NHTEI'PO-INO®PEPEHIIMAJIBHBIE YPABHEHNA U
OYHKIIMOHAJIBHBIN AHAJIN3

INTEGRO-DIFFERENTIAL EQUATIONS AND
FUNCTIONAL ANALYSIS

QP‘PCTBEH‘Q
E) M3BECTU 4
§ ﬂvmv,— % Cepusa «<MaremaTuka» MoRumeroeo
g mM”M% B 2022. T. 39. C. 5161 20cyIapEmBerTOne
% [aageaafm] 3 yHusepcumema
%, fmﬁ( & OnyaiiH-q0CTyIl K XKy pHAJLY:
L\l—ll—

http://mathizv.isu.ru

Research article

YIK 51.7+519.63
MSC 45J99, 65L10
DOI https://doi.org/10.26516 /1997-7670.2022.39.51

Investigation of the Amplitude-Frequency
Response of a Dam-Type Viscoelastic Body With
Steady-State Forced Harmonic Vibrations

Sultan M. Gaynazarov', Askhad M. Polatov'™, Akhmat
M. Ikramov', Sukhbatulla I. Pulatov'

! National University of Uzbekistan, Tashkent, Republic of Uzbekistan
= asad3@yandex.ru

Abstract. The article discusses the amplitude-frequency response of a viscoelastic
body of the dam type, under steady-state forced harmonic vibrations. An important
factor is the determination of the number of frequencies and resonance peaks that arise in
the process of harmonic effect of the water body on the dam. The use of the finite element
method (FEM) for the numerical solution of dynamic problems allows, by expanding
the solution in terms of eigenmodes and frequencies, to reduce the original problem
to a system of separated linear integro-differential equations with respect to the sought
parameters of generalized functions. The process of the influence of viscoelastic properties
of the dam material on the resonance curves that arise under harmonic loads of different
frequencies at different dimensions of the foot of the dam is investigated. The analysis
of the curves of the amplitude-frequency responses of a dam-type viscoelastic body,
under steady-state forced harmonic oscillations, showed that the occurrence of resonance
peaks depends on the viscoelastic properties of the dam body and the dimensions of
the foot of the dam. The main resonance peaks occur at frequencies less than the sixth
eigenfrequency, as a result of which a further increase in the number of eigenmodes in the
expansion does not introduce any significant changes in the amplitude of the distribution
of resonance curves of the amplitude-frequency response of the dam.
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Hayunasa crarbs

I/ICCJIG,Z[OBaHI/Ie AMIIVINTYJHO-9aCTOTHbIX XapaKTEePHUCTUK
BA3KOYIIPYTOro TeJia Tulla IIJIOTUHBbI IIPU yCTAaHOBUBIIINXCA
BbBIHY2K/ICHHBIX T'apMOHMNY€CKUX KOJIeOaHMAX

C. M. TI'aiinazapos’, A. M. ITonaros'™, A. M. Ukpamos!, C. 1. ITynaros’

1 Hauponamnsupiii yHUBepcuTeT ¥Y30ekucraHna, Tamkent, Pecriybinka Y30eKucrax
= asad3@yandex.ru

Annoranus. PaccMarprBaioTcss aMIUIMTYAHO-IaCTOTHBIE XapPAKTEPUCTUKHU BSI3KOYIIPY-
rOro TeJla TUIA IJIOTUHBI IPU YCTAHOBUBIINXCS BBIHY?KJIEHHBIX TAPMOHHYECKHX KOJIe0a-
HUAX. BasKHbIM (HaKTOPOM SIBJISIETCS OIpPEesIeHNe KOJUTIECTBA IaCTOT M PE30HAHCHBIX
NIMKOB, BO3HUKAIOIIUX B IIpoIlecce TapMOHUYECKHMX BO3JEHCTBUII BOJHOIO MacCHBa Ha
mwiotuny. Vcnonbp3oBaHne MeTOa KOHEIHBIX SJIEMEHTOB JJTsT 9UCJIEHHOTO PEIIeHUs JUHA-
MUYECKHUX 3a/1a9 [T03BOJISIET [TOCPEJCTBOM PA3JIOXKEHUsI PEIIeHUs 0 COOCTBEHHBIM (hOp-
MaM M 9acTOTaM CBECTU MCXOJHYIO 3a/lady K CHCTEME Pa3/leJIeHHBIX JIMTHEHHBIX MHTErPo-
nuddepeHaIbHbIX yPaBHEHU, OTHOCUTEIBHO HCKOMBIX IIapaMeTpPOB 0600IIEHHBIX (DYHK-
umit. Vccaemnyercss mporece BAMSHUS BSI3KOYIPYTHX CBONCTB MaTepHaJa IJIOTHHBI HA
PE30HAHCHBIE KPUBBIE, BO3HUKAIOIIUX DU BO3JEHCTBUU I'apMOHHUYECKUX HArPYy30K pa3-
JIMYHOU YaCTOTHI NIPU PA3JINYHBIX pa3Mepax IMOJOMIBBI IJIOTUHBI. [IpoBeqeHHbIN anamn3
KPUBBIX aMIIATYJHO-4aCTOTHBIX XapPaKTEPUCTUK BA3KOYIPYIOro Teja TUIla IJIOTUHBI
NIPY YCTAHOBUBIIUXCS BBIHY?KJIEHHBIX I'apPMOHUYECKUX KOJIEOAHUSX IIOKA3aJ, YTO BO3-
HUKHOBEHUE DPE30HAHCHBIX IIMKOB 3aBHUCAT OT BA3KOYIPYTHX CBOUCTB Teja IJIOTUHBI U
pa3MepoB I0JI0MBLI IIOTUHBI. OCHOBHBIE DE30OHAHCHBIE IMKH IIPOUCXOIAT HIPU YACTO-
TaxX MEHBIIIX MIECTOW COOCTBEHHON YaCTOTHI, BCJIE/ICTBUE ITOTO JAJIBHENITIEE YBEINICHNE
KOJIMYECTBa COOCTBEHHBIX (DOPM B DA3JIOKEHHUU HE BHOCHUT KAKHUX-JINOO CYIIECTBEHHBIX
U3MEHEeHUN B aMIINTY/Ly PacIIpe/ie/leHusl Pe30HAHCHBIX KPUBBIX aMIIJINTYIHO-9aCTOTHBIX
XapaKTEePUCTUK IIJIOTUHBI.

KimroueBble cJioBa: JIOTUHA, BA3ZKOYIIPYTOCTh, FTADMOHMYECKHUE KOJIEOAHWS, AMILIUTYIA,
pesonancublie nuku, MK9um

BularomapuocTu: ABTOPBI BbIparXKaioT 6/1arofapHoCTh aaMuHucTpanuu HanuoHagabHoro
yHuBepcuTeTa Y30eKncrana 3a (DUHAHCOBYIO M BCECTOPOHHIOIO IOJJIEPXKKY M IIOMOIIb
B pa3paboTKe MPOrpaMMHOrO KOMILIEKCA. ABTODPBI TaKKe BBIPAXKAIOT OJIArOIaPHOCTD
npod. b. KypmaubaeBy 3a 1ieHHBIE COBETHI, JaHHBIE TPU aHAJN3€E PE3Y/IbTATOB PacUeTa.
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1. Introduction

When calculating the dynamic effect on the dam, it is necessary to deter-
mine the influence of the viscoelastic properties of the dam material on the
amplitude-frequency response. The use of the finite element method for the
numerical solution of dynamic problems allows one to reduce the original
problem to a system of separated linear integro-differential equations by
expanding the solution body on the dam.

In [9] presents a comprehensive review on different theoretical elastic
and viscoelastic foundation models in oscillatory systems. The review
covers the simplest foundation models to the most complicated one and
fully tracks the recent theories on the topic of mechanical foundations.
It is fully discussed why each theory has been developed, what limita-
tions each one contains, and which approaches have been applied to re-
move these limitations. Moreover, corresponding theories about structures
supported by such foundations are briefly reviewed. Subsequently, an
introduction to popular solution methods is presented. Finally, several
important practical applications related to the linear and nonlinear foun-
dations are reviewed. This paper provides a detailed theoretical background
and also physical understanding from different types of foundations with
applications in structural mechanics, nanosystems, bio-devices, composite
structures, and aerospace-based mechanical systems.

In [5] a fractional viscoelastic model is presented for analyzing the vibra-
tions of a completely free-supported plate, excited by supports movement.
To control the steady-state condition of the plate vibration, the lower limit
of the integral in the fractional Riemann-Liouville derivative is taken equal
to minus infinity. The Voigt viscoelastic model is used to describe the
damping effect. The governing equation for the viscoelastic plate is derived
from the Kirchhoff hypothesis. An analytical solution is proposed for the
dynamic response of a fractional viscoelastic plate excited by supports. The
effect of the order of fractional derivative and the damping coefficient on
the amplitude-frequency response of the plate is investigated.

The dampers consisting of clusters of viscoelastic particles, subjected to
vibrations are considered in [2]; the amplitude of vibrations is such that the
slip between the particles is negligible. Energy dissipation occurs mainly
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due to viscoelastic processes inside each particle and is maximized when
a standing wave is generated in the granular medium. In that article,
the medium is presented as an equivalent viscoelastic rigid body, and the
models built using standard finite element software are used to predict
their performance. Two numerical approaches were considered: one uses
a Forward Frequency Response and the other uses standard modal anal-
ysis combined with analytic expressions for energy dissipation based on a
wave equation. The performance of these prediction methods is compared
with the behavior calculated in experiments with box-type structures and
hollow-core composite pipe assemblies. For the considered systems, it was
shown that the methods suit for acceleration amplitudes almost up to the
amplitude of gravity.

In [8] dynamic model of a sandwich beam with viscoelastic coating based
on a fractional constitutive equation was developed. The fractional model
is a generalized model of sandwich beams that can be modified into integer
models. The wave propagation method was extended to analyze vibrations
of fractional sandwich beams. Further, the influence of fractional order and
size parameters on the dynamic characteristics of the sandwich beam was
investigated, and the steady-state frequency response of the sandwich beam
was calculated. The results can provide a theoretical basis for calculating
the size of sandwich beams with damping requirements.

An analysis of the dynamic behavior of constrained layer damping beams
with a thick viscoelastic layer is given in [1]. A homogenized model for the
bending stiffness is formulated using Reddy-Bickford’s quadratic shear in
each layer, and it is compared with Ross-Kerwin-Ungar classical model,
which accounts for a uniform shear deformation of a viscoelastic core. In
order to analyze the efficiency of both models, a numerical application is
performed and the results obtained are compared with the results of a
2D model using finite elements, which accounts for extension and shear
stresses and longitudinal, transverse, and rotational inertia. A fractional
derivative model, with a frequency-dependent complex modulus of elastic-
ity, characterizes the intermediate viscoelastic material. Eigenvalues and
eigenvectors are obtained using an iterative method, which permits avoiding
computational problems related to the frequency dependence of the stiffness
matrices.

A new method for the analysis of the dynamic properties of structures
with viscoelastic dampers was proposed in [4]. The method proposed for
the first time enabled analyses that take into account the influence of
temperature on the dynamic characteristics of systems with viscoelastic
dampers. The frequency-temperature accordance principle was accepted
(i.e., a thermo-rheologically simple material of dampers was assumed). The
problem was reduced to an appropriately formulated nonlinear eigenvalue
problem with parameters. The eigenvalue problem was solved using the
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homotopy method and the incremental-iterative procedure. The results of
several examples were presented and discussed in detail.

In [7], laboratory and field tests, and a numerical simulation were cond-
ucted to assess the effect of a fragment in the rock mass on the ground
vibration propagation. In order to predict vibrations in different sites under
different blasting and geological condition, the authors investigated the
differences in vibration behaviors due to the nature of blasting works, and
the difference in geological conditions. The result of a series of tests showed
that the fragments in the rock mass are related to the damping effect of soil
caused by the vibration explosion. Accurate prediction of ground vibration
can be performed taking into account the state of the fragment in the rock
mass.

In [3] the method of the solution of free vibrations problems of vis-
coelastic elements of structures built from a linear viscoelastic material
was developed for any hereditary kernels. Expressions of frequency and
damping coefficient of viscoelastic vibrations were specified and approxi-
mately obtained for the first time by Ilyyushin A. A. and his employees
by an averaging method. The method is based to an original approach
to the calculation of poles of subintegral function in Mellin’s formula for
any hereditary kernel of a relaxation, not set analytically. It opens a way
to the application of integrated Laplace transform in the solution of non-
stationary dynamic problems of a viscoelastic material with real rheological
properties.

2. Description of the method for solving the problem

A stationary dynamic problem for a dam-type body, which is acted upon
by a uniformly distributed harmonic force

P = Pysin(wot),

where Py is the amplitude of the force, the direction of which coincides
with the direction of the hydrostatic force acting on the dam in the form
of water mass pressure; wg are the oscillation frequencies set for the re-
search [6]. Applying the procedure of the finite element method to a
three-dimensional dynamic problem, we obtain a system of differential
equations of the following form [10]:

MU + KU — R*(U) = P, (2.1)

where
M — is the matrix of inertia,
K — is the stiffness matrix,
U — is the vector of nodal displacements,
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R* — is the Volterra relaxation operator for viscoelastic bodies:

RHU) = / R(t — 1)U (7)dr.
0

Initial conditions are:

U t=0 = Up; Uli—o = Vo. (2.2)

The solution to equation (2.1) is constructed in terms of its eigenmodes
and eigenfrequencies in the following form:

U=5Q(®), (2.3)

where
S — is the matrix of eigenmodes;
Q(t) = (q1,42, - - -, qm) — is the vector of the sought generalized functions.
The eigenmodes and eigenfrequencies are determined from the matrix
equation
(M —-AK)Z =0,

where A = diag(vi,ve, ..., Um).

To determine the largest eigenvalues and orthonormalized eigenvectors,
the method of iterating by the Krylov subspace using the Rayleigh-Ritz
procedure is used.

Substituting expression (2.3) into relations (2.1) and (2.2), and perform-
ing some transformations considering the orthogonality of the eigenmodes,
we obtain a system of separated ordinary differential equations with respect
to the sought g; — parameters of generalized functions:

¢
Gi(t) + OJZ-2 Qi — /R(t —71)g(T)dr | = wzzm, (2.4)
0
gi li=0 = S} Uo; Gi li=o = S} Vo, (2.5)

where

r; = SZ-TPO sin(wot),

1 — is the number of eigenfrequency,

S; — is the natural mode of the dam, corresponding to the 7 — theigen-
frequency,

R(t) - is the Rzhanitsyn relaxation kernel, R(t) = Ae Attt

A, B, o — are the parameters of viscoelastic properties of the body,
determined experimentally.

The solution to equation (2.4) is represented as:
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¢i(t) = q; sin(wot) + ¢§ cos(wot). (2.6)

Substituting relation (2.6) into equation (2.4), and solving the system
with respect to unknown coefficients, we have:

riw; [wi(1 = Re) — wf]

q = : 2.7
G201 o) — ]+ ol B =0
. —r?wfRs
=7 T (28)
[w2(1 = Re) —w]” + wiR?
where
R, = /R(T) - cos(woT)dT = A - M,
0 (62 + i)
) T .
R, = /R(T) -sin(wor)dT = A - M,
0 (82 +wj)
6 = arcsin L.
(8% +wg)

Substituting expressions (2.7) and (2.8) into relation (2.6), and then into
expression (2.3), we have:

U = A’sin(wot) + A cos(wot), (2.9)

where

AS = STQS7 A€ = STQC,

Q° and Q¢ — are the vectors of amplitudes of generalized functions.

The construction of resonance curves for different values of the forced
frequency wq in different areas of the dam is considered.

The dependence of the resonance curves on the thickness of the foot of
the dam, the viscosity of the material, and the number of eigenmodes in
the expansion is investigated by (2.3).

Computational experiments have shown that:

— resonance peaks at different points of the dam occur under the same
frequencies of the driving force and differ only in the degree of reso-
nance;

— the main resonance peaks occur at frequencies less than the sixth
eigenfrequency, as a result of which a further increase in the number of
eigenmodes in the expansion does not introduce any significant changes
in the amplitude.



58 S.M.GAYNAZAROV, A. M. POLATOV, A.M.IKRAMOV, S.I. PULATOV

Considering the above, this article presents the results of calculations
of the dam body for the midpoint at the dam head, and the number of
eigenmodes participating in the expansion is taken to be six.

3. Example of calculation

A dam considered as an example is determined by the coordinates of the
vertices of ABCDA'B'C'D’ hexagon (Fig. 1(a) shows a general view of the
dam). The coordinates of the hexagon vertices have the following values (in
meters): A (Iz/2; —20.0; 0.0), B (I»/2; 10.0; 20.0), C' (—I,/2; 10.0; —20.0),
D (—l;/2; 10.0; 20.0), A" (5.0; —100.0; 80.0), B’ (5.0; 100.0; 80.0),
C’ (—5.0; —100.0; 80.0), D’ (—5.0; 100.0; 80.0), where I, > 0 will be
defined as specific values, later.

Characteristics of the dam material are the density of a dam-type body
p = 0.2 T/m?, modulus of elasticity £ = 4.0-105 T//m? and Poisson’s ratio
v = 0.16. The computational experiment is conducted for the following
values of the width of the dam base [, = 10,20,40 m. The amplitude
of the given harmonic load on the crest of the dam is Py = 1000 T/m?.
Rzhanitsyn kernel parameters are § = 0.05 and o = 0.1. The viscosity
parameter A takes values of 0.01, 0.05 and 0.1, which correspond to low,
medium and high viscosity values. The dam is fixed along the sides and
base.

The values of eigenfrequencies of the dam obtained in the research for
various widths of the base are given in the table 1.

Table 1

Values of eigenfrequencies

lo\w w1 w2 w3 wa ws we
10 27.030 | 63.632 | 83.963 | 114.41 | 118.02 | 118.05
20 35.238 | 72.974 | 104.27 | 124.52 | 125.38 | 128.35
40 52.883 | 92.502 | 131.22 | 131.32 | 135.44 | 149.54

Figs. 1(b)-(d) shows the amplitude-frequency response for various values
of the base thickness I, and the viscosity parameter A = 0.01 (solid lines),
0.05 (dash-dotted lines) and 0.1 (dashed lines) and for dimensions of the
dam base thickness: I, = 10m (Fig. 1(b)), I =20m (Fig. 1(c)) and
l; =40m (Fig. 1(d)). The horizontal axis shows the values of the fre-
quencies of harmonic vibrations wg, and the vertical axis shows the values
of the maximum displacements (amplitudes).

Analysis of the calculation results showed that not all eigenfrequencies
create peak resonances, which is explained by the orthogonality of the
external load to the corresponding modes. At low viscosity (Fig. 1 (b)), ad-
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ditional resonance peaks appear on the resonance curve, which correspond
to the working modes. With an increase in viscosity (Fig. 1 (c)), these
resonance peaks significantly decrease and shift to the left, that is, they
appear at a frequency lower than the eigenfrequency. At higher viscosity
(Fig. 1 (d)), the resonance curves change their pattern dramatically. A
single resonance peak remains on the curve, which corresponds to the first
eigenfrequency. With an increase in the dimension of the dam foot thick-
ness, the amplitude of the resonance peaks decreases, and their number
changes, which is related to the redistribution of eigenmodes.

L] n a & m m 13 O e 1o

(a) (b)

Figure 1. General view and curves of the amplitude-frequency response of the dam

4. Conclusions

The analysis of the curves of the amplitude-frequency responses of a
dam-type viscoelastic body under steady-state forced harmonic oscillations,
showed that the occurrence of resonance peaks depends on the viscoelastic
properties of the dam body and the dimensions of the foot of the dam.
The main resonance peaks occur at frequencies less than the sixth eigenfre-
quency, as a result of which a further increase in the number of eigenmodes
in the expansion does not introduce any significant changes in the amplitude
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of the distribution of resonance curves of the amplitude-frequency response
of the dam.

10.
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