋 is contained in a set from 𝒰 , there exist sets 𝑈1, . . . , 𝑈𝑛 ∈ 𝒰 such that

min
{︀
𝜇(𝑋∖𝑈𝑖) : 1 ≤ 𝑖 ≤ 𝑛

}︀
< 𝜀 ∀𝜇 ∈𝑀.

Let 𝑆 ⊂ 𝒫𝑟(𝑋 × 𝑌 ) be compact. By the cited result the set 𝑆0 of measures
of the form 𝑓 · 𝜎, where 𝜎 ∈ 𝑆, 𝑓 ∈ 𝐶𝑏(𝑋) and 1 ≤ 𝑓 ≤ 2, has compact
closure. Then the projection of 𝑆0 on 𝑌 is contained in a compact set 𝑀0

of nonnegative measures on 𝑌 . Such sets are also metrizable under our
assumption that compacta in 𝒫𝑟(𝑌 ) are metrizable. Indeed, the image of
𝑀0 under the continuous mapping 𝜈 ↦→ 𝜈/𝜈(𝑌 ) is compact in 𝒫𝑟(𝑌 ). Let𝑀1

be this image. Then𝑀0 is contained in the image of the metrizable compact
set 𝑀1 × [1, 2] under the continuous mapping (𝜈, 𝑡) ↦→ 𝑡𝜈, but this image is
also metrizable (see, e.g., [12, Theorem 4.4.15]). Now the same reasoning as
in (i) applies once we pick a sequence of functions 𝑔𝑛 ∈ 𝐶𝑏(𝑌 ) separating
measures on 𝑀0. The only difference is that now we consider functions
𝑓(𝑥)𝑔(𝑦) with 1 ≤ 𝑓 ≤ 2 and obtain the equality of the integrals of such
functions, but this yields the same for any function 𝑓 ∈ 𝐶𝑏(𝑋), because it
can be written as 𝑐1𝑓1 + 𝑐2, where 𝑐1, 𝑐2 are constants and 1 ≤ 𝑓1 ≤ 2.

Remark 2. It is clear from the proof that the assumption about 𝑌 can be
replaced by the following one: compact sets in ℳ𝑟(𝑌 ) are metrizable and
uniformly tight (i.e., 𝑌 has the strong Prohorov property). Indeed, under
these assumptions the family 𝑀 of projections on 𝑌 of all measures of the
form 𝑓 · 𝜎, where 𝜎 ∈ 𝑆 and 𝑓 ∈ 𝐶𝑏(𝑋), |𝑓 | ≤ 1, is contained in the family
of measures 𝜙 · 𝜈, where 𝜈 belongs to the projection 𝑆𝑌 of 𝑆 on 𝑌 and 𝜙 is
a Borel function with |𝜙| ≤ 1. The projection 𝑆𝑌 is compact, hence in our
situation is uniformly tight, which implies the uniform tightness of𝑀 . Thus,
𝑀 is contained in a compact set 𝑀0, which is metrizable by assumption, so
the functions 𝑔𝑛 used above should be picked with the property to separate
measures in 𝑀0 rather than in the whole space ℳ𝑟(𝑌 ). However, we do
not know whether this theorem is true if we only assume that compacta in
ℳ𝑟(𝑌 ) are metrizable.
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