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Awnnoranusi. Vccnemyercst mepBasi CMeIIaHHAsT 3a7@9a JjIsi TEJIErPAdHOTO yPaBHEHUS
C HEJIMHENHBIM [IOTEHIMAJIOM B IIEPBOM KBaJlpaHTe IUIocKocTu. Ha Hu»KHEM OCHOBaHMM
3agatorcs ycaosus Komm, a vHa 60K0BOi rpanuiie — ycaosue [lupuxie. Meromom xapak-
TEPUCTUK CTPOUTCsI BhIPAsKEHUE PEIEHUs] 33/1a4i B HESIBHOM aHAJMUTUIECKOM BHJE KakK
pelteHne HEKOTOPBIX MHTErPAJBHBIX ypaBHeHni. [IjIs moydeHus pemeHnit STuX WHTe-
rpajbHBIX YPABHEHUN MCIIOIB3YETCsI METO/I MOC/IeI0BATE/IbHBIX MpubmKeHnii. Jlokasbi-
BAETCS CYIIECTBOBAHUE U €IUHCTBEHHOCTH KJIACCUYECKOI'O DEIICHUS IIPU ONPEeIeJIEHHBIX
YCJIOBUSIX TVIAIKOCTU U YCJIOBUSIX COTJIACOBAHUS 3aJaHHBIX MyHKIUHA. [Ipn HEOmHOPOIHBIX
YCJIOBUSIX COTJIACOBAHUsI PACCMATPHUBAETCS 3aJiada C YCJIOBUSIMU COIpsKeHUst. B ciydae
HEJIOCTATOYHO TJIAJKUX JAHHBIX CTPOUTCS cj1aboe pelreHue.
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1. Introduction

This article is a continuation of the work [8]. In this article, we will
show that we can take the condition of a Lipschitz—Carathéodory type for
nonlinearity instead of the Lipschitz condition, discuss in more detail the
problem with conjugation conditions and construct a mild solution and
prove its existence and uniqueness.

The paper is organized in the following way. In Sec. 2, the problem
statement is formulated. In Sec. 3, we reduce the problem to solving the
integral equation and prove its solvability, uniqueness, and well-posedness.
In Sec. 4, we construct a piecewise smooth solution. In Sec. 5, we build
a classical solution. In Sec. 6, we consider the problem with conjugation
conditions on the characteristic. In Sec. 7, we discuss a mild solution.
Section 8 presents the conclusions of the work done.

The reduction of the differential formulation of the problem to the in-
tegral one is done by the method of characteristics. We use the method of
successive approximations to solve integral equations. A multidimensional
generalization of the Gronwall lemma is used to prove the well-posedness
of the problem.
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2. Statement of the problem

In the domain @ = (0, 00) X (0,00) of two independent variables (¢, x) €
Q C R?, consider the one-dimensional nonlinear equation

Ou(t,x) — f(t,z,u(t,x)) = F(t, x), (2.1)

where O = 97 — a20? is the d’Alembert operator (a > 0 for definiteness), F
is a function given on the set @, and f is a function given on the set [0, co) x
[0,00) X R and satisfying the condition of the Lipschitz—Carathéodory type
in the third variable; i.e. there exists a function k of the class LY°(Q) such
that |f(t,x,21) — f(t,x, 22)| < k(t,x)|z1 — 22]. Equation (2.1) is equipped
with the initial condition

U(O,CE) = go(x),@tu((), $) = ¢(x)a T € [Oa OO), (22)
and the boundary condition
u(t,0) = u(t),t € [0,00), (2.3)

where ¢, ¢ and p are functions given on the half-line [0, o).

Equations of the form (2.1) arise in various areas of physics, mathemat-
ics, and engineering, e. g. superconductivity, dislocations in crystals, waves
in ferromagnetic materials, laser pulses in two-phase media, propagation of
spin waves in anisotropic spin liquids [14].

Such mixed problems with Dirichlet conditions in unbounded domains
have been discussed previously by various authors, e. g. [2-4;12]. However,
in these papers, as a rule, nonlinearities of power type and weak solutions
were considered.

3. Integral equation
We divide the domain ) by the characteristic # — at = 0 into two
subdomains QW) = {(t,z) | (~1)7(at — x) > 0}, j = 1,2. In the closure
QW) of each of the subdomains Q), we consider the integral equation

w9 (t,z) = ¢ (z — at) + ¢ (z + at)—
r—at x+at
Z—=Y Z+y
F< 2a 7 2 >+

1
kA
0 (-1
+f<2—y Z+y7u(j) (Z—y’z+y>>]dzj(t’$)eQ(j),jzl,z (31)

J(at—zx)
2a ' 2 2a 2
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where gD, ¢ and ¢(12) — are some functions, the first two of them given
on the nonnegative half-line and the last one, on the nonpositive half-line.

On the closure @ of the domain @, we define a function u as the one
coinciding with the solution u?) of the integral equation (3.1)

u(t,e) =u(t,x), (t2)eQV), j=12 (3.2)
on the closure W of the domain Q).

Lemma 1. Let the conditions f € C*(Q x R) and F € C'(Q) be satisfied.

The function u(V) belongs to the class C?(QMW) and satisfies Eq. (2.1) in
QW if and only if it is a continuous solution of Eq. (3.1) for j = 1 in
which the functions gV and g are in the class C2([0,00)).

Lemma 2. Let the conditions f € C*(Q x R) and F € C1(Q) be satisfied.

The function u® belongs to the class C?(Q®) and satisfies Eq. (2.1) in
QW if and only if it is a continuous solution of Eq. (3.1) for j = 2 in
which the functions g% and g belong to the classes C*((—o0,0]) and
C?([0,00)), respectively.

Theorem 1. Let the conditions f € C1(QxR) and F € CY(Q) be satisfied.
The function u belongs to the class C*(Q) and satisfies Eq. (2.1) if and
only if for each j = 1,2 it is a continuous solution of Eq. (3.1) in which the
functions g0V, g2 and g are in the classes C*([0,00)), C?((—00,0]),
and C?([0,00)), respectively, and the following matching conditions are
satisfied:

g D(0) - g2 (0) =0,
Dy (0) — Dg2(0) =0,
1
a

D240 (0) — D?92(0) + =5 (F(0,0) + £(0,0,g1(0) + g (0))) = 0.

(3.5)

Proof. The proofs of Lemmas 1, 2 and Theorem 1 are presented in the
work [8]. O

Theorem 2. Let F € LY°(Q) and f € C(Q x R), let the function f
satisfy the condition of the Lipschitz—Carathéodory type with respect to the
third variable, i.e., there is a function k € LY°(Q) such that |f(t,z,21) —
f(t,z,20)| < k(t,z)|z1 — 22|, and let the functions gV, g2 and ¢
be continuous. Then there exist unique solutions of Eqs. (3.1), and these
solutions continuously depend on the initial data.

Proof. The proof of the theorem will be carried out by the scheme set forth
in [15] (in complete form) and in [1;5;10] (briefly). To be definite, consider
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Eq. (3.1) for j = 1. It will be solved by the successive approximation
method. Set G(t,z) = ¢ (z — at) + ¢@(x + at). Take the initial

approximation

—at x+at

WO (t,2) = G(t, 2) ~ 12 / / ( Y z;—y) dz.

Then every subsequent approximation will be calculated by the formula
—at z+at

ub )(tx) G(t,x) —42 /dy/ (zy7z42ry>+

2=y 2tY am-1) (FY 2t+Y 1)
+f< 5o g U <2a, 5 >>]dz,(t,m)€Q .

(3.6)

Let us establish estimates for the successive approximations. Let > 0,

A= QW N1 (0.5/a) x [0.5). Mg = max |G(t.2)],

K= sup \/ T ay z?! b (52 5[ dz.

(t,x)eA 0 r—at
Then |(u(171) - u(LO))(t,ﬂ:)’ M,

N

(@ — w0 (¢, 2)

<

—at z+at

42/ / (

Ty an 2=y 2ty _
2 g <2a’ 2 >>dz

_f z—y’z+y’u(1’0) z—y’z—l—y do| <
2 2a 2
r—at x+at
Yy 2ty ’ (LY _ 00| (2=Y 2+Y <
4a2/dy/< ’ >u “ 2a 2 dz) <
r—at
r—at z+at
42 /dy/' <z—y’z—|—y>’ dz /dy/./\/lez <
a
x—at 0 r—at

o KM\/2.\/at(x — at) (
h 4a? ’

Wssectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
Cepust «Maremarukas. 2023. T. 43. C. 48-63



CLASSICAL AND MILD SOLUTION 53

In what follows, by induction in which the last inequality is chosen as
the base case, one can readily prove the estimate

K My/Tt(x — at)i_l(x + at)i—1

(D) g L)y, x)‘ < N RORORT ,(t,x) € A,
(3.7)
where we have used the notation (z), = ﬁ (x+k—1) for the Pochhammer
symbol. =
Note that u(™ = 41,0 4 T)ig(u(lvj+1) — u19). The estimate (3.7)
j=

implies the absolute and uniform convergence of the series u(1%°) = 41.0) 4

0 - -
S (B —y(19)) on the set A, since its terms are majorized in magnitude
7=0

by the terms of the uniformly converging series’

7 _ i—1 i—1
M+ Mo +ZKM\/xt1: at) ( + at) -
2 4i-1g2=1, /2. (1);_1(2);—1a

KV7t K\/(z — at)(z + at)
<M(1+2a\/ﬂexp< 12 >>,

where M = M + Mg. Thus, the successive approximations by the contin-
uous functions ©™ uniformly tend on the set A to a function v : R2 >
@ D A>3 (t,x) — u(l)(t,x) € R continuous in A, and, by virtue of of
arbitrariness of Z, to a function u(® : RZ o @ > (t,x) — uV(t,z) €R,
continuous in Q(1). Passing to the limit as m — oo in (3.6), we conclude
that the function u") is a solution of Eq. (3.1) for j = 1 on the set Q(1)
Let us prove the uniqueness of solution of Eq. (3.1) for j = 1 by

contradiction. Let Eq. (3.1) for j = 1 have two solutions u(!) and a(V).
Denote U = u™™) — 4. Then

i=1

r—at x+at
2oy 2ty o (22Y 2Ty
Utt, / /<2a’2’“<2a’2 dz+
0 r—at
1 2=y 2+Y )y (Y 2ty =0
_ d (1) dz. ( (1)
+4a2/ y/f<2a’ 5 <2a’ 2 )) (e €q
0 r—at

(3.8)

The function U is continuous, and hence |U(t,x)| < My under the con-
dition (¢,z) € A, where My is some constant. It follows from (3.8) with

! We can give more precise estimates, see https://math.stackexchange.com/questions/
4396003/ closed-form-of-sum-i-0-infty-xi-iil-1-2
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allowance for the condition of Lipschitz—Carathéodory type and Cauchy—
Bunyakovsky—-Schwarz inequality that

—at x+at
1 KeMyvatz
U] < 17| K2 /dy/MQd VAT (1, 2) € A
t \fa
r—a
By induction, we arrive at the estimate
KH_lMUfl—H

U(t,z)] <

2- 41'@2“‘2 2- (1),(2)1

for each positive integer i and any pair (¢,z) in A. It follows that U = 0
on the set A and, by virtue of the arbitrariness of =, that U = 0 on the set
QU). Thus, we have proved the existence of a unique continuous solution
of Eq. (3.1) for j = 1.

To prove the continuous dependence of the solution on the initial data,
along with Eq. (3.1) for j =1 we consider the perturbed equation

(™ + Au)(t,z) = (G + AG)(t,z) —

r—at x+at
1 z—Yy z+ty
A EAUC = YN
r—at

(L s ) (S 2T i (0) € @O, (39)
2 2a 2
and the difference of the perturbed (3.9) and unperturbed (3.1) equations,

Au(t,z) = AG(t,x)—

—at z+at

[

iy 2ty 2=y z+y\)
( . , (u +Au)< 5 g ))
x—at

_f< y72+y’ (1) (‘z;ay"z“/))]dz,(t,gg)eQ(l)_ (3.10)

2 2

For Eq. (3.10) for the disturbance Au, one has the following estimate of
the disturbance modulus:

|Au(t, :E)‘ < Mag +
—at x+at

v [ o [ (Rt o (Gt )

r—at
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where Mag = (m;xxA |AG(t,z)|. Applying the multidimensional Grénwall
t,x)e

lemma [13] to the previous inequality, we obtain |Au(t,z)] < CYMag,
where CV) is some positive constant depending only on the set A, the
function k, and the number a. The resulting inequality implies that what-
ever a small perturbation AG, Mag = ¢, is taken, the perturbation of the
solution obeys the inequality |Au(t, z)| = § < eC(1) on the set A. By virtue
of the arbitrariness of Z, we conclude that the solution of 3.1) for j = 1
continuously depends on the initial data.

The existence of a unique continuous solution of Eq. (3.1) for j = 2,
which continuously depends on the initial data, can be proved in a similar
way. The proof of the theorem is complete. O

This theorem allows us to strengthen the result of the work [8] and
generate new solutions to Eq. (2.1).

Remark 1. In Theorem 1, we can take three following conditions instead
of f € C(Q x R), namely:

1) The function f1: Q > (¢t,x) — f(t,z,z) € R is measurable for any
fixed z € R;

2) The function fa: R > z — f(t,x, z) € R is continuous on the set R for
almost any fixed point (t,z) € Q;

3) The function f satisfies the grow condition |f(¢, z, 2)| < a(t, z)+ S|z,
where a € L'*°(Q), B € R.

Proof. Tt is necessary to show that for any continuous function u) the right
side of the equation (3.1) is also a continuous function. Note that if we fix a
function 9 and a compact set K C @, then under the conditions specified
in this remark, the expression K 3> (t,x) — f (t,x,u(j) (t,z)) defines a
function of the class Li(K) [16]. And, by virtue of the arbitrariness of K,
the formula Q > (t,z) — f (t,x,u(j) (t,)) defines a function of the class
L'°°(Q). Then, using the absolute continuity of the Lebesgue integral, we
conclude that the right side of the equation (3.1) is a continuous function
too. O

4. Constructing the solution of the mixed problem

Determining the functions ¢("'Y and ¢ from the Cauchy conditions
(2.2) and the function g(1? from the boundary condition (2.3), we obtain [8]

x+at
uD(t,z) = gp(m—at)—;—cp(m-}-at) + % / Y(z)dz +

r—at
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x+at z

1

Z2—=Y Z+y
F
( 2a 7 2 >+
rx—at x—at

2oy 2ty (2 -Y 2ty
+f<2a’2’“’ 2 ' 2

z+at
at—x

z-y zty -y 2ty H@)
1 (L (5 ))]dy (t.) € Q. (4)

We note that the equation for defining the function «® can be derived
by the curvilinear parallelogram identity [9].

Lemma 3. Let the conditions f € C1(Q xR), F € CH(Q), » € C%([0,)),
Y € CH[0,)), and u € C*([0,00)) hold, and let the function f satisfy the
condition of Lipschitz—Carathéodory type with respect to the third variable.
Then there exists solutions u) (j =1,2) of Egs. (4.1); they are unique in

the class C%(QU) and continuously depend on the functions o, v, and .

Proof. This lemma follows from Theorems 1 and 2. O

Thus, we have constructed a piecewise smooth solution of problem (2.1)
— (2.3) determined by formulas (4.1) and (3.2).
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5. Classical solution

For the function u to belong to the class C?(Q), in addition to the
requirements of smoothness for the functions f, F, ¢, 1, and p, it is neces-
sary and sufficient that the equalities (3.3) — (3.5), be satisfied, according
to Theorem 1. Calculating the quantities occurring in the expressions (3.3)
— (3.5), we obtain the following matching conditions:

1(0) = ¢(0), (5.1)
4/(0) = (0),
'(0) = 5 (70,0,4(0)) + (0,0,0(0)) + F(0,0) + a*6"(0). (5.3

Theorem 3. Let the conditions f € C1(QxR), F€CY(Q), ¢€C?([0,)),
Y € CH[0,00)), and p € C*([0,00)) be satisfied, and let the function f
satisfy the condition of Lipschitz—Carathéodory type with respect to the third
variable. The first mized problem (2.1) — (2.3) has a unique solution u in
the class C%(Q) if and only if conditions (5.1) — (5.3) are satisfied. This
solution is determined by formulas (3.2) and (4.1).

Proof. 1t follows from Theorem 1, Lemma 3, and the above argument. [J

6. Inhomogeneous matching conditions

Let’s consider the problem (2.1) — (2.3) in the case when the matching
conditions (5.1) — (5.3) partially or completely not fulfilled as it was done
in [5-7;10;11].

According to Theorem 1, the presence of inhomogeneous matching con-
ditions breaks the continuity of the function u or its derivatives, or all
together. This conclusion can be formulated as the following statement.

State 1. If the homogeneous matching conditions (5.1) — (5.3) are not
satisfied for the given functions u, @, ¥, f, and F, then no matter how
smooth are the functions f, F, u, @, and 1, the problem (2.1) — (2.83) does
not have a classical solution defined on Q.

Proof. 1t follows from Theorem 1. O

Let the given functions of the equation (2.1), the initial conditions (2.2),
and the boundary condition (2.3) are sufficiently smooth as in Theorem
3: ¢ € C*([0,00)), ¥ € CY([0,00)), u € C*([0,00)), f € CY@Q x R),
and F € C1(Q). Since the matching conditions (5.1) — (5.3), generally
speaking, are not satisfied, we obtain discontinuities of the function uw and
its derivatives according to the following expressions
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(W)™ = (w)7](t,z = at) = ¢(0) — p(0),

2at

s [ 20 (52) 1 (o (5 3)]

0
[(07u)* = (9fu)](t, = = at) =
_ F(0,0)+ % (£(0,0, (u)*(0,0)) + £(0,0, ()~ (0,0))) +
(f(t,at, (u)T(t,at)) — f(t, at, (w)~ (¢ at))) — " (0) + a®¢”(0) + i><

| =

+

2at

(1@ (5 3) o0 (5 2)) o (3 30

0
0 (52)) et (50 (5 3)
1 (350" (52)) o
2at

(6.1)

Here by ()* — we have denoted the limit values of the function u and its
partial derivatives calculated on different sides of the characteristic z —at =
0;ie., (Fu)*(t,r = at) = ali]%l OPu(t,at+s). Let us denote @ = Q\{(t, z) |

—0+

x —at =0}.

Theorem 4. Let the conditions f € C1(QxR), FeCY(Q), » € C?([0,0)),
Y € CLH[0,00)), and p € C?([0,00)) be satisfied, and let the function f
satisfy the condition of Lipschitz—Carathéodory type with respect to the third
variable. The first mized problem (2.1) — (2.83) has a unique solution u in
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the class 02(@) if and only if conditions (6.1) are satisfied. This solution
is determined by formulas (3.2) and (4.1).

Proof. 1t follows from the above arguments. O

Theorem 5. Let the conditions f € C1(QxR), FECY(Q), p € C?([0,0)),
Y € CLH[0,00)), and p € C?([0,00)) be satisfied, and let the function f
satisfy the condition of Lipschitz—Carathéodory type with respect to the third
variable. The first mized problem (2.1) — (2.3) has a unique solution u in

the class C*(Q)NC(Q) if and only if conditions (6.1) and (5.1) are satisfied.
This solution is determined by formulas (3.2) and (4.1).

Proof. 1t follows from Theorems 1 — 3 and the above arguments. Indeed, if
©(0) = 1(0), then the solution u is continuous on the set {(¢,z) | z—at = 0}
by virtue of (6.1). Therefore, in addition to u € C2(Q), the solution u is a
continuous function on the closure Q. O

Theorem 6. Let the conditions f € C1(QxR), FECH(Q), ¢ € C?([0,)),
Y € CH[0,00)), and p € C*([0,00)) be satisfied, and let the function f
satisfy the condition of Lipschitz—Carathéodory type with respect to the third
variable. The first mized problem (2.1) — (2.3) has a unique solution u in
the class C2(Q) N CY(Q) if and only if conditions (6.1), (5.1), and (5.2)
are satisfied. This solution is determined by formulas (3.2) and (4.1).

Proof. 1t easily follows from Theorems 1 — 5 and the formulas (6.1), since in
this case the function wu is continuous on the set {(¢,x) | x —at = 0}, but by
virtue of the condition (6.1), (5.1), and (5.2) the solution u has continuous
derivatives of the first order. O

Remark 2. If the given functions of problem (2.1) — (2.3) do not satisfy
the homogeneous matching conditions (5.1) — (5.3), then the solution of
problem (2.1) — (2.3) is reduced to solving the corresponding matching
problem in which the matching conditions are given on the characteristic
z—at =0.

The conditions (6.1) can be taken for the matching conditions. Now
problem (2.1) — (2.3) can be stated using the matching conditions (6.1) as
follows.

Problem (2.1) — (2.3) with matching conditions on character-
istics. Find a classical solution of Eq. (2.1) with the Cauchy conditions
(2.2), the boundary conditions (2.3), and the matching conditions (6.1).

Note that such a statement of the problem in question with matching
conditions is more acceptable for its numerical implementation.
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7. Mild solution

Let’s consider the problem (2.1) — (2.3) in the case when the functions
W, o, ¥, v, f, and F are not enough smooth.

Definition 1. The function u is a mild solution of the problem (2.1) -
(2.3), if it is representable in the form (3.2) and (4.1).

Remark 3. Obviously, any classical solution of the problem (2.1) - (2.3)
is a mild solution of this problem too. In its turn, if a mild solution of
problem (2.1) — (2.3) belongs to the class C?(Q), then it will be a classical
solution of that problem.

Theorem 7. Let the conditions f €C(Q xR), F € L*°(Q), ¢ € C([0,)),
Y € L¥°([0,00)), and u € C([0,00)) be satisfied, and let the function f
satisfy the condition of Lipschitz—Carathéodory type with respect to the third
variable. The first mized problem (2.1) — (2.3) has a unique mild solution

u in the class C(Q).

Proof. The solvability of the Eqgs. (4.1) and continuity of their solutions
follows from Theorem 1. O

Remark 4. Asin Theorem 2, in Theorem 7 we can take three conditions
specified in Remark 1 instead of f € C(Q x R) too.

The conjugation conditions (6.1), generally speaking, are not satisfied
for the mild solution. But it is possible to guarantee the fulfillment of
the condition [(u)™ — (u)”](t,z = at) = p(0) — u(0) according to the
representations (4.1).

8. Conclusion

The paper shows that a unique classical solution of problem (2.1) — (2.3)
exists if and only if the smoothness conditions and the matching conditions
are satisfied. But when matching conditions are not satisfied, we have
considered a problem with conjugation conditions and built its classical
solution. And in the case of insufficiently smooth given functions, we have
constructed a unique mild solution.
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