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Abstract. Nonlinear mathematical models describing an equilibrium state of com-
posite bodies which may come into contact with a fixed non-deformable obstacle are
investigated. We suppose that the composite bodies consist of an elastic matrix and one or
two built-in volume (bulk) rigid inclusions. These inclusions have a rectangular shape and
one of them can vary its location along a straight line. Considering a location parameter
as a control parameter, we formulate an optimal control problem with a cost functional
specified by an arbitrary continuous functional on the solution space. Assuming that the
location parameter varies in a given closed interval, the solvability of the optimal control
problem is established. Furthermore, it is shown that the equilibrium problem for the
composite body with joined two inclusions can be considered as a limiting problem for
the family of equilibrium problems for bodies with two separate inclusions.
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Awnnorarusi. Vccienyrorcst HeTMHERHbIE MATEMATUIYECKAE MOJIENH, OIMUCHIBAOIINE CO-
CTOSIHUE PaBHOBeCHUs KOMIIO3UTHBIX TeJl, KOTOpble MOI'YT KOHTAaKTUPOBATb C HEIOIBUK-
HBIM Hezle(POpMHUPYEMBIM mpensiTcTBueM. [Ipemosiaraercsi, 9T0 KOMIO3UTHBIE TEJIa CO-
CTOSAT U3 YIPYTO# MaTPHILHI U OHOTO WJIH JIBYX BCTPOEHHBIX OObEMHBIX YKECTKUX BKJIIO-
YeHWi, 9TU BKJIIOYEHUsS] UMEIOT MPSIMOYTOJBbHYIO (POPMY, TIPU STOM OJHO U3 HUX MOYKET
U3MEHSITh CBOE PACIIOJIOKEHUE BIOJIb IPAMOil JuHnu. PaccMaTpuBast mapaMeTp pacIioso-
JKEHUsI KaK IMapaMeTp yIpaBieHusi, COPMYTHPOBaHA 3a/1a9a ONITUMATBLHOTO YIIPABICHUST
¢ PYHKIIMOHAJIOM Ka4eCTBa, 38 JaHHBIM IIPON3BOJILHBIM HEIIPEPHIBHBIM (DYHKIMOHAIOM HA
MIPOCTPAaHCTBE perieHuii. B mpeamosokennun, 9To mapaMeTp PaCIIOIOKEHUsT U3MEHSIeTCsT
Ha 3a/IaHHOM 3aMKHYTOM HMHTepBaJie, JOKa3blBAeTCA Pa3pellMMOCTb 3aJa4id ONTHMaJIb-
HOrO ympasienus. Kpome TOro, yCTaHOBJIEHO, UTO 33/1a9y O PABHOBECHU KOMITO3UTHOTO
TeJla C JIBYMsl CO€JWHEHHBIMHM BKJIIOYEHHSIMU MOXKHO PACCMATPHUBATH KaK IIPEIeSIbHYIO
3a/1a4y AJ1d ceMeMcTBa 3aj/lad O PABHOBECUHU TeJI C ABYMsA OTAEJbHBIMHU BKJIIOUYEHUAMU.

KuaroueBrle ciioBa: 3ajada ONTHMAJILHOIO YIIPABJIEHHUS, KOMIIO3UTHOE TEJIO, YCJIOBHUS
CUHBOPHUHU, YKECTKOE BKJIIOYEHUE, PACIIOIOKEHIE

BaaromapaocTu: Pabora Boinosinena npu dpuHaHcoBou mnojyiepkke Munoopuayku PO
(mpoext FSRG-2023-0025).
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for Composite Bodies with Separate and Joined Rigid Inclusions // W3sectus Vpkyrc-
Koro rocymapcreerroro yunepcutera. Cepust Maremaruka. 2023. T. 43. C. 19-30.
https://doi.org/10.26516/1997-7670.2023.43.19

1. Introduction

Clear advantages of using of composite parts in industry have increased
the need for high-precision mathematical models in order to design and
optimize in an efficient way composite structures. Along with tasks of
improving the physicochemical properties of the elements of composite
bodies, one of the important issues related to the creation of reinforced
composites is investigation of the best location and geometric shape of built-
in components. The direction of research related to nonlinear problems
describing deformation of elastic bodies with rigid or elastic inclusions is
an actual area of applied mathematics, see, for example, [8-14; 24-27].
Nonlinear model approach using well-known Signorini type boundary con-
ditions can be applied for contact problems [1; 15; 18; 21]. This approach
leads to variational problems with an unknown contact zone. Optimal
control of volume or Neumann forces in the framework of Signorini type
problems was studied, for example, in [2;23]. A classification of the different

Wssectus VIpKyTCKOro rocyapCTBEHHOIO YHUBEPCUTETA.
Cepust «Maremarukas. 2023. T. 43. C. 19-30



OPTIMAL LOCATION PROBLEM FOR COMPOSITE BODIES 21

optimality systems of strong stationarity for the case of optimal control for
obstacle problems can be found in [5;28]. The researches on the shape and
topological sensitivity analysis of variational inequalities have been actively
elaborating [4;6;20;22]. A shape-topological control problem for nonlinear
crack - defect interaction was investigated in [16].

We study an optimal control problem for nonlinear mathematical models
describing an equilibrium state of composite bodies contacting with a fixed
non-deformable obstacle. We suppose that the composite bodies consist of
an elastic matrix and two built-in volume (bulk) rigid inclusions. These
inclusions have a rectangular shape and one of them can vary its location
along a straight line. For the optimal control problem under consideration,
a cost functional is specified by an arbitrary continuous functional defined
on the solution’s space, while the location parameter of one rigid inclusion
serves as a control. In [19] the solvability of optimal location problem for a
family of contact problems with finite number of inclusions was established.
Despite of the arbitrariness of the number of rigid inclusions, the solvability
of a relevant optimal control problem was established under the restriction
of a given nonzero distance between inclusions. In contrast to that result,
the current study deals with the case of arbitrarily close two inclusions.
Moreover, it should be noted that in the limit case, when the distance
between inclusions is equal to zero, we have one united rigid inclusion that
geometrically corresponds to the union of relevant sets. Assuming that
the location parameter varies in a closed interval, the solvability of the
optimal control problem is established. Furthermore, it is shown that the
equilibrium problem for the composite body with joined two inclusions can
be considered as a limiting problem for the family of equilibrium problems
for bodies with two separate inclusions.

2. Formulation of variational problems

Let Q ¢ IR? be a bounded domain with boundary I' € C%!, I' = T,UT,.,
meas(I'p) > 0. We consider two square subdomains w,ws C 2, s € [2,5],
S > 2, which are defined by the following relations:

w=(~1,1) x (~1,1),

ws ={(z1,22) : ;1 =1+ 5,22 =1y2, (y1,y2) € w}.

We suppose that both domains lie strictly inside in the domain 2, i.e.
dist(w,00) > 0,

dist(ws,0) >0 for each s € [2,5].
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Remark 1. This assumption allows us to apply trace theorems and well-

known results concerning characterization of Sobolev spaces in Lipschitz
domains Q2 \ @, 2\ @s.

Denote by W = (w,ws) the displacement vector. Introduce the tensors
describing the deformation of an elastic part of the inhomogeneous body

g 1 (ow D P
en(W) =32, cna(W) = en(W) = 5 (;:; + a;”f) seaa(W) = 6%)22

81?1 ’
ai;(W) = cijuen(W), i,j = 1,2,

where c¢;j1; is the given elasticity tensor, assumed to be symmetric and
positive definite:

Cijkl = Cklij = Cjikl, U, J,k,0=1,2, cyjp = const,

cijribiiln > col€l?, V&, & =&, i, =1,2, co=const, cy>0.

By the assumption concerning the domain Q and the Korn’s inequality [7],
the following inequality holds

[ oWz = i i), W e @), (2.1)
Q

with a constant ¢ > 0 independent of W.

Remark 2. The inequality 2.1 yields the equivalence of the standard
norm in H () and the semi-norm determined by the left-hand side of 2.1.

To formulate mathematical models for a composite body with volume
(bulk) rigid inclusions, we will use the notion of a rigid inclusion which
in general can occupy an arbitrary subdomain O C €2. In this case the
displacements on the domain O should have a special structure W|p = p,
where p € R(O) and R(O) is the space of infinitesimal rigid displacements
on O

R(O) = {p = (p1,p2) | p(w1, 22) = b(x2, —21) + (c1, C2);
b,c1,c2 € IR, (z1,22) € O},

see, [13]. In the sequel we deal with two type of problems, the first describes
an equilibrium of a composite body with a single rigid inclusion prescribed
with the set w U ws, and the second one corresponds to a composite body
with two separate rigid inclusion prescribed with the sets w, ws, s € (2,5].
For both types of problems, we have common conditions on the external
boundary I'. We suppose that the body is fixed on the part I'g of the

boundary, i.e.
W =(0,0) on TIY. (2.2)
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According to the last condition, we deal with the following Sobolev spaces
HYQ)={ve HY(Q) |v=0 on Ty}, H(Q) = H"Y(Q)%
The Signorini condition of contact interaction is written as
Wr<0 on I

where v = (v1,1v2) is an outward normal to I'. We introduce the energy

functional .
H(W) = 2/Uij(W)Eij(W)dQ - /FWdQ, (23)
Q Q
where F = (f1, f2) € L*(Q)? is a given vector of exterior forces.
Now we formulate an equilibrium problem describing a contact of a com-
posite body with a single united rectangular inclusion which corresponds
to the set w; = int(w Uwy). Furthermore the remaining part of the domain

Q\wy corresponds to the elastic matrix. It is required to
Find U, € K(2),

such that II(Uz) = Wil}(f(z)H(W)’ (2.4)
€

where the set of admissible displacements is defined as follows
K2)={WeHQ)|Wr<0 on I,

Ww, = p, where p € R(wy)}.

It should be noted that, without loss of generality, due to properties of
functions W € H (), we can require the relation W € R(w U ws) instead
of W € R(wy). The problem 2.4 has a unique solution Uy € K(2), and can
be represented in the equivalent form of the variational inequality [3]

/O’ij(UQ)Eij(W - Ug)dQ Z /F(W — UQ)dQ, (2.5)
Q Q

for all W € K(2).

Consider a family of equilibrium problems, where sets w, ws of rigid
inclusions are located at some distance from each other. Next, we fix the
coordinate parameter s € (2,S], which defines a location of the inclusion
domain wg, while the set

O\ (w U wy),

corresponds to the elastic part of the body. An equilibrium problem of a
composite body with two separate rigid inclusions can be formulated as the
following minimization problem

Find Us € K(s),
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h that II(U,) = inf II(W 2.6
such that II(U;) wink (W), (2.6)

where the set of admissible displacements is defined as follows
K(s)={WeHQ)|Wrv<0 on I,

Wl, =p, W], = ps, where p € R(w), ps € R(ws)}.

The problem 2.6 is known to have a unique solution Us; € K(s), which
satisfies the variational inequality [3]

/aij(Us)sij(W U0 > /F(W _U)d9, (2.7)
Q Q

for all W € K(s).

3. Optimal control problem

Let’s define a cost functional J : [2,5] — IR of an optimal control
problem with the use of the equality Jg(s) = G(Us), where Us is the
solution of the problem 2.4 for s = 2 and U, represents the solution of the
problem 2.6 for s € (2, 5], a functional G : H(Q2) — IR satisfies continuity
property in H ().

As examples of such functionals having physical sense, we can provide
the functional G1(W) = [[W — Wo| gy characterizing the deviation of
the displacement vector from a given function Wj. Consider the optimal
control problem:

Find s" €[2,5] such that Jg(s*)= sup Jg(s). (3.1)
s€[2,9]

This means that we want to find the best location of one of the separate
two rigid inclusions or to reveal that the optimal configuration fits one
united single rigid inclusion which provides the maximal value for the cost
functional. The following is the main result of the paper.

Theorem 1. There exists a solution of the optimal control problem 3.1.

Proof. Let {s,} C [2,S] be a maximizing sequence. By the compactness
of the set [2, 5] C IR, we can extract a convergent number subsequence of
real numbers {s,, } C {s,} such that

Sp, = 8° as k— oo, s €[2,5].

Let us consider two possible different cases. The first case corresponds to
the inequality s* > 2, and the second one to the equality s* = 2. For
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the first case we can see that s, > 2 and dist(w,wsnk) > § for some

6 > 0 and for sufficiently large k. In this case of nonzero minimal distance
between rigid inclusions we can apply the results of the paper [19], where
the solvability of the problem 3.1 was established.

Now we consider the second case when s,, — 2 as & — oo. This
case models the passage to the limit when inclusions tend to each other
in order to get as a limit the single joined inclusion. Taking into account
Lemma 2 proved below, we have a convergence U, — Us strongly in H (Q)
as k — oo. This allows us to obtain the convergence

Ja(sn,) = Ja(2),
indicating that
JG(2) = sup Ja(s).

The theorem is proved. O

4. Auxiliary lemmas

Now we have to justify some auxiliary lemmas which had to be used
within the proof of the above theorem. In establishing the proof, we
needed Lemma 2; however before proceeding further we need first prove
the following lemma.

Lemma 1. Let {s,} C [2,5] be a sequence of real numbers converging to
2 in IR asn — oco. Then for an arbitrary function W € K(2) there exist a
subsequence {si} = {sn,} C {sn} and a sequence of functions {Wy} such
that Wy, € K(si), k € IN and Wy, — W strongly in H(Y) as k — oo.

Proof. We construct new subdomains @, = (—1,1+s) x (=1,1), s € (2,5].
One can note that w and wy are subsets of w;. As the next step, we can
consider auxiliary problems related to @,

Find U, € K(s),
such that II(U,) = inf II(W),
WeK(s)
where the set of admissible displacements is defined as follows
K(s)={WeH Q)| Wv<0 on T,
%4

For this kind of problems, in [17] was proved that there exists a sequence
of functions Wy € K(sy) such that Wlg, € R(ws,) and Wy, — W strongly

in H(Q) as k — oo. Since K(s;) C K(s)), we obtain the assertion of the
lemma. O

os = P, where pE R((Ds)}
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Now, we are in a position to prove an auxiliary statement which was
used in the proof of the theorem.

Lemma 2. Let {s,} C [2,5] be a sequence of real numbers converging to
2 i IR as n — oo. Then U, — Us strongly in H(Y) as n — oo, where
Us,,, are the solutions of 2.6 corresponding to parameters s,, and Us is the
solution of 2.4.

Proof. We proceed by contradiction. Let us assume that there exist a
number €y > 0 and a sequence {s,} C [2,S] such that s,, — 2, ||Us, —Us|| >
€0.

Because of W9 = (0,0) € K(s,) for all n € IN, we can insert W = W?°
in 2.5 for fixed n € IN. This provides

/Uij(Usn)é‘ij(Usn)dQ < /FUSndQ, Vn € IN.
Q Q

From here, we conclude that for all n € IN the following uniform estimate
holds

|Us o) <c

with some constant ¢ > 0 independent of n € IN. Consequently, replacing
Us, by its subsequence if necessary, we can assume that U, converges to
some function U weakly in H(Q).

Now we show that U € K(2). Indeed, we have

U5n|wsnk = pn € R(ws,),

for all n € IN. Due to the Sobolev embedding theorem [11], we conclude
that )
Us, |wy — Ulwy  strongly in La(ws)? as n — oo, (4.1)

Us

Choosing a subsequence, if necessary, we assume that U, — U ae. in wy
as n — oo.

In the next step we fix an arbitrary strictly inner subdomain D C ws. For
the sufficiently large numbers n we have D C wNws, and, as a consequence,
the sequence {p,} converges to U a.e. on D as n tends to infinity. This
allows us to conclude that each of the numerical sequences {b"}, {c'}, {c} },
defining the structure of functions p,, n = 1,2,... on D is bounded in IR.
Thus, we can extract subsequences (retain notation) such that

r — Ulr  strongly in Ly(T')? as n — oo. (4.2)

'IL‘

" —b, ' —c¢, i=1,2, as n— oc.
Therefore, we can choose a subsequence {s,, } such that
Us,, = (bra+c1,—bx1+c2) ae in D as k— oo (4.3)
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Consequently, we obtain that

U= (bxa+c1,-br; +c2) ae. in D.
Due to arbitrariness of the domain D C wo, we infer that
U= (bro + c1,—br1 +c2) ae. in wo.
On the other hand, we have for the fixed domain w that
U= (6$2 + &1, —bxy + é2) in w.

Since U € H(f), then the jump of function U on the intersection curve (the
common side of two closed squares) @ N Wy is equal to zero. This means

that b = b, ¢1 = c¢1, ¢o = c9, and, therefore we have
U= (bxa + c1,—br1 +¢c2) ae. in wUws,

ie. Ue R(wUuw) holds. .

We now show that U satisfies the inequality Urv < 0 on I'y. Taking
into account the convergence 4.2, if necessary, we can once again extract a
subsequence satisfying U, |p — U|p a.e. on I'. Therefore, we can perform
the passage to the limit in the following inequality

Us,v <0 on I%.

This leads to Uv < 0 on T',. Thus, we reveal the inclusion U € K (2).

Our next goals are to prove the following equality U = U, and to
establish the existence of a sequence Us,, n = 1,2... of solutions strongly
converging in H(2) to Uy. Now, let us prove that U = Us. For this purpose
we will analyze the variational inequality 2.5 and its limiting case. From
Lemma 1, for any W € K(2) there exist a subsequence {s,, } C {s,} and a
sequence of functions {W},} such that Wy, € K (s, ) and W, — W strongly
in H(f2) as k — oc.

The properties established above for the convergent sequences { Wy} and
{U,} allow us to pass to the limit as k¥ — oo in following inequalities derived
from 2.5 for {s,, } and with the test functions Wy, € K (s, )

/O'ij(Usnk)Eij(Wsnk - Usnk)dQ > /F(Wsnk - Usnk)dQ- (4.4)
Q Q

As a result, we have

/ 043 () ey (W — T)d92 > / FOW — D)0 ¥ W € K(2).
Q Q

The unique solvability of this variational inequality ensures that U = Us.
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To complete the proof, it is sufficient to establish the strong convergence
Us,, — Ua. By substituting W = 2U;, and W = (0,0) into the variational
inequalities 2.5 for n € IN, we get

/Uij(Usn)gij(Usn>dQ_/FUSndQ Vn € IN. (4.5)
) Q

The equalities 4.5 together with the weak convergence Uy, — Uz in H(2)
as n — oo imply

lim O-ij(Usn)Eij(Usn)dQ = lim FUSndQ =

n—oo n—oo

Q Q

/FUQdQ = /Uij(U2)5ij(U2)dQ'
Q Q

Since we have the equivalence of norms (see Remark 2), one can see that
Us,, — Us strongly in H(€2) as n — oco. But this contradicts to the initial
assumption. The Lemma is proved. O

5. Conclusion

Equilibrium problems for composite bodies which may come into contact
with a fixed non-deformable obstacle were investigated. The solvability of
the optimal control problem 3.1 is established. Also, it is shown that the
equilibrium problem for the composite body with joined two inclusions can
be considered as a limiting problem for the family of equilibrium problems
for bodies with two separate inclusions. Namely, the strong convergence
of the solutions U of the family of problems 2.4 to the solution Uy of the
limiting problem 2.6 in the Sobolev space H(2) was established. As can
be seen from the proofs of the present paper, the main result remains true
in 3D case for rigid cubic inclusions, as well as for equilibrium problems
related to the two-dimensional solids with classical linear conditions.
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