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Abstract. This paper is dedicated to finding the traveling wave solutions of the loaded
modified Korteweg-de Vries equation. It is shown to find the solutions via (G’/G) —
expansion method which is one of the most effective ways of finding solutions. When
the parameters are taken as special values the solitary waves are also derived from the
traveling waves. The traveling wave solutions are expressed by the hyperbolic functions,
the trigonometric functions and the rational functions. This method is easy to imple-
ment using well-known software packages, which allows you to solve complex nonlinear
evolution equations of mathematical physics.
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Hayunas crarbs

Tounsbie pernieHunsi Geryineii BOJHBI HArpyKEeHHOro moamndu-
nupoBaHHOTO ypaBHeHusa KopreBera-ge ®@puza

.. Baaraesa', 1. 1. Paxumos'™, M. M. Xacauos!
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Awnunoranusi. CTaThbsl TOCBSIIIEHa HAXOXKICHUIO PEIIeHU TUTa Oeryieil BOJHBI HATPY-
»keHHOTO MojudunuposanHoro ypasHenust Kopresera-ge @pusa. [TokazaHo, 4yTo Takue
pemenust MOXKHO ¢ nomompio Meroga (G’/G)-pacmupenusi, KOTOPBIi SBJISETCA OJHAM U3
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Hanbosiee 3(pHEKTUBHBIX CITIOCOOOB MTOMCKA PeIleHnii MHTerpupyeMbIX ypaBHeHui. Perre-
HUsI TUA Geryineil BOJHBI MOTYT BBIPAXKaATbCsl Ye€pe3 TUIepPOOInIecKne, TPUTOHOMETPY-
decKue, a TaKXKe palMoHaJIbHble (PyHKImu. [IpuMeHseMblii METO | IPOCT B PeaIn3aliu
C UCIOJIb30BAHUEM M3BECTHBIX MPOTPAMMHBIX [TAKETOB, UTO MO3BOJISIET PEIATEH CJIOYKHBIE
HEeJIMHEHbIE YBOJIIOIMOHHBIE YPABHEHUsI MATEMATUIECKON (DU3UKU.

KuroueBrle ciioBa: cOJIMTOHHOE pellleHne, HArpykeHHbil MKa®, HemHeilHblEe ypaBHe-
HUSI, METOJT PACITUPEHUS

Ccouika mgisi nmutupoBanusi: Baltaeva 1.1, Rakhimov I.D., Khasanov M.M. Exact
Traveling Wave Solutions of the Loaded Modified Korteweg-de Vries Equation // Us-
Becrus Vpkyrckoro rocymapcrennoro ynusepcurera. Cepus Maremaruka. 2022. T. 41.
C. 85-95.

https://doi.org/10.26516/1997-7670.2022.41.85

1. Introduction

It is known that loaded differential equations have great practical ap-
plications. In the literature [2;5;6;10;14], loaded differential equations are
typically called equations containing in the coefficients or in the right-hand
side any functionals of the solution, in particular the values of the solution
or its derivatives on manifolds of lower dimension. These types of equations
were explored in the works of N.N. Nazarov and N.N. Kochin. However,
they did not use the term “loaded equation”. At first, the term has been
used in the works of A.M. Nakhushev, where the most general definition
of a loaded equation is given and various loaded equations are classified
in details, for instance, loaded differential, integral, integro-differential,
functional equations etc., and numerous applications are described.

The theory of nonlinear wave processes finds its application in models
of arterial mechanics, in which the artery is considered as a thin-walled
prestressed elastic tube with a variable radius (stenosis), and blood as an
ideal fluid [12], [7]. These models are reduced to the perturbed Korteweg-de
Vries equation

qt + 1199z + U2GQrre — h(t)(h =0,

where p1, po are constants depending on the properties of the tube material,
t is a scaled coordinate along the axis of the vessel after static deformation,
which characterizes stenosis on the surface of the arterial wall, and z is
a coordinate variable along the axis of the vessel. Here h(t) the form of
stenosis, ¢q(z,t) characterizes the averaged axial velocity of the fluid.

In the past several decades, finding solutions to nonlinear evolution equa-
tions has been studied by many researchers. There are direct and inverse
methods for finding solutions to integrable nonlinear evolution equations.
In particular, the solutions of the integrable nonlinear evolution equations
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were found by using the Hirota direct method [9; 15|, inverse scattering
problem [1;8;19] and Darboux transformation [16;20]. Alternatively, the
(G'/@Q) - expansion method [3;4;13;17;18;22-27] is also effective in finding
traveling wave solutions of nonlinear evolution equations.

Integration of the loaded modified Korteweg-de Vries (mKdV) equation
in the class of periodic functions is studied in [11].

In this article, the solutions of the loaded mKdV equation are explored
by usage of (G'/G) - expansion method.

Consider the following loaded mKdV equation

qt — 6q2qz + Qraz — V(t)q(()? t)qx =0, (11)

where ¢(x,t) is an unknown function, z € R, t > 0, y(t) - is the given real
continuous function.

2. Description of the generalized (G'/G) - expansion method

Let us be given a nonlinear partial differential equation in the form below

F(Q)qtv 4z, qtt, Qxx Gt » ) = 07 (21)

with two independent variables = and ¢t. ¢ = ¢(z,t) is a unknown function,
F is a nonlinear function of ¢(x,t) and its partial derivatives. Now we give
the main steps of the (G'/G) -expansion method [21]:

Step 1. We use the travelling wave transformation in the following form

q(z,t) = q(§), & = kx + Q(1), (2.2)

where k is a parameter and €(¢) is a continuous function which depends on
t. We reduce equation (2.1) to the following nonlinear ordinary differential
equation:

P(q,q',q".q",..) =0, (2.3)

where ¢' = dq(£)/d¢, ¢" = d*q(€)/dE?, . ..
Step 2. We assume that the solution of equation (2.3) has the form:

©=3u (5 2.49)

Jj=0

Here G = G(§) satisfies the following second order ordinary differential
equation
G" + )G + uG =0, (2.5)

where G’ = dG(§)/d¢, G" = d*G(€)/d&* and A, p, aj (j = 1,2, ..., m) are
constants that can be determined later, provided a,, # 0.
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Step 3. We determine the integer number m by balancing the nonlinear
terms of the highest order and the partial product of the highest order of
(2.3).

Step 4. Substitute (2.4) along with (2.5) into (2.3) and collect all terms

with the same order of (%), the left-hand side of (2.3) is converted into
a polynomial in (%) Then, set each coefficient of this polynomial to

zero to derive a set of over-determined partial differential equations for a;
(j=1,2,...,m) and &.

Step 5. Substituting the values a; (j = 1,2, ...,m) and & as well as the
solutions of equation (2.5) into (2.4) we have the exact solutions of equation
(2.1).

3. Exact Solutions of the loaded mKdV equation

In this section, we will show how to find the exact solution of the loaded
mKdV equation using the (G'/G) - expansion method. For doing this, we
perform the steps above for equation (1.1). The travelling wave variable
below

Q<x7t) = Q(§)7 §=kx+ Q(t)7 (3'1)

permits us converting equation (1.1) into an ordinary differential equation
for ¢ = ¢(&)

()d' — 6kq’q + k>q" — ky(t)q(0,t)q =0, (3:2)
integrating it with respect to £ once yields to
C + (g — 2k¢* + k°¢" — kv (t)q(0,)g = 0, (3.3)

where C' is an integration constant that can be determined later.
We express the solution of equation (3.3) in the form of a polynomial in

(G'/@G) below '
0= o (%) (3.4)

Jj=0

where G = G(§) satisfies the second order ordinary differential equation in
the form
G" + \G' + G = 0. (3.5)

Using (3.4) and (3.5), ¢® and ¢” are easily derived to
G/ 3m
¢*(€) = ap, <G> + o (3.6)
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Considering the homogeneous balance between ¢” and ¢® in equation
(3.3), based on (3.6) and (3.7) we required that m = 1. Taking into account
the above considerations, the form of ¢ is as following

46 = ar (g) + ao. (3.8)

Then we know the exact view of ¢3

G\’ G\’ G’
¢*(¢) = af <G> + 3ajag <G> + 3aaf <G> +ag. (3.9)

Using (3.8) and (3.5) ¢” is easily derived to

el 3 G’ 2 el
q" (&) = 2ay <G> + 3a1 ) <G> + (2a1p0 + a1 \?) <G> +ajp. (3.10)

By substituting (3.8)-(3.10) into equation (3.3) and collecting all terms with
the same power of (G'/G), the left-hand side of equation (3.3) is converted
into another polynomial in (G'/G).

!

3 N\ 2
(—2ka3 + 2k3ay) (g) + (—=6ka%ag + 3k3a1\) <g>

! 11
+ (Y()ar - Bkarag + 2k a1 + K ark* = ky(£)q(0, t)ar) (i‘> o
+(C + Q(t)ag — 214:@% + alk‘g)\,u — ky(t)q(0,t)ag) = 0.

Equating each coefficient of expression (3.11) to zero, yields a set of si-
multaneous equations for ag, ai, (t) and C' which have the following
form:

I\ 3
<G> : — 2ka3 + 2k%a; = 0,
) — 6ka%ag + 3k3a1\ = 0,
1
) : Q(t) — 6kad + 2k + kA% — kvy(t)q(0,t) = 0,

C + Q(t)ag — 2kad + ark> A\ — kv (t)q(0,t)ag = 0.
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By solving these the equations, we obtain the followings

k
a0:§)\, a1 =k, C =0,
_ k‘S()\2 o 4/‘) (3'12)

Q(t) 5 t+ k/o ~v(1)q(0, 7)dT + 0.

Here A, p, k and Q¥ are arbitrary constants. Using (3.12), expression (3.8)

can be rewritten as , I
=k({—=)+— 3.13

where £ = kx + wt +k fg v(7)q(0, 7)dT + Q°. The function (3.13)
is a solution of equation (3.3), provided that the integration constant C' in
equation (3.3) is taken as that in (3.12). Substituting the general solutions
of equation (3.5) into (3.13), we have three types of travelling wave solutions
of the loaded mKdV equation (1.1) as follows:

When (A% —4p) > 0,

kA2 [esh YA 4 cpen VA

q(§) —_— —_—
2 clchivz_éluf + CQShiAZ_ZLMf

(3.14)

where £ = kx + wt + kfg ¥(1)q(0,7)dT + Q°) ¢1, c2 and Q0 are
arbitrary constants. It is obvious that the function ¢(0,¢) can be easily
found based on expression (3.14).

For example, let v(t) have a form below

kal 2 kA2 —4pu

where a; (j = 1,2, ..., n) are constants. If ¢; # 0, c2 = 0 and (\>—4p) > 0,
then ¢g(x,t) becomes

VAR =iy [ VA

—4 n ‘
ala,t) = Yoo %(lm +3 ot | (3.15)
§=0

)

Te=. i KN\ —4p) 2 VA AN
10 = | 3 Y dot ™ - g S e
]:

The function (3.15) is the solution of the following loaded mKdV equation.

I~ o, K2(A2—4
@ — 6¢%qe + Quaw — - leajtﬂ 1 (2/‘)
]:

g =0.  (3.16)
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Figure 1. The solution (3.15) of the loaded mKdV equation (3.16) for A = 2,
p=—1Lk=1,a=0, a1 =1, ag = 2.

When (A2 —4p) < 0,

A/ —)\2 / —)\2
kr/4p — N2 —clsinL)‘f—i-c cos 4’; A £
2

q(§) = — 2| (3.17)
c] cos Y——"— 4” — f — ¢cosin 4’;_/\25
where & = kx — m“f_)‘t—l—k: f Y(1)q(0,7)dT +Q°, ¢1, ca, and QO are arbi-

trary constants. It is not difficult for us to find q(O, t) based on expression
(3.17). Let

B ERS weti—1 4 E2(4p — N?) 2 4 — N2
o220 e (M ).

where o; (j = 1,2, ..., n) are constants, in particular, if ¢; # 0 and ¢3 = 0,
then ¢(z,t) becomes

/A, _ \2 /41 — \2 n ,
VAR [ VA /\(lm+zajtﬂ). (3.18)

2 2

q(z,t) =
=0

The function (3.18) is the solution of the following loaded mKdV equation.

n

I~ o1 KP(dp— N
— 6¢%qz + Quzz — z Z]ajtﬂ 1 (“2) ¢ =0. (3.19)
j=1
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Figure 2. The solution (3.18) of the loaded mKdV equation (3.19) for A = 3,
,u:3,k:1, a():(), a1:1, ag = 2.

When (A2 —4p) =0,
k‘CQ
q(£> - 1 4 502’

where £ = kx + kfot (1)q(0,7)dT + Q°, ¢1, co, and QO are arbitrary con-
stants. The function ¢(0,t) is found based on expression (3.20). If ¢; = 0,
ca #0, (A2 —4p) = 0 and ~(¢) has the form

= Z?:O ajtj Z?:l jajtj_l
7( ) - k‘2 ’

(3.20)

then ¢(z,t) becomes

k
t) = : 21
o0 = s (321)

We know that the function (3.21) satisfies the following loaded mKdV
equation.

n

qt — GQQQm + Qo — Zjajtj_l gz = 0. (3-22)
j=1
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Figure 3. The solution (3.21) of the loaded mKdV equation (3.22) for A = 2,
p=1Lk=1a00=0,a1 =4, a2 =1, ag = 3.

Exact solutions of the results describe different nonlinear waves. For the
established exact solutions with hyperbolic solutions are special kinds of
solitary waves solutions.

4. Conclusion

The results of this study show that the (G'/G) - expension method is
effective in obtaining the exact solutions of the loaded mKdV equation.
Parameters c1, c2, A, u, k and arbitrary function ~(¢) in solutions (3.14),
(3.17), (3.20) provide sufficient freedom for constructing solutions.
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