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Abstract. The paper deals with a second-order nonlinear parabolic system that de-
scribes heat and mass transfer in a binary liquid mixture. The nature of nonlinearity is
such that the system has a trivial solution where its parabolic type degenerates. This
circumstance allows us to consider a class of solutions having the form of diffusion waves
propagating over a zero background with a finite velocity. We focus on two spatially
symmetric cases when one of the two independent variables is time, and the second is the
distance to a certain point or line. The existence and uniqueness theorem of the diffusion
wave-type solution with analytical components is proved. The solution is constructed as
a power series with recursively determined coefficients, which convergence is proved by
the majorant method. In one particular case, we reduce the considered problem to the
Cauchy problem for a system of ordinary differential equations that inherits all the specific
features of the original one. We present the form of exact solutions for exponential and
power fronts. Thus, we extend the results previously obtained for a nonlinear parabolic
reaction-diffusion system in the plane-symmetric form to more general cylindrical and
spherical symmetry cases. Parabolic equations and systems often underlie population
dynamics models. Such modeling allows one to determine the properties of populations
and predict changes in population size. The results obtained, in particular, may be useful
for mathematical modeling of the population dynamics of Baikal microorganisms.
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1. Introduction

We consider the system of nonlinear second-order parabolic equations
that describes heat and mass transfer in a binary liquid mixture [2]

{ T, = A[®(T)] +T(T, S),

(1.1)
Sy = A[U(S)] + A(S, T).

In literature, system (1.1), having the form

(1.2)

T, = div [®'(T)VT] + I'(T, 5),
Sy = div [/ (S)VS] + A(S,T),

is also used to describe various reaction-diffusion processes [2;4]. The equa-
tions included in system (1.2) are widely presented in the scientific literature
and allow to describe the mechanisms of radiant thermal conductivity [13],
filtration of liquids and gases [16], migration of biological populations [11].

Note that the case of power functions is most often found in the literature

' (T)=T°, V(S)=S5° 0,6 >0 — const. (1.3)

It provides a good approximation to real processes with a comparative
simplicity of research. Such systems are often applied in chemical kinetics
to model the reaction-diffusion processes [4;17].

Let I'(0,0) = A(0,0) = 0. It can be easily seen that system (1.3) has the
trivial solution 7= S = 0. On the other hand, it follows from (1.3) that
®’'(0) = ¥/(0) = 0, i.e. the parabolic type of the system degenerates at
T =S = 0. These facts allow us to consider a class of solutions having the
form of diffusion waves propagating over a zero background with a finite
velocity. For system 1.2), (1.3), such a wave consists of two solutions: the
trivial and the perturbed (7,5 > 0) continuously joined along a certain
line called the wave front. Previously, such solutions were studied only
for single equations. We emphasize here the classic monograph by A. A.
Samarsky with co-authors [13], as well as the works of A. F. Sidorov and his
followers [3;14]. These papers propose some formulations of boundary value
problems on the initiation of filtration waves, as well as effective methods for
constructing solutions to these problems in the class of analytical functions.
Among them, the method of special series [3] plays a significant role, which
is relatively easy to use and allows to eliminate singularity.

Our study of the analytical solvability of problems on the initiation of
diffusion (heat, filtration) waves for the nonlinear heat (filtration) equation
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ANALYTICAL DIFFUSION WAVE-TYPE SOLUTIONS 33

has a long history. Thus, we considered the case of the plane [6;10], cylin-
drical, and spherical symmetry [5;7]. To construct solutions, we used the
power series, the convergence of which was proved by the majorant method.

A separate issue is constructing an exact solution to nonlinear equa-
tions of mathematical physics with predefined properties (ansatz). Such
solutions, for example, can be useful for the verification of numerical calcu-
lations. Today there are many known exact solutions to the equations and
systems under consideration [12;15], but they, as a rule, are not diffusion
waves. As far as we know, similar solutions can be found only in the
monograph [13]. Exact solutions having the heat (diffusion) waves type
are also constructed in our papers [5;9]. We consider cases with symme-
tries [8] because then the original partial differential equation is reduced to
an ordinary differential equation.

In [6], for the first time, the construction and study of diffusion waves
type solutions for systems having the form (1.2), (1.3) are carried out.
This paper continues the study and generalizes the results to cylindrical
and spherical symmetry cases. Here we prove the existence and uniqueness
theorem of a diffusion waves type solution with analytical components.
In one particular case, we reduce the problem considered to the Cauchy
problem for a system of ordinary differential equations that inherits all the
specific features of the original formulation. The forms of exact solutions
for exponential and power-law fronts are found.

2. Formulation

Using the standard [14] substitution u = 7%, v = S°, system (1.2), (1.3)
can be brought to the more convenient form

{ u = uAu+ L(Vu)? + F(u,v),

2.1
vy = vAV + (V)% + G(v, ), @1)

where F'(u,v) = Uf(ui,v%)ul_l/",G(v,u) = 5A(v%,u§)vl_1/5. Here and
further we assume that F'(0,0) = G(0,0) = 0 and F,G are sufficiently
smooth . In the presence of the spatial symmetries, (2.1) takes the form

{ Ut = Ullgy + %ui + Luu, + F(u,v), (22)

UV = VUgp + %vg + Lvvg + G (v, u).

The parameter u takes the values 0, 1,2, which corresponds to plane, cylin-
drical and spherical symmetry. Then x is the distance to some plane, a
straight line, and a point, respectively.

Let us consider system (2.2) with the boundary conditions

u(t, )| p=a(ty = V(t, T)|z=a() = 0 (2.3)
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A curve z = a(t) specifies a front of a diffusion wave, where a(t) is a
sufficiently smooth function and obeys inequalities a(0) > 0,a’(0) # 0.
The plane-symmetric case of (2.2), (2.3) was considered in [6], but without
restrictions on a(0).

3. Main theorem

Here and further, an analytical function at a point means a function
that coincides with its Taylor expansion in some neighborhood.

Theorem 1. Let functions F(u,v), G(v,u), and a(t) are analytical if
u=v=0 and t =0, respectively, and one of the following relations hold:
a) um(t7 a(t))v Vg (tv a(t)) # 0;
b) ux(t,a(t)),vs(t,a(t)) =0.
Then problem (2.2), (2.3) has a unique analytical solution for t = 0, x =
a(0), which is nontrivial for the case a) and trivial for the case b).

Remark 1. The pointed nontrivial and trivial solutions, joining at the
front z = a(t), form a diffusion wave. Thus, the theorem states that
problem (2.2), (2.3) has a unique piecewise analytical solution of diffusion
waves type that propagates over a zero background with a finite velocity.

Proof. We prove the theorem in two stages. At the first stage, we construct
a solution to the problem in the form of the Taylor series with respect
to powers of x — a(t). At the second stage, the local convergence of the
constructed series is proved by the majorant method.

First, we simplify the boundary conditions in problem (2.2), (2.3) by
introducing a new variable z = x — a(t) instead of z. The problem takes
the form

U — @'Uy = UL,y + %ug + ;”auuz + F(u,v), 3.1)
v — a'v, = vy, + %vg + Ziavvz + G(v,u), .
u(t, 2)|z=0 = v(t, 2)|s=0 = 0. (3.2)

Let us construct the solution to (3.1), (3.2) in the form of Taylor series
u(t,z) = Zun(t)a, o(t, 2) = Zvn(t)a. (3.3)
n=0 n=0

It follows from boundary condition (3.2) that ug = vg = 0. Assuming in
(3.1) z =0, we obtain the system
1 1
—d'uy = ~u}, —dv; = vl (3.4)
o

0
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System (3.4) has four solutions. It is easy to see that uy,v; = 0, corre-
sponding to condition b) of the theorem, leads to a trivial solution to the
problem. So, we consider the case

uy = —od, v =—dd, (3.5)

that correcponds to condition a). The cases u; = 0, v1 # 0 and u; # 0,
v1 = 0 require separate consideration, which is beyond the scope of the
theorem. We denote
O"F(u,v)

0z"
To find the coefficients ug, v, we differentiate the equations of (3.1) with
respect to z and set z = 0. Then we obtain the formulas

G, - J"G(v,u)

F =
" 2=0 Ozn

, n=0,1,2...
2=0

1 N2 2

w= g (N R o) (30
1 / 252

=175 (“(“a) LGy + 6a”> . (3.7)

The rest coefficients of series (3.4) are determined by n-fold differentiation
of (3.1). Applying the operator 9"[.]/0z"|,—=0, n > 2 to the first equation,
we arrive to

n n
1
I I k k
Uy — A Upg1 = § Crugni2—k + - E Crtlky1Un 11—+
k=0 k=0

k
(n—k)!
—i—uZC’k an+1 A ) (Z C,iuluk+1l> + F,. (38)

Expressing the coefﬁment Un+1 from (3.8), we get the formula

n

1 N P
Upg1 = m [kZ_Q (C’n + gCn > UgUp okt

k
(n—k)!
+MZ C'k an+1 - ) (Z C]lcululc—kl—l) + F, — u;}, n>2. (3.9)

=0
A sunllar formula can be derived by differentiating the second equation:

n

_ 1 koL k1
Un+1 = a/(1+ nd) [kZQ <Cn + 5Cn > Vg Uny2—kt

nk

n k
(_
o Ch a,n+1 . E Clvgvpsrg +Gn—u,’1}, n>2. (3.10)
k=0 =0
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Thus, we obtain that the coefficients of series (3.3) are determined
uniquely by the formulas uwy = v = 0, (3.5)-(3.7), (3.9), (3.10). This
completes the first stage of the proof.

The proof of convergence is carried out by the majorant method us-
ing the Cauchy-Kovalevskaya theorem. First, we perform the necessary
preparatory transformations of the original problem, and then we construct
the majorant problem.

Before constructing the majorant problem, we make the following substi-
tution in (3.1), (3.2) u(t, z) = zu1(t)+22U(t, 2),v(t, 2) = zv1(t) + 22V (t, 2),
which is a partial Taylor expansion of the unknown functions (3.3). Note
that condition (3.2) is satisfied automatically. The first equation of (3.1)
takes the form

uyz + 22Uy — d (ug + 22U + 2°U,) =

1
= (uyz + 2°U)(2U + 42U, + 22U..) + —(u1 + 22U + 22U, )%+
o

+ (w12 + 22U)(u1 + 22U + 2%U,) + F(u1z + 22U, v12 + 2°V). (3.11)

z+a

After collecting the terms and dividing by z, equation (3.11) becomes

uy 42U — d' (2U + 2U,) =

2
= (w1 +20)(2U + 42U, + 22Us) + ~w (2U + 2U2) + §(2U + UL+

I
z+a

Since a(0) # 0, Fy = F(0,0) = 0 and the functions 1/(z +a), F(uiz +
22U, v1z + 22V are analytical, then the following expansions are valid

1 — (-1) 1 2 2
z—l—a:Z eS| 2" ZF(ulz—i-z Uviz4+2°V)= ZF ZF

They help us to bring (3.11) to the equation

1 1
2U <1 + ) + <4+ > 2U, + 22U, =
g g

= foO)+2f1(t, U, U, V)+22 fo(t, U, V,U,)+ 22 f3(t, 2, U, V, U, Us.), (3.13)

where fo, f1, f2, f3 are known analytical functions of their variables. We
don’t present them here due to their bulkiness.
The second equation of (3.1) is transformed similarly:

1 1
2V<1+6>+<4+6>2VZ+22VZZ=
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= go(t) +2g1(, V, Vi, U) + 2%ga(t, VU, Vo) + 2°g3(t, 2, V,U, V2, Vzz). (3.14)

Here gg, g1, g2, g3 also known analytical functions.
Thus, problem (3.1), (3.2) is reduced to two equations (3.13) and (3.14).
The solutions to the equations can be constructed in the form of Taylor

series -
2" > 2"
=y Un(t)m, Vit,z) =) Vn(t)m. (3.15)
n=0 n=0

The coefficients of (3.15) are determined according to the already known
procedure by the formulas

:M V_LU) U fi(t, Uo, Ug, Vo)

21+ 1) P2+ Ly TN 3@+l
o o (t, Vo, Vi Uo) - 8h Z:0+f2 =y, & 0T
32+1) 7 23+3) 28+3)
U, = nang:g o +n(n — l)an%:f_é? Z:0+
+n(n—1)(n -~ ”“”ﬁ =0 T oA+t +13,>n +n(n—1)°
v, = nﬁna;;l_gll =18, ;n E s
+n(n—1)(n — >5n 9 933 2=0 Bn = 2(1 + %) + (4 +1(1§)n +n(n—1)

where n > 3. Since all these coefficients, as well as the functions f;, g;,
i =1,2,3, are analytical, it is possible to construct majorants for them.
If the majorant estimates

Uo(t), Vo(t) < Wo(t); Ui(t), Vi(t) < Wa(t);
HEUULV), a1V, Ve, U) < ha (8, W, Wy, W)
F2(t, U,V Uz), g2, U, V. Uz) < ha(t, W, W, W2);
f3(t,2,U,V, U, Usz), g3(t, 2, U, V, U, Uzz) < hg(t, 2, W, W, W, W)
hold, then the solution to the problem
W, = Ot W, Wy, W) + ha(t, W, W, W) + zhs(t, z, W,W, W, W),

0= (3.16)
W(t, Z)|z:0 = Wo(t), Wz(t, Z)|z:0 = Wl(t) (317)
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majorizes the solution to problem (3.14), (3.15). This can be verified by
constructing the solution to (3.16), (3.17) in the form of the Taylor series

Wit =3 Wn(t)%.
n=0

The obtained coefficients satisfy the majorant estimates

of1
HL + f2
0z 8h1
U, = z=0 z=0 < - h =W ’
2 23+ 1) 97 lomo T 2lsg =2
991
== + 92
0z |__ _ 8h1
Vo = z=0 z=0 ~el h =W
2 23+ L) B lmo Pl T
A
Un = na 51
na 82’"_1 z=0+
8n72f2 8n73f3
+n(n — 1)0&nW 0 —+ TL(TL — 1)(n — 2)(%”% 0 <
anflhl 8n72h2 8n73h3
-2 = Wna Z 37
< 82”71 2=0 8z”*2 z=0 + (n ) 82"73 z2=0 "
an—lg1
Vi = nbn Ozn—1 z:o+
" 2gy 0" 3gs
=08 2| - 2m | <
021 =0 0z 2 |,=0 9zn=3 l,—0 " =

It follows that (3.16), (3.17) is majorant problem for (3.1), (3.2). Next,
we reduce (3.16), (3.17) to a Kovalevskaya-type problem. To do this, we
differentiate equation (3.16) by z, resolve it with respect to W, and add
the third boundary condition W, (t,0) = Wa(t). To avoid confusion in de-
termining with respect to which variable the differentiation was performed,
we use the notation hs = hs(t,y1, Y2, Y3, y4,¥5). Problem (3.16), (3.17)
takes the form

1 0?hy  Ohs
W, = - —+h
1—23'13(8% + 0z + et
8h3 8h3 0h3 ahB
tz—— 4 2—W,+2—W,+2—W,, ), 3.18
31/1 83/2 8 Y3 (9 Y4 ) ( )

W(t, Z)‘Z:Q = W()( ), Wz(t,z)|2:0 = Wl( ), sz(t, Z)’z:[) = Wg(t). (319)
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Now we have problem (3.18), (3.19) of the Kovalevskaya type with ana-
lytical input data. By the Cauchy-Kovalevskaya theorem, we obtain that
series (3.15) have a non-zero convergence radius. Thus, the second stage of
the proof is completed, and the theorem is proved. O

Remark 2. A counterexample constructed in [6] shows that if both
conditions of this theorem are violated, the original problem may or may
not have an analytical solution. In the latter case, the radii of convergence
of the constructed series can be equal to zero.

4. Reduction to the Cauchy problem for the ODEs

For constructing exact solutions of systems of nonlinear partial differen-
tial equations, it becomes necessary to reduce them to systems of ordinary
differential equations (see, for example, [6;15]). In this section, a similar
reduction is performed for problem (3.1), (3.2) with the following functions
F and G:

F(u,v) = v 8uE, G(v,u) = pu’" ",

where o, B €R, v €N, §,neNU{0}, {n<n.
The problem in this case has the form

#ta (4.1)

/ 1 _
vy — a'v, = Vv, + 3113 + Ziavvz + Bur ",

{ U — a'uy = Uy, + %uz + v, + avY U8,

u(t, z)| =0 = v(t, 2)|2=0 = 0. (4.2)

We also assume that u,(¢,0),v,(t,0) #Z 0. In this case, the problem sat-
isfies the conditions of the proved theorem and has an analytical solution
representable in the form of the Taylor series (3.3).

Reduction (4.1), (4.2) to the Cauchy problem for a system of ordinary
differential equations is performed in accordance with the technique pro-
posed in [6], where it was described for p = & = n = 0. The essence of
this technique is to transform the original problem into such a form which
allows the separation of variables.

Let us introduce a new variable s = —z/a. We get the problem
1-s)a’ _
g + %us = Hutss + —pu? — 2y Wus + o’ Suf, (43)
1-s)a’ _ .
Vs + ( ;)a Vg = a%vvss + #vz - a2(f—s) vug + Bur ",

u(t, 8)|s=0 = v(t, s)|s=0 = 0. (4.4)
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Then we change unknown functions in problem (4.3), (4.4) as u =
a®(t)p(t,s), v = a¥(t)q(t,s). The parameter §# = const and the function
a(t) will be specified further. The problem takes the form

( aept+9a9 1 /p+ (1 78) 9—1a/p8 —

== CL29 2pp55 + 1 29 2p§ _sa2972pp5 + Ctaefyqu*gp&’
(4.5)
aeqt + Ga?—1 ’q + (1 — s) 0— 1a/qs =
[ = a29_2qq55 +3 1q20- 2q§ - Tsaze_ qqs + /8@9“/1)7—71(]177
p(t; s)ls=0 = q(t, s)|s=0 = 0. (4.6)

The right-hand side of (4.5) can be significantly simplified. We set 6 =
2/(2 —7), v # 2 and divide both equations by a?’=2. So, we obtain the

System
2—2vy

a2 py+ %aﬁa'p +(1- s)aﬁa/ps =

= ppss + 2p2 — Lpps + ag’ S,
(4.7)
2—2v

a7 q + %aﬁa’q—i- (1- s)aﬁa/qS =

= qqss + 507 — 725945 + Bp' g7,

One can see that the functions a and a’ are present only in the left-hand

side of (4.7). Moreover, the term a7 a/ can be made constant by choosing
the function a(t). It is possible if

5
~—5 ./
av—2a =c¢, ¢c#0 — const.

Therefore, a(t) = cie® for v = 1; and a(t) = (c1t + )22 for
v =3
System (4.7) in this case takes the form

= 2 _ _ 1,2 p Y€t
a7 p+ 2_701? + (1 = s)eps = ppss + 505 — 105PPs + aq" ™ p", (48)
2—2y .
a7 g+ g2seq + (1= s)egs = qass + 545 — 125495 + B g7,

We show now that in problem (4.8), (4.6), the analytical functions p and
q don’t depend on the variable ¢, thereby completing its reduction to the
Cauchy problem for the ODEs. To do this, we construct a solution in the
form of Taylor series

an 'a q t 5 an ‘7 (49)
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According to the proved theorem, series (4.9) have nonzero convergence
radii. Following the well-known procedure, we obtain the formulas for the
coefficients of the series:

po=¢qo =0, p1 = co, q1 = cd,

1 Ao ~ 1 25 ~
P2 = < 1 +MC2U2—F1>, q2= ( ( 7 +H0252—G1>,

c(l+o)\2—7 c(1+6)\2—~
1 2229 2¢ - 1 .
Pnt+1= m [plna 2= +rpn—0npn—z (Cﬁ + gcﬁ 1>pkpn+2k+
v k=2
n k '
n! ~
Y Y (e = puPPrer=t = Fn:| ;
k=0 1=0 o
1 ’ 2—2y 2C " k k—
Qnt1= m [qna R 5 ,YQn—C”CIn—; C, + 5Cn QkGn+2—k+
n k _
+u Z w‘]leJrl 1—G } ;
k=0 l=0
7 _ 0"(aq" P & _ o BrTe")
" Os™ s=0" os™ s=0

These formulas show that all the coefficients of the series (4.9) do not
depend on the variable ¢ and are constants. Hence, p = p(s), ¢ = ¢(s), and
problem (4.8), (4.6) is the Cauchy problem for ODEs

" + L) + Lspp’ + (s — 1)y +5 —2-cp+ ag'¢pt =0,
q9q" + 5(4')° + E7ad + (s = V)ed' + F2q5cq + Bp7 g7 = 0,

p(0) = q(0) =0, p'(0) =co, ¢'(0) =cd.
The given below theorem follows from the above reasoning.

Theorem 2. Let ¢1,c2,¢3 € R, ¢1,¢3 # 0, co2 > 0. Then problem (4.1),
(4.2) for v # 2 can be reduced to the Cauchy problem for a system of
ordinary differential equations for a) a(t) = cie®t, if v = 1; b) a(t) =
(crt 4 )=/ 7=2) if > 3

In this case, the solution to problem (4.1), (4.2) can be found as

u(t, 2) = a¥ (t)p(—2), o(t, z) = a7 (£)g(—2),

where a(t) = ¢1e®! for v = 1, a(t) = (c1t + ¢2)=2/7=2) for v € N,y > 3.
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Remark 3. We don’t discuss the case v = 2 since for u # 0, the technique
used in the proof of Theorem 2 does not allow the reduction of problem
(4.3), (4.4) to the Cauchy problem for ODEs. If v = 2, y = 0, then, as
shown in [6], the reduction is possible for £ = n = 0. It is easy to show that
such a reduction is also possible in a somewhat more general case, when &
and 7 take the values 0, 1, 2.

5. Conclusion

Summing up the research, we note that the main result is the extending
the results previously obtained for a nonlinear parabolic reaction-diffusion
system [6] in the plane-symmetric form to more general cylindrical and
spherical symmetry cases. It is not automatic expansion, which, in par-
ticular, is corroborated by the fact that not all previously found solutions
can be generalized. We also point out that both theorems formulated and
all the transformations performed are valid for any p > 0. Moreover, in
principle, you can take two different p; > 0 and pg > 0, it does not matter
from a mathematical point of view. However, the physical meaning of
such a generalization is not obvious. The singular parabolic equations and
systems we consider, along with hyperbolic ones, often underlie population
dynamics models [1;11]. Such modeling allows one to determine the prop-
erties of populations and predict changes in population size. The results
obtained, in particular, may be useful for mathematical modeling of the
population dynamics of Baikal microorganisms.

Further research in this direction can be associated with studying the ini-
tiation of a diffusion wave by given boundary conditions for the considered
system. Such a problem is, in a certain sense, more natural. However, as the
history of studying such issues in the scientific school of A. F. Sidorov [14]
shows, it is much more difficult from a mathematical point of view.
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Ananutnydeckue penieHUs HeJIMHEHOW mapaboIndecKoii
cucrembl, nmeroniue tun ANd@y3MOHHON BOJIHBI, ITPU HAJIN-
YUY UJINHIPUYIECKON 1 cheprudecKoil CuMMeTpun

A.JI. Kazakos!?, II. A. Kysueros!

Y Hnemumym dunamuky cucmem u meopuu ynpasiernus um. B. M. Mampocosa
CO PAH, Upxymcex, Poccutickas Dedepayus

2 Unemumym mawunosedenus YpO PAH, Examepunbype, Poccutickas Pedepa-
YUA

Amnboranus.  PaccmarpuBaercs cucreMa HeJTMHEHHBIX 1apabo/IMuecKuX ypaBHEHU
BTOPOTO TOPSIIKA, OMUCHIBAIONIAS TEILIOMACCOIIEPEHOC B OMHAPHON KuaKoit cmecu. Cre-
nuduKa HeJTMHEHOCTH TAKOBA, YTO CUCTEMA UMEET TPUBUAJIBLHOE PEIIEHNE, Ha KOTOPOM €€
mapaboIMIeCKHil TUI BRIpOXKaeTcs. Jlannoe 06CToaTeIbCTBO TTO3BOJISIET PACCMATPUBATD
KJIacc pereHuit Tuna aud@y3MOHHBIX BOJIH, PACIPOCTPAHSIIONINXCS MO0 HYJIEBOMY (DOHY
C KOHEYHOI CKOpOCThIO. B pabore 0CHOBHOE BHUMAHUE YEJIEHO JBYM IIPOCTPAHCTBEHHO-
CAMMETPUYHBIM CJIy9IasiM, KOTJA OJHA U3 JBYX HE3aBUCHUMBIX MEPEMEHHBIX €CTh BPEMs I,
a BTOpas — PaCCTOsSIHME JI0 HEKOTOPON ToukM wiau mpsiMoii. JlokazaHna Teopema cyiie-
CTBOBaHUS U €JUHCTBEHHOCTH PEITeHUst TUMA I PY3UOHHOM BOJHBI C AHATUTIHIECKIMHI
COCTaBJIAIONMMY. PellieHne CTpOUTCsl B BUJE CTEIEHHOI'O Psifia C PEKYPPEHTHO OIpejie-
JsieMbIMu KOadpurmentamu. CXOIUMOCTD PAJIOB JIOKA3BIBAETCST METOJIOM MaXKOpPaHT. B
OJIHOM YaCTHOM CJIydae IPOBeJIeHA PEeJyKIMsl PAacCMaTpUBaeMoOil 3aia4dn K 3ajade Ko-
A JJIsI CUCTEMBI OOBIKHOBEHHBIX Mu(pDEPEeHITNATBHBIX yPABHEHUN, HACIEIYIOMEH BCe
crienuuIeckue 0COGEHHOCTH MCXOHOM. Brimucana ¢dpopMa TOYHBIX pEIIEeHUil MpU IKC-
TIOHEHITHAJIBHOM U CTeIeHHOM (poHTax. TakmM 06pa30M, yIaa0Ch PACIPOCTPAHUTH pPe-
3yJIbTATHI, paHee MOJIyUeHHbIE JJIsi HeJIMHEHHOW mapabOoMdeCcKol CUCTEMbBI «PEaKIUs —
nuddy3usd» B IMJIOCKOCUMMETPUIHOM BHJIE, Ha OoJiee obIpe CIydau MUJIMHIPUIECKON 1
cdepuyeckoit cummerpun. [lapabondeckre ypaBHEHUS U CHCTEMbBI YaCTO JIEXKAT B OCHOBE
MojieJIell TIOMYJISIMOHHON JJMHAMUKY. TaKoe MOJIeJIMPOBAHIE IO3BOJISIET BbISIBJISTH CBOM-
CTBa TIOMYJISIIAN U TPOTHO3UPOBATH U3MEHEHNE JHCJIEeHHOCTH. [losrydeHHbIe pe3yIbTaThl,
B YaCTHOCTH, MOI'YT ObITh MHTEPECHBI C TOYKM 3PEHUSI MATEMaTUIECKOTO MOJIEJIMPOBAHS
TOMYJISATIMOHHON TUHAMUAKY OalKaIbCKUX MUKDPOOPTAHM3MOB.

KiroueBsblie ciioBa: napaboJsiniecKue ypaBHEHUs C YACTHBIMU IPOU3BOJHBIMU, aHA-
JINTAYECKOE pertene, nuddy3noHHas BOJTHA, TEOPEMA CYIIECTBOBAHIS, TOYHOE PEIIeHNUE.
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