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Abstract. We investigate the well-known hypothesis of D.R. Hughes that the full colli-
neation group of non-Desarguesian semifield projective plane of a finite order is solvable
(the question 11.76 in Kourovka notebook was written down by N.D. Podufalov). The
spread set method is used to construct the semifield projective planes with cyclic 2-
subgroup of autotopisms in the case of linear space of any dimension over the field of
prime order. This study completes the analogous considerations of elementary abelian
2-subgroups. We obtain the natural restriction to the order of 2-element for the semifield
planes for odd and even order. It is proved that some projective linear groups can
not be the autotopism subgroups for the infinite series of semifield planes. The matrix
representation of Baer involution allows us to define the geometric property of autotopism
of order 4. We can choose the base of a linear space such that the matrix representation of
these autotopisms is convenient and uniform, it does not depend on the space dimension.
The minimal counter-example is constructed to explain the restriction to the plane order.
As a corollary, we proved the solvability of the full collineation group when the non-
Desarguesian semifield plane has a certain even order and all its Baer subplanes are also
non-Desarguesain. The main results can be used as technical for the further studies
of the subgroups of even order in an autotopism group for a finite non-Desarguesian
semifield plane. The results obtained are useful to investigate the semifield planes with
the autotopism subgroups from J.G. Thompson’s list of minimal simple groups.
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Hayunas crarbs

2-371eMeHTHI B I'pyliie aBTOTOIIU3MOB I10JIyII0JIE€BOM
NPOEKTUBHOUI MJIOCKOCTH

O.B. Kpasnosa'™

1 Cubupckuii penepanbublii yauBepcuTeT, Kpacuosipck, Poccniickas Peneparus
= ol71@bk.ru

Awnnorarnusi. VIsy4gaercs ussectHast runore3a /1. Xsro3a 1959 1. 0 pa3pemmMocTy moTHOM
rpyHIbl aBTOMOP(MU3MOB HEJAE3aPIrOBOM ITOJIYIIOJIEBON ITPOEKTUBHON IIJIOCKOCTH KOHEY-
Horo nopsiaka (rakxke sompoc 11.76 H. /1. Ilomydasosa B Koyposckoit Terpasu). Mer
IIPUMEHSIEM METOJ PEryJIsIPHOIO MHOXKECTBA HaJI II0JIEM IIPOCTOT'O IIOPSIJIKA K IIOCTPOEHUIO
MIOJIyIIOJIEBBIX IIPOEKTUBHBIX IJIOCKOCTEH C IUKJIWYECKHMH 2-IIOATPYIIIaMU aBTOTOIM3-
MOB, JIOIIOJIHSISI aHAJIOTUIHBIE HCCIIeOBAHN dJIEMEHTAPHBIX abesIeBbIX 2-moArpymn. Ecre-
CTBEHHOE OrpaHUYEHNE Ha MOPAIOK 2-3JIEMEHTa IOy YeHO JJIA IOJIyIIOIEBbIX IIJIOCKOCTEM
KaK HEYeTHOI'0, TaK U YETHOrO IOpsiaka. BrlresneHa OecKOHeYHAs! CepHsl IIOJIYyIIOJIEBBIX
IUTOCKOCTEH, He JOMYCKAMOMNX MOATPYII aBTOTOMU3MOB, M30MOP(MHBIX OMPEIeICHHBIM
NIPOEKTUBHBIM JuHEHHbIM IpynnaM. Ha ocHoBe paHee HailleHHOrO MaTPHYHOIO IIPEJI-
CTaBJIeHUsI OIPOBCKUX WHBOJIIONUI YTOYHEH T'€OMETPUYECKHUI CMBICT ABTOTOMMU3MOB IIO-
paaka 4, MoydeHo UX yHUMUIMPOBAHHOE MATPHUYHOE IIPEICTaBJIEHUE, HE 3aBUCHIIEE
OT Pa3MEPHOCTH IPOCTPAHCTBA. 1Io0CTpOEH MHUHUMAIBLHBIN KOHTPIPUMED, HOSICHSIONNI
OrpaHWYeHNE Ha IOPAJOK IUIOCKOCTH B OCHOBHOM pe3yibrare. /lokaszaHa pa3pemmuMocTb
IOJIHOHM I'pyNNbl KOJUIMHEAlUil Helle3aproBOii II0JIYIIOJIEBOM IIJIOCKOCTU YETHOI'O IIOP:/I-
Ka C OUpaHMYeHHEM Ha PAHT, BCe 03POBCKHUE IIOMIIJIOCKOCTH KOTOPOIl TakKXKe HeJe3apro-
Bbl. OCHOBHBIE JIOKa3aHHBIE PE3YJIbTATHI SIBJISIIOTCS TEXHUYECKUMHU M HEOOXOIUMBI JIJIsI
JAJIBHEHUIET0 U3ydeHus MOATPYII YeTHOrO IOPAIKa B IPYIIe aBTOTONN3MOB KOHEYHOU
He/1e3aProBOil IOJIYIIOIEBOH INIOCKOCTH. Pe3ysibTaTsl MOryT OBITH MCIOJIH30BAHBI JJIS H3Y-
YEeHUsl IOJIYIIOJIEBBIX IIOCKOCTEH, JOIMYCKAIOMMUX HOJATPYIIBI aBTOTOINMU3MOB U3 CIIUCKA
. I'. TomricoHa MEHUMAJIBHBIX IPOCTBHIX IPYIII.

KiroueBbie ciioBa: IIoJIy1nioJieBasl IJIOCKOCTD, PEeryjisspnoe MHO2KECTBO, 63pOBCKaH UHBO-
JIIOIIU A, TOMOJIOTHA, aBTOTOIIU3M
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1. Introduction

The study of finite semifields and semifield planes started more than a
century ago with the first examples constructed by L.E. Dickson [4]. A
semifield (term from 1965) is called a non-associative ring @ = (Q,+,-)
with identity where the equations axz = b and ya = b are uniquely solved
for any a,b € @, a # 0. The abcense of an associative law in a semifield
leads to a number of anomalous properties in comparison with a field or a
skewfield or even a near-field. Moreover, the coordinatization of points and
lines of a finite projective plane by the semifield elements provides special
geometric properties.

By the mid-1950s, some classes of finite semifield planes had been found.
All of them had the common property that the collineation group (automor-
phism group) is solvable. So D.R. Hughes conjectured in 1959 in his report
that any finite projective plane coordinatized by a non-associative semifield
has the solvable collineation group. This hypothesis is presented in the
monography [5] (p. 178); it is proved also that the hypothesis is reduced
to the solvability of an autotopism group as a group fixing a triangle. The
Hughes’ problem attracted the interest of a wide range of researchers who
proved the collineation group solvability for an extensive list of semifield
planes with certain restrictions. Nevertheless, the general approach to
solving the problem has not been developed. In 1990 the problem was
written down by N.D. Podufalov in the Kourovka notebook ( [10], the
question 11.76). Many later works implement the methods of a computer
algebra where a solvability of an autotopism group is an additional result
of constructing semifields and semifield planes of fixed orders.

We represent the approach to study Hughes’ problem based on the
classification of finite simple groups and theorem of J.G. Thompson on
minimal simple groups. The spread set method allows us to identify the
conditions when the semifield plane with certain autotopism subgroup exist.
This method can be used also to construct examples, including computer
calculations. The elimination of some groups from Thompson’s list as
autotopism subgroups allows us make progress in solving the problem.

It is shown by the author in [1;7], that an autotopism of order two has
the matrix representation convenient for calculations and reasoning. These
marices are used further to represent the elementary abelian 2-subgroups
of autotopisms [8]; it provides a natural connection of a plane order with
2-rank of autotopism group. As a corollary, we eliminate from possible
autotopism subgroups of non-Desarguesian semifield plane of order p™v (p
is prime, N = 2™ s, s is odd) the Suzuki group series Sz(22"*!) for n > m.

Here we use the spread set method to state the natural restriction to the
order of 2-elements in an autotopism group. The main resulte is presented
in the theorem 1. The proof is based on a concretization of a geometric sense
of autotopisms of order 2 and 4, it uses also the matrix representation of
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autotopisms of order 4. The corollary specifies the groups PSL(2,q) which
cannot be the autotpism subgroups for a semifield plane of fixed order. The
special case p = —1 (mod 4) requires another approach; it is demonstrated
by examples of semifield planes of order 81.

The combination of results presented with results of [8] specifies one
more class of semifield planes with solvable collineation group.

2. Main definitions and preliminary discussion

We use main definitions, according [5;12], see also [8], for notifications.

Consider a linear space W, n-dimensional over the finite field GF(p®)
(p be prime) and the subset of linear transformations R C GL,(p®) U {0}
such that:

1) R consists of p™*® square (n x n)-matrices over GF(p®);

2) R contains the zero matrix 0 and the identity matrix E;

3) for any A,B € R, A # B, the difference A — B is a nonsingular
matrix.

The set R is called a spread set [5]. Consider a bijective mapping 6 from
W onto R and present the spread set as R = {0(y) | y € W}. Determine
the multiplication on W by the rule z xy = x - 6(y) (z,y € W). Then
(W, 4, %) is a right quasifield of order p™* [9;12]. Moreover, if R is closed
under addition then (W, +,*) is a semifield.

To construct and study finite semifields, we use a prime field Z, as a basic
field. In this case the mapping 6 is presented using only linear functions; it
greatly simplifies reasoning and calculations (also computer).

A semifield W coordinatizes the projective plane 7 of order p" = |W|
such that:

1) the affine points are the elements (z,y) of the space W & W,

2) the affine lines are the cosets to subgroups

V() ={(0,y) [y e W}, Vi(m) ={(z,20(m)) | z € W} (m € W);

3) the set of all cosets to the subgroup is the singular point;
4) the set of all singular points is the singular line;
5) the incidence is set-theoretical.

The solvability of a collineation group Autm for a semifield plane is
reduced [5] to the solvability of an autotopism group A (collineations fixing
a triangle). Without loss of generality, we can assume that autotopisms are
determined by linear transformations of the space W & W'

At (z,y) = (2,7) <6‘ g)
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here the matrices A and D satisfy the condition (for instance, see [6])
A7'9(m)D € R VO(m) € R. (2.1)

The collineations fixing a closed configuration have special properties. It
is well-known [5], that any involutory collineation is a central collineation
or a Baer collineation.

A collineation of a projective plane is called central, or perspectivity, if
it fixes a line pointwise (the azis) and a point linewise (the center). If the
center is incident to the axis then a collineation is called an elation, and
a homology in another case. The order of any elation is a factor of the
order |7| of a projective plane, and the order of any homology is a factor of
|| — 1. All the perspectivities in an autotopism group are homologies and
form the cyclic subgroups [3]:

{8 2) e mm{(Y D) wer)
= {2 1)

The matrix subsets R;, Ry, R, are defined by a spread set [3]:

MER?}.

R, ={M € GL,(p)U{0} | MT = TM VT € R},
Rn,={MeR|MTeRVT € R},
R, ={M e R|TM € RVT € R},

they are called left, middle and right nuclei of the plane m respectively.
These subfields in GL,(p) U {0} are isomorphic to correspondent nuclei of
the coordinatizing semifield W:

Ny ={neW |(n*a)xb
Npp={neW | (axn)xb
N, ={neW | (axb)*n

nx* (axb) Va,b € W},
ax*(nxb)Va,b € W}, (2.2)
ax*(bxn)Va,be W}.

The intersection Ng = N, N N, N N; is the nucleus of the semifield W,
the intersection Ry = R, N R,, N Ry is the nucleus of the plane w. The
nucleus order equals p¥, where k|n. The plane 7 is Desarguesian (classic)
if W is a field, then R ~ W ~ GF(p").

An autotopism group of a semifield plane of odd order contains three
involutory homologies:

-FE 0 E 0 -FE 0
A collineation of a projective plane 7 of order m is called Baer collineation
if it fixes pointwise a subplane of order \/|7| = /m (Baer subplane). We
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use the following results on the matrix representation of a Baer involution
7 € A and of a spread set obtained earlier in [1;7].

Let 7 be a non-Desarguesian semifield plane of order p» (p be prime).
If its autotopism group A contains the Baer involution 7 then N = 2n is
even and we can choose the base of 4n-dimensional linear space over Z,

such that
L0
T = (0 L) , (2.4)

where the matrix L € G Loy (p) is

—E 0 ) _(EFE . _
L_<O E> if p>2 L_<0 E) if p=2. (2.5)

We consider the Baer subplane 7, fixed by 7 as the set of points

o ={00,...,0,z1,...,20,0,...,0,91,...,yn) | Ti,ys € Zp}. (2.6)

If p > 2 then the spread set R in G'La,(p) U {0} consists of matrices

o(V,U) = (m‘(/U) f((}/)) , (2.7)

where V € Q, U € K, Q, K are the spread sets in GL,(p) U{0}, K is the
spread set of the Baer subplane m., m, f are additive injective functions
from K and @ into GL,(p) U {0}, m(E) = E.

If p = 2 then the spread set R in GL,(2) U {0} consists of matrices

U+V+mV)+wlV) f(V) +m(U)>, (2.8)

H(V’U)_< v U+ w(V)

where U,V € K, K is the spread set of the Baer subplane 7, in GL,(2) U
{0}. The additive functions m, f, w maps K into the ring of (n xn)-matrices
over Zg, m(FE) = 0, the function f is injective, the lower row of the matrix
w(V') consists of zeros for all V'€ K. Note that throughout the article, the
blocks-submatrices have the same dimension by default.

3. Restriction to the order of 2-element

It is shown by author in [8], that the order of a semifield plane provides
a natural restriction to the order of an elementary abelian 2-subgroup in
an autotopism group. If a semifield plane 7 has an order p’V, where p is
prime, N = 2™ -5, and s is odd, then the order of an elementary abelian 2-
subgroup in A is at most 2™ (for p = 2 with additional condition). We shall
prove the analogous restriction to the order of 2-element in an autotopism
group. Start from preliminary results.



102 0.V.KRAVTSOVA

Lemma 1. Let 7 be a semifield plane of order pY, p be prime, p # —1
(mod 4), « is an autotopism of order 4, T = o is the Baer involution.
Then the restriction of a to the Baer subplane w; is a Baer involution
of mr.
Proof. We shall consider two cases: p = 1 (mod 4) and p = 2. Choose
the base of the linear space such that the Baer involution is (2.4) and the
spread set matrices are (2.7) or (2.8) respectively.

Let p=1 (mod 4). Suppose that the autotopism « is an identity on the
Baer subplane 7, (2.6). Then from a7 = T7a we have

A 00

0
E 9
0 A*=—-F.
0

oo o
oh o

0
O )
E
Since « is a collineation, then the condition (2.1) holds for §(V,0), so

(D06 - () —avan, wee

and A € @,. Note that @, is a right nucleus of the semifield plane with the
spread set (). The cyclic group Q) contains all scalar matrices zE, z € Z,
and from condition p = 1 (mod 4) we have A = iE, i* = —1, i € Z.
Then f(:V) = —if(V), it contradicts f(iV) = if(V) (from linearity of the
function). Hence, a can not be identity on the subplane 7. If we suppose
that the restricition of « to 7, is a homology then we can use the conclusion
proved to the product of o to homology hi, hy or hs (2.3).
Let p = 2. From the condition a7 = 7ax we have

AL A, 0 O
10 A4 0 O 2 2
“=|0o 0 B B | NTB=
0 0 0 B
If « is an identity on the Baer subplane 7, that Ay = By = F and « has
an order 2. This contradiction proves the lemma. O

Lemma 2. Let 7 be a semifield plane of order p, D be prime, p Z —1
(mod 4), a is an autotopism of order 2%, n > 2, 7 = o2 is the Baer invo-
lution. Then the restriction of a to the Baer subplane 7, is an autotopism
of mr of order 2771,

Proof. Consider the common proof for the cases p =1 (mod 4) and p = 2.
From the condition a7 = 7o we have

A Ay 0 0
_ O A3 0 0 2n—1_ 2n—1_
a=|y o B Bl 4 =B =E
0 0 0 Bsg
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(we skip the conditions for other blocks). The restriction of «a to the Baer
subplane 7, is defined by the matrix

Az 0
= < 0 Bg> ’
If |8] < 27! then A%W2 = ng2 = E, so the autotopism a2" ~ of order 4
is an identity of m,; it contradicts to lemma 1. O

Theorem 1. Let 7 be a semifield plane of order p~, p be prime, p # —1
(mod 4). If « is an autotopism of order 2" and the group {(a) contains no
homologies then 2™ is a factor of N.

Proof. Prove by induction. If n = 1 then an autotopism « is a Baer
involution, so the plane 7 order is a square, N is even.

Let the statement is proved for n—1 (n > 1), and let a be an autotopism
of order 2". Then 7 = o2" ' is a Baer involution fixing pointwise a Baer
subplane of order p™V/2. By the lemma 2, the restriction of o to m; is an
autotopism of order 2"~ !. By inductive hypothesis, 2"~ is a factor of N/2,

so 2™ is a factor of N. The theorem is proved. O

Remark 1. The condition <the group («) contains no homologies> of
the theorem 1 and the condition <7 is a Baer involution> of the lemmas 1
and 2, of course, are redundant if p = 2. In this case, an autotopism
group of a semifield plane of even order contains no involutory homologies
and elations, and any involutory autotopism is necessary Baer. Such the
conditions are written down for the uniformity of statements.

Remark 2. The condition p Z —1 (mod 4) in the statements is essential.
The explanatory examples of the semifield planes of order 81 (p = 3) will
be given later.

The automorphism group of a finite semifield is isomorphic to an auto-
topism subgroup of associated semifield plane [6], therefore the corollary is
evident.

Corollary 1. Let W be a semifield of order p™, p # —1 (mod 4), p be
prime. If its automorphism group contains an element of order 2™ then 2™
s a factor of N.

Corollary 2. Let w be a semifield plane of order 4™ where n > 1 is odd.
Then the Sylow 2-subgroup in its autotopism group is elementary abelian.
Moreover, if n is prime and all Baer subplanes of m are non-Desarguesian
then the collineation group Autm is solvable.

Proof. The first part is evident. To prove the second part we remind the
results of [8]: if two commuting Baer involutions fixes different Baer sub-
planes then the plane order is 2V, N = 0 (mod 4) (lemma 2). It contradicts
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the condition. Hence, any two different Baer involutions from a Sylow
2-subgroup fix the same Baer subplane of order 2. This subplane is non-
Desarguesian by condition, so its nucleus is of order 4 < 2F < 2" (lemma 3),
k|n by definition of the nucleus. This contradiction shows that the Sylow
2-subgroup of an autotopism group A is of order 2, so A is solvable and
Aut 7 is solvable. O

Use the theorem 1 to study the conditions when a group from Thomp-
son’s list is an autotopism subgroup. The following corollary clarifies
Moorhouse’s theorem [11, theorem 1.1]: if a projective palne II of order
n < ¢q admits a collineation group G ~ PSL(2,q) then II is Desarguesian.
It follows from this theorem that an autotopism group of non-Desarguesian
semifield plane of order p”¥ cannot contain a subgroup G' ~ PSL(2,q) for
q > p". The theorem 1 adds the restriction to the order ¢ of a basic field.

Corollary 3. Let 7 be non-Desarguesian semifield plane of order p where
p=2orp=1 (mod4), N=2"-s and s is odd. The autotopism group A
of the plane T contains no subgroups isomorphic to PSL(2,q) where 2m12
s a factor of ¢ — 1.

Proof. 1t is enaugh to consider the order of the diagonal (cyclic) subgroup
of SL(2,q). O

4. Matrix representation of order 4 autotopisms

The lemma 1 allows us to obtain unified matrix representation for the
autotopism of order 4 which square is a Baer involution. Such the matrix
representation is useful for the further study of semifield planes with certain
autotopism subgroup and for examples constructing.

Theorem 2. Let 7 be a semifield plane of order p~, p be prime, p = 1
(mod 4), a is an autotopism of order 4, T = o is a Baer involution. Then
N is divisible by 4, and the base of the linear space can be chosen such that
T is (2.4) and

oo ~OoO
~.

OSNOS O

No oo

Proof. By the lemma 1, the restriction of o to the Baer subplane 7, is a
Baer involution. So, |7;| is a square, N is divisible by 4, and we can choose
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the base such that

SO o
cooM~NOo
o oo
~No oo

By the condition (2.1), we have

(Alm(U)A AYF(V)L

VA UL )ZH(LVA,LUL)GR VWWe@,UecK,

therefore
LVAeQ, LULeK YWe@, UeK.

The minimal polynomial of the matrix A is a factor of A2+ 1, so the matrix
is scalar, A = +iF, or A is diagonal with diagonal elements i and —i. If
V = E we have LA € (; consider the matrix +iF + LA € Q. If A is
not +iL then we have non-zero singular matrix in the spread set @, it is
impossible. Therefore, we can assume that A = iL. O

Remark 3. Carefully consider all the conditions from (2.1), we can
determine the matrices 6(V,U) of the spread set if the plane admits an
autotopism of order 4. Note that each of quarter-blocks m(U), f(V), V, U
is also divided into four parts and is analogous to (2.7):

m1(Uz) ma(V2) fi(Va) fo(Ur)

m3(Va) ma(U2) f3(Ur) fa(V1)
v(U) (V1) wlUsz) (Vo) |’
Wi Uy Va Us

O(V1,Ur, Vo, Us) =

Vie@, U € Ky, Vo € (2, Uy € Ky. Here any block-submatrix is
(N/4 x N/4)-dimensional, the matrix sets Q1, K1, Q2, Ko are the spread
sets of semifield planes of order p™N/%.

Theorem 3. Let © be a semifield plane of order 2V, « is an autotopism
of order 4, T = o is a Baer involution. Then N is divisible by 4, and the
base of the linear space can be chosen such that T is (2.4) and

00
) JZ(EO)’

Proof. By the lemma 1, the restriction of o to the Baer subplane 7, is a
Baer involution. So, |7;| is a square, N is divisible by 4, and we can choose

oo o~
S O N
oM~No o
NN o o
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the base such that

e o) s

_ 1 —

a = 0 0 B1 BQ ’ A1A2 + AZAI - E7
0 0 0 B B1By; + BoBy = E.

The restriction of a to the Baer subplane 7, is determined by the matrix
(f(l)l 1(3) ), the choice of the base allows us to assume that A1 = By = L.
1

Since « is a collineation, the condition (2.1) gives us

L LAL (L By\ (E LBy + LA, B
<0 L ><0 L>_<0 E >€R;‘BQ_A2'

Using the conditions A1 As + A2A; = E and Ay = L, we determine the

block As: e 4
_ 21 A22
= (2 4).

Change now the base of 2N-dimensional linear space to preserve the matrix
7 and to simplify the matrix « (so, As). We use the transition matrix

ET, 00

0 F 0 O 0 O
T= 00 ED| where 15 = <A21 A22> .

0 0 0 F

Calculate TaT~!, we have (for one block):

E T L A, E T\ L LTy + Ay +1T5L . L J
0 F 0 L 0 E) \O L ~\0 L)
The theorem is proved. ]

We will not record the matrix representation of the spread set in the case
of semifield plane of even order admitting the order 4 autotopism because
of the very complicated form and calculations. As in the remark 3, we note
that the quarter-blocks of the matrix 6(V, U) are partially similar to (2.8).

5. Examples

Consider the special case p = —1 (mod 4) which is eliminated from
theorem 1 and from supporting lemmas. Note, that this basic field char-
acteristic was considered as special in other investigations. For instance,
G.E. Moorhouse [11, lemma 2.5] proved that for any projective plane II
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of order n?, where n = 3 (mod 4), and for cyclic collineation group G of
order 4 the involution in G is necessarily a perspectivity.

Another feature in the case of a «bad> characteristic was noted by the
author studying of 3-primitive semifield planes: the order of 2-element in
an autotopism group is not restricted by the factor 2 of the rank V.

Example 1. There are exactly eight, up to isomorphism, semifield planes
of order 81 = 3% admitting a Baer involution (more detail, see [2]). For
each of these the autotopism group A is of order 2™ (m = 8,...,11), it
is solvable and contains four or 100 (in one case) Baer involutions. We
suggest paying attention to the last two columns of the following table.

Plane |Nl|, ‘Nm|, ‘NT‘ ’A| n9 BQ Ny B4 ns Nie
Al 3,3,9 256 7 4 88 | 4 | 32 | 128
A2 3,3,9 512 7 4 1216 | 4 | 160 | 128
Bl 3,9,3 256 7 4 88 | 4 | 32 | 128
B2 3,9,3 512 7 4 216 | 4 | 160 | 128
C1 9,3,3 256 7 4 88 | 4 | 32 | 128
C2 9,3,3 512 | 7 | 4 [216| 4 [160] 128
D1 9,9,9 1024 | 7 4 56 | 8 | 192 | 768
D2 9,9,9 2048 | 103 | 100 | 600 | 8 | 576 | 768

Here ny is the number of order k autotopisms; By is a number of order
k Baer collineations, and By = 0 for k > 4, n = 0 for k > 16. The last
columns shows that semifield planes of order 81 = 3% admit order 8 and 16
autotopisms (more than 4).

Consider now the lemma 1 and suggest the example of order 4 auto-
topism which is trivial on a Baer subplane in the case p = —1 (mod 4).

Example 2. In notification of the lemma 1, we will construct a semifield
plane of order 81 admitting the order 4 autotopism «, that is trivial on the
Baer subplane 7, and the order 4 autotopism ~ that is a Baer involution
of m,. Here 7 = a® = 42 is the Baer involution. We cannot record a or ~y
in a Jordan normal form because the polynomial A\? + 1 is irreducible over
the field Z,. Let us assume that
01
9 S - <_1 O> b

OO O W\n

0
E
0
0

o o oMy
co~NO
No oo

0 0
0 B 0
ol 77 P
E 0

ocownoo
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S?2 = P2 = —E, P # S. The condition (2.1) for o and v determines the
spread set (2.7):

Q:K:{—JIS—FyE | $ayezp}7
m(—xS +yE) =xM + yE, f(=xS +yE) =xF — ySF,

0 my fi 0 pP1 P2 2, 2
M = F = P = + p5 = —1.
(—ml 0 ) ’ (0 f2> ’ <P2 -p1)’ P17 P2

These results are obtained by simple calculations, and so we do not
demonstrate them. Let the basic field be the minimal possible case Z3. We
must choose the coefficients mq, f1, fo such that all non-zero matrices from
the spread set be nonsingular. Computer calculations leads to M = S and
F = £F. Hence, the spread set of matrices

xS +yE £(z2E —1tS5)
<—zS+tE —xS+yk )’ Ty 2t € 23,

gives the example which demonstrate the necessity of condition for the field
characteristic in all results of this work.

6. Conclusion

In order to study Hughes’ problem on the solvability of the full colline-
ation group of a finite non-Desarguesian semifield plane, the author consid-
ers it possible to use the obtained technical results to further investigations.
These results and the method applied will probably be useful to deter-
mine the non-abelian simple groups series which cannot be the autotopism
subgroups for finite semifield planes.
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