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Abstract. Previously, for each multilayer neural network of direct signal propagation
(hereinafter, simply a neural network), finite commutative groupoids were introduced,
which were called additive subnet groupoids. These groupoids are closely related to the
subnets of the neural network over which they are built. A grupoid is a monoid if and
only if it is built over a two-layer neural network. Earlier, endomorphisms and their
properties were studied for these groupoids. Some endomorphisms were constructed, but
an exhaustive element-by-element description was not received. It was shown that every
finite monoid is isomorphic to some submonoid of the monoid of all endomorphisms of a
suitable additive subnet groupoid for some suitable neural network.

In this paper, we study endomorphisms of additive groupoids of subnets of two-
layer neural networks. The main result of the work is an element-wise description of
the monoid of all endomorphisms of additive monoids of subnets built over a two-layer
neural network. The item-by-item description is obtained by constructing a general
form of endomorphism. The general view of an endomorphism is parameterized by the
endomorphisms of suitable booleans with respect to the union operation. Therefore,
endomorphisms of these Booleans were studied in this work. In particular, the semirings
of endomorphisms of these Booleans with respect to the union were studied. In addition,
to describe the general form of the endomorphism of the additive monoid of subnets,
homomorphisms of one Boalean into another (with respect to union) were used.
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Hayunas crarbs

O6 sumomopdusMax aIMTUBHOTO MOHOMJA IIOJICETEei
JBYXCJIOMHOII HEIPOHHOU CeTH

A.B. JIutaspun'™

1 Cubupckuii denepaibublii yHuBepcuTeT, KpacHosipck, Poccuiickass Pemeparus
= anmll@rambler.ru

AnHoTaus. Panee 111 Kaxk10# MHOTOCJIORHONW HEHPOHHOM CETU MPSIMOro pacipocTpa-
HeHusl cCUrHaJsa (Jajiee HEHPOHHAs CETh) BBOJMINCH KOHEYHBIE KOMMYTATHBHBIE IPYIIIO-
WIbI, KOTOPBIE MOJYYNIN HA3BaHWE aIUTUBHBIE TPYHIOUAbl mozcereil. lamuble rpyrm-
IIOU/IBl TECHO CBSA3aHBI C IIOACETAMM HEWPOHHONH ceTU, HaJT KOTOPBIMH OHHU IIOCTPOEHBI.
I'pynmons sBiisieTcst MOHOMIOM TOTZIA M TOJIBKO TOTA, KOTJIa OH TOCTPOEH HAJT JIBY XCJIOM-
HOIl HEMPOHHOI ceThio. Panee JUist JaHHBIX IPYIIIOUIOB U3y YAJIUCH SHIOMOP(PU3MBI U UX
CBOMCTBA, a Tak»Ke ObLIM ITOCTPOEHBI HEKOTOPBIE SHIOMOP(MU3MbI, HO HCUEPIBIBAIOIIETO
IIO3JIEMEHTHOT'O OITMCAHUS HE IOJIy4YeHO. BbLIO MOKa3aHO, UTO BCAKHUN KOHEYHBINH MOHO-
1 ©30MOP(MEeH HEKOTOPOMY ITOJIMOHOU/LY MOHOWIA BCEX IHIOMOPMU3IMOB IOIXOJISIIETO
A IATUBHOTO I'PYIIIONAA IIOACETEN IJIsi HEKOTOPOH ITOAXOAdAIell HeMPOHHOU CeTH.

B pabore paccMoTpeHbl 95HIOMOPMOU3MBI aJIATUBHBIX I'PYIIIONUJIOB MTOJACETEN JIBYXCJIOM-
HBIX HEHPOHHBIX ceTelf. OCHOBHBIM PE3yJILTATOM WCCJIEIOBAHUS SIBJISIETCS TTOSJIEMEHTHOE
OIMCaHWe MOHOWUJIA BCEX IHIAOMOPMOU3MOB &AUTUBHBIX MOHOWIOB IIOJICETEN, TOCTPOEH-
HBIX HaJ| JABYXCJIONHON HeipoHHOI cerbio. IlosslemMenTHOE onmcanme IOJIy<eHO 3a CUET
IOCTPOEHMsT 0611ero Buaa sH10Mopdusma. O6mmuit BuI 9H10MOpdU3Ma IIapaMeTPU3yeTCst
SHIOMOP(U3MAMHI TOAXOIANINX Oy/IeaHOB OTHOCUTEBHO onepariun oobeauHerus. [loaTo-
My U3y4YeHbl SHIOMOP(MU3MBI JaHHBIX GyJIeaHOB, B TOM YKCJIE MOJIYKOJIbIA SHIOMOP(MU3-
MOB JIaHHBIX OyJI€AHOB OTHOCUTEIBHO 00beanuenus. Kpome Toro, fjs onucanus oOIero
BUJIA HIOMOPGU3Ma aJTUTHBHOTO MOHOWA IOJCETEl MCIOJIB30BAHBI TOMOMOP(MUIMBI
oJiHOTO Oyaseana B APYroi (OTHOCHTEJLHO OObLEeNHEHN).

Kuaro4yeBbie ciioBa: 5H10MOphU3M I'PYIIION I8, MHOTOCIONHAsT HEHPOHHAS CETh ITPSIMOTO
PaCIpOCTPaHEeHNUs CUTHAJIA, MOJACETh MHOIOCJIORHON HEUPOHHOU ceTn

Buiaromapuoctu: Pabora BbinosHeHa pu nojiepkke KpacHosIpcKoro MmareMaTnIecKo-
ro 1eHTpa n (puHancupoBanun MuHHCTEpCTBa HAyKM M BBICHIEro oOpa3oBanus Poccumii-
ckoit Peneparun (IIpoekt Ne 075-02-2022-876).

Ccouika ags nquruposBanus: Jlutaspun A. B. O6 sugomopdusmax ajiuTHBHOIO MOHO-
nJa moziceTel By XCIIONHOM Heiiponnoii cern // Vzectna VpKyTCKOro rocy1apcTBEHHOTO
yuupepcurera. Cepusi Maremaruka. 2022. T. 39. C. 111-126.
https://doi.org/10.26516/1997-7670.2022.39.111

1. Introduction
This paper is a continuation of the study [4] in which the algebraic
properties of some finite commutative groupoids AGS(N) are studied.
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Groupoids AGS(N) are built over a given multilayer neural network A
with direct signal distribution. The elements of this groupoid model the
subnets of the neural network A in the sense of Definition 4 from [4].

In [4], the groupoids AGS(N) are called it additive subnet groupoids of
multilayer neural network N\

Among the main problems considered in the work [4] the problem was
of element-wise description of the monoid of all endomorphisms of the
groupoid AGS(N). It was shown that every finite monoid can be isomor-
phically embeddable into the monoid of all endomorphisms of the groupoid
AGS(N) for a suitable neural network N. Some endomorphisms of the
groupoid AGS(N) have been described, but an exhaustive description of
the elements End(AGS(N)) was not received.

It turned out that the groupoid AGS(N) is a monoid if and only if N/
is a two-layer neural network (n(N) = 2). Moreover, if N is a two-layer
neural network and M; and My are the set of all neurons lying in the
first and second layers, and B(X) := (2%, U), then the equality AGS(N) =
B(M;) x B(My) holds (equality of sets of supports and equality operations;
a stronger condition than isomorphism).

The main result of this work is the element-wise description of the
monoid of all endomorphisms End(AGS(N)), when n(N) = 2. To describe
endomorphisms from End(AGS(N)) are used homomorphisms from B(X)
to B(Y) and endomorphisms from End(B(X)) for special X. The paper
considers ways of describing such homomorphisms and endomorphisms. It
is well known that the set of all endomorphisms of a commutative monoid
forms a semiring with respect to the standard addition of endomorphisms
and the composition of endomorphisms. In this paper, a special matrix
representation of the endomorphism semiring End(B(X)) is obtained for
an arbitrary finite set X.

There are many studies on the properties of endomorphisms (in par-
ticular, automorphisms) of algebraic systems (see, for example, [9;11;12]).
In particular, their element-wise descriptions. The properties of automor-
phisms of geometric objects are studied (see, for example, [8]).

Basic information about neural networks (in particular about multilayer
neural networks) can be found in [2-5;10]. It should be noted that the
approach to determining the subnet of a multilayer neural network differs
from the approach to determining the subsystem of a given algebraic sys-
tem. In the theory of abstract automata (see, for example, the survey [1;6]),
an abstract automaton is identified with a three-base algebraic system.
The work [7] introduces the concept abstract neural network. This concept
is similar to the concept of an abstract automaton, but differs in some
specificity that is convenient for applying this abstraction to the study of
issues specific to neural networks (in particular, training). There also arises
the concept of an abstract neural network subnet, built as a subsystem of the
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corresponding three-base algebraic system. This approach is fundamentally
different from the approach of introducing the concept of subnet in [4].

It should be noted that, in essence, it is impossible to study the in-
ternal structure of a neural network from the standpoint of abstract au-
tomata, therefore, from the standpoint of abstract neural networks. This
detail is well known and was noted by V.M. Glushkov in the review [1,
p.59,conclusion].

2. Basic definitions related to neural networks

This section will define the notions of a multilayer neural network, its
subnet and groupoid AGS(N).

In this paper, sets will be denoted in capital Latin letters, and tuples
composed of sets, in capital Latin letters with a bar. A tuple of empty sets
will be denoted by the symbol & := (&, ...,2) (the length of such a tuple
will always be clear from the context).

By default, R is the set of all real numbers. By F(R) we denote the set
of all functions h : R — R (here it is understood that the domain of the
function h coincides with the set R).

Next, we give definition 3 from [4].

Definition 1. Let the following objects be given:

1) a tuple (M, ..., M,) of length n > 1 of finite non-empty sets, where
M; N M; = @ is true for i # j;

2) the set S := (Ml X MQ) U (Mg X Mg) U...u (Mn—l X Mn),

3) the mapping f : S — R, which assigns a real number to each pair
from S;

4) the set A := My U ...U M,;

5) the mapping g : A — F(R), which assigns to each element from A a
function from F(R);

6) the mapping | : A — R, which assigns to each element from A some
number from R.

Then the tuple N = (M, ..., My, f, g,1) will be called a multilayer neural
network of direct distribution (in the framework of this work, just neural
networks).

The tuple (My,..., M,,) is interpreted as the main tuple of neurons in
the neural network A/, S is interpreted as a set of synoptic connections.
The f function defines the synoptic connection weights, and the g function
defines the functions activation in each neuron. The [ function defines the
threshold values of neurons. The input layer will be called the set of neurons
M;.

Information about the standard operation of a neural network as a
computational circuit can be found in [2-4] and others.

WsBectus MpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
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Let two tuples X = (X1,...,X,) and Y = (Y1,...,Y,) of finite non-
empty sets be given. Then by X UY we will denote the componentwise
union X UY = (X3 UY1,.... X, UY,).

If X = (Xy,...,X,) and M = (M, ..., M,) are two tuples whose com-
ponents are sets, then we say that the condition X C M if all inclusions
X1 € My, ..., X, € M, are true (componentwise inclusion).

Let (X7, ..., X,) be some tuple composed of finite sets, we say that the
tuple is continuous if for all different i,j € {1,...,n} the following impli-
cation holds: if X; # @ and X; # @ and i < j, then for all s € {3,...,5}
the inequality X, # @ holds. The tuple @ is assumed to be continuous
by definition. For a tuple of sets to be continuous, it should not have
alternation of a non-empty set with an interval of empty sets, and then
again with a non-empty set.

Let us give definition 4 from [4].

Definition 2. Let the neural network be defined N' = (My, ..., My, f, g,1)
and a continuous tuple X = (X1, ..., Xy) is given such that it contains more
than one component other than the empty set, and

(X1, s Xp) C (M, ..., My).

We assume that Y = (Y1,...,Yy) is a tuple obtained from a tuple X by
deleting components equal to the empty set, where m < n.
If ' is a restriction of the function f on the set

S = (Yi X Yg) U (Y2 X YE;) U...u (Ym_1 X Ym)

and ¢', l' is the restriction of the functions g and | on the set A’ := Y, U
...UY,,, then object

Nl = (Yla ~--7Ym> flag/7 l/)

will be called subnet of the network N. We say that the tuple X induces
the subnet N'. The Y tuple is the main tuple of neurons in the N’ subnet.
In general, the tuples X andY can be different.

More information about neural network subnets can be found in [4].
Note that the proposed approach to defining the subnetwork of a neu-
ral network corresponds to works studying the applied aspects of neural
networks.

Construction of groupoids AGS(N). Next, we formulate Definition
1 from [4] groupoid AGS(N).

Definition 3. Let the neural network N be defined with the main tuple
of meurons M. The set of all possible continuous tuples X C M will be
denoted by the symbol AGS(N).
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We assume that X andY are two arbitrary element from AGS(N'). Let’s
define a binary algebraic operation (+):

T XUY, if XUY € AGS(N)

R A if XUY ¢ AGS(N).
Then the groupoid AGS(N) := (AGS(N),+) will be called the additive
groupoid of subnets of neural network N .

If N is a two-layer neural network, then for all X,Y € AGS(N) the
equality holds X +Y = X UY and AGS(N) = B(M;1) x B(Ms) (equality
of sets).

3. Some definitions and formulation of the main result

Let us formulate the necessary definitions. Let G = (G, o) be a monoid
and 1 € GG is a neutral element of this monoid. Then the mapping ¢ : G —
G is called an endomorphism of the monoid G if 12 = 1 and for all z,y € G
the equality is true

(zoy)? =% 0y’ (3.1)

A semiring is a non-empty set S with two binary algebraic operations
(4) and () such that (S, +) is a commutative monoid, (S, ) is a semigroup,
addition and multiplication are related by left and right distributivity with
respect to addition, and a neutral element o of the monoid (S, +) satisfies
the identity o - 2 = x - 0 = o (multiplicative property of zero). It is
well known that the set of all endomorphisms of a commutative monoid
with respect to the standard operation of addition of two endomorphisms
and the composition of two endomorphisms forms a semiring. Let G be a
commutative monoid. Notation related to composition of endomorphisms.
We assume that z € G and ¢ € End(G). Then 2¢ is the image of the
element x under the action of the endomorphism ¢. The composition of
two endomorphisms will be denoted by the symbol (-). If ¢1, ¢2 € End(G)
and z € G, then 2?12 := (292)%1,

Notation related to the sum of endomorphisms. Let be ¢1, 2 € End(G)
and z € G. Then, as usual, the sum (+) of two endomorphisms will denote
the mapping ¢1 + ¢2, which acts on G according to the rule

phito2 . g1 02

It is well known that the sum of two endomorphisms of a commutative
monoid is again an endomorphism of this monoid.

Let X be some finite set, 2% a Boolean of the set X. We will use the
notation B(X) = (2%,U). In the framework of this paper, we consider the
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Boolean of some set only with respect to the operation (U). It is well known
that B(X) = (2%,U) is a commutative monoid consisting of idempotents.
We assume that N is a two-layer neural network with the main tuple
of neurons (Mp, M3). As noted in the introduction, the equality is true
AGS(N) = B(M;) x B(My).
For any endomorphism 7 € End(B(M;)) and any homomorphism 7 of
the monoid B(Mz) into the monoid B(M;) we introduce the mapping

an (U)=U0{"UU* (U= (Up,Uz) € AGS(N)).

The mapping o, 5, is a homomorphism from AGS(N)) = B(M;) x
B(M,) to B(Mj). Indeed, let U = (Uy,Usz) and V' = (V4,V3) be two
arbitrary elements from AGS(N')). We have the equalities

ann(UUV)= U UV U (U UVe)? =Ur UVPUUR U VY2 =

(U7t uUP U [V UV = a7, (U) U iy (V)

Thus, we have shown that o, , is a homomorphism.
For every homomorphism ¢; of the monoid B(Mj) into the monoid
B(M3) and every endomorphism (o € End(B(Mz)) we introduce the map-

ping
BCLCQ (U) = Ull U U22 (U = (U1,U2) € AGS(N))'

The mapping f¢, ¢, is a homomorphism of the monoid B(M;) x B(M>)
into B(Ms). Indeed, let U = (Uy,Us) and V = (V;,V3) be two arbitrary
elements from AGS(N)). We have the equalities

B UUV) = (U U9 U (U2 UVR)® = Ut UV UUS2 U V2 =
U VU] U IV UVy?] = Bey o (T) U Bey o (V).
Thus, we have shown that (¢, ¢, is a homomorphism.

For any 71 € End(B(M1)), (2 € End(B(M3)), arbitrary homomorphisms
7o of the monoid B(M3) into the monoid B(M;) and ¢; of the monoid
B(M;) into the monoid B(M3) we introduce the mapping p : B(Mj) x
B(Ms) — B(M;) x B(Ms) given by the rule

U" = (047'1772 (U)HBCl,Cz (U» (U € B(X) x B(X)) (3’2)

Let us show that the mapping p introduced by the rule (3.2) is an endo-
morphism of the monoid AGS(N). Let U = (Uy,Us) and V = (V4,15) -
two arbitrary elements from AGS(N). We get equalities

(U+V)p = (O‘Tl,Tz(U"i'V)vﬁCLCz (U+V)) = (aTl,TQ (qu)vﬁﬁ,@(ﬁuv)) =

(aTl,Tz (U) U ary my (V), ﬁCl,CQ (U) U 6C17C2 (V)) = UP + Vp'

The main theorem in this work is the theorem
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Theorem 1. The set of all endomorphisms of the monoid AGS(N) for
n(N) = 2 is bounded by all kinds of endomorphisms p.

Thus, an arbitrary endomorphism of the monoid AGS(N) is parame-
terized by homomorphisms from AGS(N) (n(N) = 2) to B(My), B(Ma).
These homomorphisms are parameterized by homomorphisms (in partic-
ular, endomorphisms) from B(X) to B(Y), when X = M;, M and Y =
My, My. Therefore, in this paper we prove Proposition 1 (see the next
section).

Proposition 1 gives an element-wise description of all homomorphisms of
the Boolean B(X) into B(A). A consequence of Proposition 1 (see Corol-
lary 1, next section) is an element-wise description of all endomorphisms of
the Boolean B(X) for an arbitrary finite set X.

For the monoid of all endomorphisms End(B(X)) for an arbitrary finite
set X one can establish a matrix representation over a special semiring. As
noted above, End(B(X)) is a semiring under addition and composition of
two endomorphisms.

Next, we need basic binary logic functions: conjunction (we will denote
(A)) and disjunction (we will denote (V)). We will use the logical semiring
B = ({0,1},V,A). The set of all possible square matrices of order n with
elements from the ring B will be denoted by M,,«,(B).

Theorem 2. For each finite set X consisting of n elements, the semiring
End(B(X)) of all endomorphisms of the monoid B(X) = (B(X),U) is
isomorphic to the semiring of matrices My, x,(B) with elements from the
logical semiring B.

4. Homomorphisms from B(A) to B(C)

Consider homomorphisms from the Boolean B(A) to the Boolean B(C).

It is easy to show that the set @ = {@} U {{x} | z € A} is a generating
set of the monoid B(A).

General view of the homomorphism from B(A) to B(C). For each family
L = {L,}zea of sets from 2¢ define the mapping ¢, given by the rule

U =) L, 2% =2
uelU

for any non-empty set U € B(A). Since the inclusions L, € B(C) and
U € B(A) holds, then the inclusion U?2 € B(C) holds.

Lemma 1. The mapping ¢, is a homomorphism of the monoid B(A) =
(24,U) into the monoid B(C) = (2¢, V).
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Proof. Next, ¢ := ¢,. Let U and V' be two arbitrary elements from B(A).
Since the monoid B(A) is commutative, associative, and idempotent, the
equality is true

(Uuv)? LJZM—<ULQU<ULQ.
meUuV uelU veV

On the other hand, the equality is true U?UV? = (UueU Lu) U (Uvev LU).
Thus, we have shown that for any U,V € B(A) the equality is true

(UUV)? =U?UV?.
The lemmae is proved. O

Obviously, if equality A = C' is true and the family £ = {L;},ca of sets
from 2¢ is defined, then ¢, is an endomorphism of the monoid B (A).

Proposition 1. Any homomorphism of the monoid B(A) into the monoid
B(C) is a homomorphism ¢ for a suitable family L of subsets from B(C).

Proof. Let ¢ be an arbitrary monoid homomorphism B(A) to B(C).

1. It is clear that @? = @. Consider the action ¢ on the generating set
Q. We assume that the image of the element {z},x € A under the action
of ¢ is equal to the set W, € B(C).

We introduce a family £ = {L;},eca of sets L, from B(C') such that for
all x € A the equality is true L, = W,.

The family £ is defined so that for all x € A the equalities are true

{278 = Lo = Wo = {2}? ({2} € Q).

Thus, we have shown that every homomorphism ¢ acts on the set () as
a homomorphism ¢,.

It remains for us to show that ¢ acts on B(A) \ @ as endomorphism ¢ .

2. Suppose that U € B(A) \ Q. For this element, the decomposition
U = Ugep{x} is valid and the equalities are true

e = (U{x}f— U1 = | ) = (U{x})m _uee,

zelU zeU zeU zelU

Thus, an arbitrary homomorphism ¢ acts on B(A) as a homomorphism
¢, for a suitable family L. O

If we assume in Proposition 1 (and its proof) that A = C' = X, then we
obtain

Corollary 1. Any endomorphism of the monoid B(X) is an endomor-
phism ¢ for a suitable family L = {L;}rcx of subsets from B(X).
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5. Composition and sum of two endomorphisms B(X)

Let there be given two families of sets £L = {L;}rex, D = {Dy}rex
from 2%. The mappings ¢, and ¢p are endomorphisms of B(X). Then
the equalities are true

bc-¢p =0z, ¢r+Pp =9y,
where family members Z = {Z,},ex and V = {V, },cx satisfy the equali-

ties
L i f Dy #+ &
7, = {Sven, Lo 7 Do ? (5.1)
g, Zf Dx = g,

Indeed, let U be an arbitrary element from 2%. Then the equalities hold

dc
Ubcép — (U¢D)¢L — (U Dx> — U Dim — U U L,| =

xeU zeU zeU \y€D;

=Z=U L, = 2 =0,
YyEDy zeU

where Z = {Z; },ex. Equality (5.1) is proved.
On the other hand, the equalities are true

Uectéo — yoc s — (U Lu> U (U Du> = U (L, UD,) =

uelU uelU uelU

Ve =L, UD,) = | Vu=U".
uelU

Equality (5.2) is proved.

6. Proof of Theorem 2

Further, we need the basic binary logical functions: conjunction (we will
denote (A)) and disjunction (we will denote (V)). We will use the logical
semiring B = ({0,1}, V, A).

Further, we assume that the set X is finite (|X| = n) and ordered.
In accordance with this ordering, we will denote the elements of the set
X ={z1,...,xn}.

Let a family of sets £ = {L, },ex be given. Then the endomorphism ¢,
is defined. Since the order is defined on the elements of the set X, specifying
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the family £ is equivalent to specifying the tuple L = (L1, ..., L,), where
For each endomorphism ¢z, where L = (L, ..., L,) we define a square
matrix A7 with elements from B of order n as follows:
1) Ap = ()
2) a;; =1 if and only if z; € Lj;
3) a;; = 0 if and only if z; ¢ Lj;.

This way of assignment can be reformulated in words. If the component
L; contains the element z;, then the element in the j-th column and in the
i-th row is equal to one, otherwise zero. Thus, the matrix A7 is compiled
column by column.

The set of all possible square matrices of order n with elements from the
ring B will be denoted by M, (B).

Next, consider the mapping a : End(B(X)) — My xn(B) defined by rule

From the way of constructing the matrix A7 it can be seen that the
mapping « is a bijection. Let us show that « is an isomorphism between
the semirings End(B(X)) and My, xn(B).

To show that o is an isomorphism, we show that for any tuples L =
(L1,...,Ly,) and D = (Dy, ..., D,,) from (2%)" equalities are true

a(ég + ¢p) = Ag + Ap, (6.2)
where on the right stand the usual matrix multiplication and matrix addi-
tion.

Isomorphism of multiplicative semigroups of semirings. Next, we will
show that the equality (6.1). Let be

¢7 =01 95>
where, by virtue of (5.1), the equalities

Zj _ UwiEDj L;, if Dj * O
g, if Dj = .
We have the equality o(¢) = A,. We assume that A = (z;5), A7 =
(aij), Aﬁ = (bZ]) and Af . AE =C= (Cij) where

n

Cij = \/ (aix A brj) -
k=1

Let ¢;; = 1. This means that there are elements a;; and by ; equal to
one. Which in turn means that D; contains the element x;/, and the set
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Lj, contains the element x;. Hence, the set Z; contains the element z;,
therefore, the matrix A-; contains the element z;; = 1 = ¢;;.
Let ¢;; = 0. This is possible in one (and only one) of the cases:
1. all by; are equal to zero for any 1 < k < n;
2. among the elements of by; there are nonzero elements, denote them
by
{Ok15s kz, o s Ok}

but all elements {a; x,, @i gy, ---, @ik, } are equal to zero.

In the first case, we get that the set D, is empty, therefore, the set
Zj is also empty. Hence, z;; = 0 = ¢;; (in this case, for any 7). In the
second case, we get that the set D; contains elements {xy, , Tk,, ..., T, } and
sets {Lk,, Ly, ..., Lr,} do not contain element x;, therefore, the following

conditions are true
h=s

Zj = U Lkh, xT; ¢ Zj.
h=1
This means that z;; = 0 = ¢;; (in this case, for specific ¢ and j).

Thus, we have shown that the matrices A, = (2;;) and A;- Ay = C are
equal. Since a(¢7 - ¢p) = a(¢5) = Ay = A7 - A, then the identity (6.1)
also holds.

Isomorphism of additive commutative monoids of semirings. Let be

Oy = o1 + 95

where by virtue of (5.2) the relations V; = L; U D;.

We have the equality a(¢y) = Ay, We assume that Ay = (v;;) and
Af+ Aﬁ =W = (wzj) where Wij = aij V blj

Let be w;; = 1. Hence, a;; or b;; equal to one. Means what z; € L;
or ¥; € Dj, hence, z; € L; UD; = V;. Hence we obtain the equality
Wij = Vi = 1.

Let be w;; = 0. Therefore, a;; = 0 and b;; = 0. Hence, z; ¢ L;
and x; ¢ Dj, hence, z; ¢ L; UD; = V;. Hence we obtain the equality
Wij = Vi = 0.

Thus, we have shown that the matrices Ay and W = A+ Ap are equal.
Therefore, the equality (6.2) is also true.

Thus, we have proved Theorem 2.

7. Proof of the main theorem 1

1. Let ¢ be an endomorphism of the monoid AGS(N) for n(N) = 2 and
U from AGS(N). Then the equalities are true

% = (Ry(T), Ry(T)),
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where Ry : AGS(N) — B(M;) and Ry : AGS(N) — B(Ms). It is trivially
established that R; is a homomorphism from AGS(N') to B(M;) and Ry is
a homomorphism from AGS(N) to B(Ms). Indeed, since n(N) = 2, then
U +V =UUYV and for arbitrary U and V equalities hold

(U+V)? =R(U+V),Ry(U+7V));

T+V) =T +V° = (R1(T), Ro(T)) + (R (V), Ro(V)) =
(R1 (U) U Ry (V), Ry (U) U Ry (V))

Thus, the equalities are true
Ri(U+V)=Ri(U)UR(V), Roy(U+V)=Ry(U)UR(V).

Next, we need a description of all endomorphisms from AGS(N) to
B(Ml) and B(MQ)

2. Let us show that all homomorphisms from AGS(N') to B(M;) are
exhausted by the homomorphisms o, r,.

Let ¢ be an arbitrary homomorphism from AGS(N) to B(M;). The
monoid AGS(N) will be generated by the set T; UT, U {(<, @)}, where

Ty :={(2.{z}) |z € Mo}, To:={({z},9) [z € M}

Let U, := (@,{z}) € T; and V, := ({y}, @) € T,. Then the equalities
hold

¢(U;) = H, € B(My), (V) =By € B(M), ¢((2,9)) =2.
We define two families of sets
L= {L:E}:veMz - B(Ml)v D= {Dx}wGMl - B(Ml)

such that L, = H, and D, = B,. Next, consider the endomorphism 71 =
¢p and the homomorphism 75 = ¢,. It is easy to show that ar, -, ((@, D)) =
@. Mapping o, -, will satisfy the equalities

SO(UUE) =07 (Ux)v (p(vy) =07 (Vy)a @((@7 Q)) = aTl,Tz((ga @))

for all z € Mo, y € M.

Further, let U = (U, V') be an arbitrary element from B(M;) x B(M3).
Consider the action ¢ on this element (the tuples U, and V, are defined
above)

p@=e| TV, |=Ue@)u e, =

zelU yev zelU yeVv
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7y (Uz) U U (V) = oy, U Uy U U Vy | = ann(0).
U

zeU yev zelU yev

Thus, we have shown that on an arbitrary element U from AGS(N), the
homomorphism ¢ acts as a homomorphism o, .

Similarly, one can show that every homomorphism ¢ from AGS(N) to
B(M>) acts as a homomorphism ¢, ¢,.

3. Thus, the homomorphism R; is a suitable homomorphism o, -,
and the homomorphism Rj is a suitable homomorphism f¢ . And an
arbitrary endomorphism of the monoid AGS(N) is an endomorphism of p
given by the rule (3.2). Theorem 1 is proved.

8. Conclusion

Thus, an arbitrary endomorphism of the monoid AGS(N) is parame-
terized by homomorphisms from AGS(N) (n(N) = 2) to B(M;y), B(Ma).
These homomorphisms are parameterized by homomorphisms (in partic-
ular, endomorphisms) from B(X) to B(Y), when X = M;, M and Y =
My, Ms. Proposition 1 and its Corollary 1 give an element-wise description
of these homomorphisms and endomorphisms. And Theorem 2 gives more
detailed information about the structure of the semiring End(X), for an
arbitrary finite set X.

These results are of theoretical and practical interest. These results can
be used to carry out calculations in the construction or theoretical study
of multilayer neural networks of direct signal propagation.
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