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The Soliton Solutions for the Nonlinear Schrodinger
Equation with Self-consistent Source
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Abstract. In this paper by using Hirota’s method, the one and two soliton solutions of
nonlinear Schréodinger equation with self-consistent source are studied. We have shown
the evolution of the one and two soliton solutions in detail by using graphics.
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1. Introduction

Integrable nonlinear evolution equations have various applications in
many fields. It is known that the existence of multi-soliton solutions is an
important feature of integrable nonlinear evolution equations, which play
a main role in science. They describe nonlinear waves and have important
applications in solid state physics, plasma physics and etc.

The nonlinear Schrodinger equation with self-consistent source (nlSES
CS) describes the soliton propagation in a medium with both resonant
and nonresonant nonlinearities [10]. It is also indicated as the nonlinear
interaction of high-frequency electrostatic waves with ion acoustic waves
in plasma [1]. Soliton equations with self-consistent source have important
physical applications. Therefore, it is always interesting to find its soliton
solutions. In 1971, Hirota [3] proposed the Hirota direct method for the
Korteweg-de Vries (KdV) equation. Soliton equations with self-consistent
source (SESCS) were discussed in [5;7;8;9]. In recent years, extensive re-
search has been conducted on SESCS using the Hirota method [2;14;15;16].
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Apart from that, other methods exist to find solutions of SESCS, such as in-
verse scattering method and the special treatments of the singularity in the
evolution of eigenfunctions [6;11;12], the binary Darboux transformations
for the KdV hierarchies with self-consistent sources have been proposed
[13].

Usually one-soliton and two-soliton solutions are found using the Hirota
method and the next step the Wronskian technique is used for N-soliton
solutions. Soliton solutions can be represented by Wronski determinant. In
this work, we study one-soliton and two-soliton solutions of the nlSESCS
through Hirota’s method.

We consider the integration of the following system of equations

N
iut+2|u|2u+umm = 21’2(@%3‘ _@%j)7 (1'1)
j=1
Pljx = _igj(PQj + uP1y, (12)
P25, = 1€p2; — UP1j, J=12,..N,
where the bar means complex conjugation and &;, j = 1,2, ..., N are the

eigenvalues.

We assume that the solution u(z,t) of the system (1.1)-(1.2) exists pos-
sessing the required smoothness and tends to its limits sufficiently rapidly
as |x| — oo, i.e., for all ¢ > 0 satisfies the condition

2

/O (14 |x)\u(x,t)|dm+/oo 3

- k=1

8’%(:5‘,75)‘

As shown in [4], under the condition shown below the system of equations
(1.2) has a finite number of eigenvalues. In general, these eigenvalues can
be multiples. Here, we assume that all the eigenvalues are simple and
their numbers are equal to N. We also assume that the eigenfunctions

o, = ((Plj,SDQj)T corresponding to this eigenvalues satisfy the following
normalizing conditions
o

/ p1jp2dx = B3 (1), 5 =1,2,...,N. (1.4)
—0o

Here B;(t), j =1,2,...,N are given and the continuous functions of ¢t.

2. Bilinear form for the nlISESCS
We will find the solition solution of the nlISESCS by using of Hirota’s
method. With the help of the dependent variable transformations

g Dj hj .
u==, p1j=—, po;=—, j=12,...,N 2.1)
GRS Al (



86 A.A. REYIMBERGANOV, I. D. RAKHIMOV

the system (1.1)-(1.2) can be transformed into the bilinear forms

N
(iDi+ D3)g- f =2i Yy (p; — B3), (2:2)
7=1
Dif-f=2g-3, (2.3)
Dypj - f = —i&p; f + ghy,
{ D.hj - f =&h;f — gpj, 24)

where g and h are the complex conjugation of the functions ¢ and h,
respectively and Hirota’s bilinear operators D; and D, are defined by

0 oN\N" [0 o\"
R G ) B € ) I C s s
(2.5)

Here, the subscripts of the functions f and g define the order of the partial
derivatives with respect to x and t.

Equations (2.2)-(2.4) can be solved by introducing the following power
series expansions for f, g, p; and h;:

F=14+ 20 434 @4 (2.6)

9=x9V +x*¢? + ..., (2.7)

pi = xp + P+ (2.8)

hy=hl", (2.9)

where x is a formal expansion parameter. Substituting Eqgs. (2.6)-(2.9)

into Egs.(2.2)-(2.4) and equating coefficients of the same powers of x to
zero can yield the recursion relation for f*), ¢(*) p§-k) and hg.l), k=1,2,..

3. One-soliton solution

We will give the analytical expression of one-soliton solution (i.e. in the
case N = 1) of the system (1.1)-(1.2). According to In the known Hirota’s
method, we consider for the one-soliton solution of nlISESCS in the form
below

g=xg", f=1+x2f0.
Using the definition (2.5) the above (2.3) equation can be expressed in de-

tails. Substituting these expressions into (2.3) and equating the coefficients
of the same powers of x, we have

f = gWgh), (3.1)
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2
80 = (1) =o. (3:2)
If we take
g =em, (3:3)
then
f(l) — Mtmtan (3.4)

satisfies equations (3.1) and (3.2). Here, 71 = kiz + 71(t) and a1 =
In m, where k; is constant and 7 (¢) is an arbitrary function of t.
The next step is to find functions p; and hy in case when one-soliton
solution are
p1= xpgl), hy = hg-l)-
Based on the above, we collect coefficients of the same power in y according
to the expression (2.4) and we get

P = —ieipl + gOnY, (3.5)

P FO = piV D = —igyp{ f 0 (3.6)
Using expressions (3.4), (3.3) and by solving (3.5) and (3.6), we have

pgl) _ 6(k1+151—i£1)z+91(t)’

] 3.7
WY = (ky + iy )eFrmi€nat (- 0 31

)

where €27 is an arbitrary function of t.
Using expressions (3.4), (3.3) and (3.7), we can rewrite the functions f,
g, p1 and hq in the following form:

f =1+ 8771+772+a11’

g =e",
L — kiR —ig)a+ () (3.8)
hy =(k1 + ]2;1)e(El—ifl)x+Ql(t)—W1(t).

Substituting these expressions into (2.2), we can assure that the functions
Q1(t), 71 (t) and the constant k; satisfy the following conditions

(1(1))s = —22O=2nO-O=an1 4 5.2

ky = —2i&;. (3.9)

Also, using transformations (2.1) and conditions (1.4), we obtain

u(t) = nBi(0) + (1 (0) + an) + (1), (3.10)
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Using expression (3.10) and solving the differential equation (3.9), we get
the following:

() = —4it — 2 /O B2(7)dr + 7(0). (3.11)

Thus, taking into account (2.1), (3.8), (3.10) and (3.11) we can write the
one-soliton solution of nISESCS in the following form

e—2i€1a+m (t)
v 1+ e(*2’i£1+2i£1)x+fyl(t)+7yl(t)+all ) (312)

e(—2i€1+i€1)z+y1 () +71(t) +a11

é11 = Pi(t)

1+ e(—2i&142i&1 ) z+1 (1) +71 (t)+a11

(—2i&; + 2i&; etz +an
1+ e(=2i&1+2i€1)z+71 (1) +71 () +a11 |

$21 = P1(t) 1

The following figure shows one-soliton solution of the nISESCS.

HON W s

10

Figure 1. a) real part b) intensity profiles of the one-soliton solution (3.12) for
& =14,7(0)=0, Bi(t) = 3.

4. Two-soliton solution

In this section, we find two-soliton solution of nISESCS (i.e. in the case
N = 2). We take the functions f and g in the following form

9=xgW +x%¢?, f=14+2f0 4@,
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By applying the same previous procedure, we obtain the set of equations
from Eq. (2.3) corresponding to the different power of x

f = Mg, (4.1)
FO 4+ fO @ — (f0)2 = gWg@ 4 )50, (4.2)
FOFE oM@ 4 p W) = ((2)52), (4.3)
2
1252 - (1) =o. (1.4)

In order to find two-soliton solution, we utilize the superposition princi-
ple. We may use this principle since we are dealing with a bilinear equation
and not a nonlinear one. As discussed in the one-soliton solution case, we
can solve the equations (4.1)-(4.4) for getting the expression of f and g.
In order to construct the two-soliton solution of the system (1.1)-(1.2) we
assume g1 has the form

gt =em 4 e,

where n; = kjx + 7;(t), (j = 1,2). Therefore, the solution of the Eq. (4.1)
is following

f(l) — 6771+771+1111 4 6771+772+a12 + 6772+771+a21 + €772-i-?72-i-1122 (4.6)
where .
Gmp = IN —————, m,n =1,2.
With the help of Eqs. (4.2)-(4.4), we can obtain the functions £ and g
F@ = gmAitna it (4.7)
g(2) _ 6771+771+772+51 + 6771+ﬁ2+772+62, (4.8)

where the constants r, d;, j = 1,2, are given by

BA
5j:hl<]>7 j:1727
4q;j

q1 = (k1 + k1) (k2 + k1), q2 = (k1 + k2) (k2 + k2),
(k1 + k1 + ko + k2) _ (k1 4 k1 + ko + k2)
(kl + ];31)2(1452 + 1231)2’ 2= (k:l — E2)2(k2 + ];:2)27
(k2 — k1)?(k — k1)?
(k1 + /?51)2(7€1 + E2)2(k2 + 1_61)2.
The next step to find two-soliton solution is to determine the functions p;

and h; (j = 1,2). The functions p; and h; (j = 1,2) for two-soliton solution
are as follows

By =

pi = xp}" + 2, hy=niY.
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Based on the above, we collect coefficients of the same power in y according
to the the (2.4), we have

pt) = —igipl! + gWnY, (4.9)

0 = p 0 0 4 ) e (D p0 4 p@) 4 @D, (4.10)

P F@ = p P 4 pl2 O — p@ ) = iy (pV f @ 4 pP D) (410
pfif@) - pﬁ 1 = —igip? 1. (4.12)

We solve differential equations (4.9)-(4.12) by using (4.5)-(4.8) and we get
the following expressions

(1) :e(kl-i-fﬂ—iﬁj)fc—’m(t)—%(t)+“/1(t)+51(t)+9j(t)—7‘+a11+

Pj
k1 Fk2—ig;)a—y1 (8) =71 (8)+72 (£) +72 (£)+Q; () —r+ar2
_ 4.13
e(k2+k17’ifj)x7’y1 (t)fiyz (t)+’7/1 (t)+'¥2(t)+ﬂj (t)f’l”+a21+ ( )
(k2 tk2—ig5)x—y1 (£) =71 () +72 (1) +72()+; (t) —r+azz ’
p§~2) _ 6(k1+l_€1+k2+l_€2—i§j)r+ﬂj (t)’ (4.14)
) e(k1Hk1—i€;)z—72(t) =72 (t)+71 (8)+71 (1) +; (8) —r
h 3 = — +
J (k1 + kp)(em + en2)
e(k1tka—i&;)z—y2(t) =72 (t)+71 () +31 (£)+€2; () —r
= +
(k1 + k2)(em + 6772) (4.15)
e(katk1—i€5)z—2(t)=F2(t)+71 (8)+71 (£) +Q; (8) —r '
+

(ko + k1) (em + e)
(k2 tka =€)z —2(t) =72 () +71 (£)+71 () +; (t) —r

(kg + ko)(em + en2)
j=1,2.

The time-dependent evolution of the functions v;(t) , ;(t) (j = 1,2) can
be found similarly as in one-soliton solutions. By substituting the defined
functions

f=1+ f(l) + f(Q)’ g= g(l) _|_g(2)’ — pgl) +p§2)7 hj — hgl) (4.16)
into Eq.(2.2), we get the following
(yi(t)y = —9e22() =2 (O)+72(1) =Y (1) —r+ds 4. Z'k?,

i (4.17)
ki = _2Z£i7 ] = 172
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We know that, the condition (1.4) is assumed for the functions ¢1; and ¢s;
(7 =1,2), so, the function Q;(t) (j = 1,2) is defined as

1
(1) = 05 (1) + 5 (3(0) = 7+ 85) + () +(t), j=1.2, (119)
therefore,

t
() = —4il3t 2/0 B2(r)dr +;(0), j = 1,2. (4.19)

Thus, taking into account (4.5)-(4.8) and (4.13)-(4.15) we can write the
solution in the following form

(1) (2)
w= 9 t9° (4.20)
14+ fO) 4 )
MO NNE) B ,
Y15 P2 = J=12

T 1+ fO 4 @ L+ fO 4 f@

These functions are two-soliton solutions of the nlISESCS.

The following figure shows two-soliton solution of the nISESCS.

Figure 2. a) real part b) intensity profiles of the two-soliton solution (4.20) for
&=13i,&6=23i41,7(0)=0,8;t) =31, (=1,2).
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5. Conclusion

In this paper, we have obtained the one-soliton and two-soliton solutions

for the nISESCS, by directly applying Hirota’s bilinear method. Besides
other soliton solutions can also be got by Hirota’s bilinear method.
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CoauToHHbIE pellleHusi HeJnHeliHoro ypaBuenus I1lpeaun-
repa c CaMOCOTJIACOBAHHBIM MCTOYHUKOM

A. A. Peiiumbepranos!, 1. 1. Paxumos!

L Vpeenucxuti 2ocydapemeennoiti ynusepcumem, Ypeeny, Pecnybauka Yabexucman

AwnunHoranusi. Hemuneitnoe ypasuenne Illpenmnarepa ¢ camocorsiacOBaHHBIM HC-
TOYHUKOM I1peobpa30BaHO B OuiuHeiHble (GOPMBI ¥ HANIEHBI OJHOCOJIUTOHHBIE U JIBYX-
COJTUTOHHBIE PENIeHUsT MPSIMBIM OMJIMHEHHBIM MEeTONOM XupoThl. [loapobHo obCyxKmeHa
9BOJIIOIHSI COJINTOHA C IIOMOIIBIO I'PAdUKI.

KuroueBrbie ciioBa: commToHHBIE pemtenusi, ypaBHenue lllpeaunrepa, nenmneirbe
ypaBHEHUsI, METOJ[ XUPOTHI.
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