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Abstract. In this paper, we consider a convex function defined as a 1D-regularized total
variation with nonhomogeneous coefficients, and prove the Main Theorem concerned with
the decomposition of the subdifferential of this convex function to a weighted singular
diffusion and a linear regular diffusion. The Main Theorem will be to enhance the
previous regularity result for quasilinear equation with singularity, and moreover, it will
be to provide some useful information in the advanced mathematical studies of grain
boundary motion, based on KWC type energy.
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1. Introduction

Let Q := (—=L,L) C R be a one-dimensional spatial domain with a
constant 0 < L < 0o, and let us define H := L?(Q) and V := H'(). Let
0<a€eVand 0 < B €V be fixed functions.

In this paper, we consider the following convex function on H:

0 € H— ®,5(0) :=Va(0) + Ws(0); (1.1)
which is defined as a sum of two convex functions on H, defined as follows:

p € VinC.(2

._ ), such
0 e H— V,(0):= sup{ /9083;@ dx, that || < a on O , (1.2)
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and

1 2 .
b H s Wy(h) = z/gmaﬂc@' de, O €V, (1.3)
o0, otherwise.

The functional V,,, defined in (1.2), is a kind of generalized total variation,
so that the functional ®, g, defined in (1.1), can be called a regularized
total variation with nonhomogeneous coefficients o and 3.

On this basis, we set the goal to prove the following Main Theorem.

Main Theorem (Decomposition of the subdifferential). The subdiffer-
ential 0®,3 C H x H of the convex function ®, s is decomposed as
follows:

05 = Vo + OWp in H x H, (1.4)

i.e. 09, g is represented as the sum the subdifferentials 0V, C H x H and
OWpg C H x H of the respective convex functions V,, and W3g.

The equation (1.4) leads to the H?-regularity of the following nonhomo-
geneous quasilinear equation with singularity:

—0y <Oz(a:)|gz| + ﬁ(m)@xe) = 0" with 0* € H, (L5)

subject to the zero-Neumann type boundary condition.

When the both « and 8 are homogeneous (constants), we can obtain the
H?-regularity by using the mathematical method, developed in [12], which
is based on the general theory of PDEs (e.g. [10]). However, when a and
B are nonhomogeneous, the extra error terms brought by « and 8 make
it difficult to see § € H?(Q) in (1.5), by referring to the existing method.
Hence, it can be said that our Main Theorem will be to enhance the previous
method of [12], and moreover, to report another variational approach based
on the subdifferential.

In the meantime, the Main Theorem is motivated by the mathematical
analysis of grain boundary motion, studied in [13;14], and especially, the
convex function @, g is based on the KWC' energy, proposed by Kobayashi-
Warren—Carter [9]. In this context, the variable 6 is the order parameter of
crystalline orientation, and the nonhomogeneous coefficients « and 8 are
associated with another order parameter, such as the orientation order of
grain in a polycrystal. In this light, our Main Theorem can be expected
to provide useful information for some advanced problems that require
smoothness of the system while including singularity, such as the optimal
control problem governed by the KWC type model.
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The proof of Main Theorem is divided in three Sections. In the next
Section 2, we prepare notations and mathematical theories as the prelimi-
naries. Additionally, in Section 3, we prove an auxiliary lemma associated
with the approximating approach to the Main Theorem. Based on these,
the final Section 4 is devoted to the proof of our Main Theorem.

2. Preliminaries

We begin by prescribing the assumptions and notations used throughout
this paper.

Assumptions. Throughout this paper, let Q := (=L, L) C R be a fixed
spatial bounded domain with a constant 0 < L < oo, and let I' := 992 =
{—L, L} be the boundary of 2. Also, let J, be the distributional spatial
differential. On this basis, we define

H:=L*(Q),Hr={2|2:T — R} (~R?, and V := H'(Q) (C C(Q)).
Let a € V and B € V be fixed functions, such that:

mina(2) > 0, and min 8(Q) > 0. (2.1)

Abstract notations. For an abstract Banach space X, we denote by |- |x
the norm of X. Let Ix : X — X be the identity map from X onto X.
In particular, when X is a Hilbert space, we denote by (-,-)x the inner
product of X.

For any subset A of a Banach space X, let x4 : X — {0,1} be the
characteristic function of A, i.e.:

1, ifwe A,

xXA:we€ X = xalw) =
(w) {0, otherwise.

Notations in convexr analysis. (cf. [5, Chapter II]) Let X be an
abstract Hilbert space X. For a proper, lower semi-continuous (l.s.c.), and
convex function ¥ : X — (—o00, 00| on a Hilbert space X, we denote by
D(V) the effective domain of ¥. Also, we denote by 0¥ the subdifferential
of W. The subdifferential OV corresponds to a weak differential of convex
function ¥, and it is known as a maximal monotone graph in the product
space X x X. The set D(9¥) := {z € X | 0¥(z) # 0} is called the domain
of O¥. We often use the notation “[zq, z5] € OV in X x X”, to mean that
“25 € 0¥(zp) in X for zg € D(O¥)”, by identifying the operator 0¥ with
its graph in X x X.
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Example 1 (Examples of the subdifferential). For any ¢ > 0, let f© :
R — [0,00) be a continuous and convex function, defined as follows:

ffryeRm fo(y) == Ve? + |y2 € [0,00). (2.2)

When € > 0, f& € C*(R), and hence the subdifferential 0f¢ C R x R
coincides with the single-valued function of the standard differential (f¢)" €
L>*(R), i.e.:

D(3f) =R, and 8f*(y) = (f°)'(y) = ————, for anyy € R.

Ve + Iy

Meanwhile, when e = 0, the corresponding function f° coincides with the
function of absolute value |-|: R — [0,00). Hence, the subdifferential O f°
of this case coincides with the set-valued signal function Sgn : R — 2R,
which is defined as follows:

)
¢ €R s Sgn(é) =14 8l (2.3)

[—1,1], otherwise,
n.e.:

D(9f°) = D(9|-]) =R, and 9f°(y) = 0| - |(y) = Sgn(y), for any y € R.

Next, we mention about a notion of functional convergence, known as
“Mosco-convergence”.

Definition 1 (Mosco-convergence: cf. [11]). Let X be an abstract Hilbert
space. Let U : X — (—o0,00] be a proper, l.s.c., and convex function,
and let {U,}>°, be a sequence of proper, l.s.c., and convex functions U, :
X — (—o0,00], n=1,2,3,.... Then, it is said that ¥,, — ¥ on X, in the
sense of Mosco, as n — oo, iff. the following two conditions are fulfilled.

(M1) The condition of lower-bound: lim ¥, (w,) > ¥ (w), if w € X,

n—oo
{wp}22, C X, and w,, — w weakly in X, as n — oo.

(M2) The condition of optimality: for any w € D(V), there exists a
sequence {1, }0° 1 C X such that Wy, — w in X and ¥y, () — ¥ (),
as n — oo.

Remark 1. Let X, ¥, and {¥,}°°; be as in Definition 1. Then, the
following facts hold.

(Fact 1) (cf. [2, Theorem 3.66]) Let us assume that

v, — ¥ on X, in the sense of Mosco, as n — oo,
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and
{ [w,w] € X x X, [wy,w}] €0V, in X xX,neN,
wyp, = win X, and w) — w* weakly in X, as n — oo.

Then, it holds that:

[w,w*] € 0¥ in X x X, and ¥,,(wy,) — ¥(w), as n — oco.

(Fact 2) (cf. [6, Lemma 4.1] and [8, Appendix|) Let N € N denote a con-
stant of dimension, and let S € RY be a bounded open set. Then, un-
der the assumptions and notations as in (Fact 1), a sequence {W5 1},
of proper, ls.c., and convex functions on L?(S; X), defined as:

) W, (o(y) dt,
z€ LX(S; X) = U2 (2) := S if U, (2) € L'(S), formn=1,2,3,...;

oo, otherwise,

converges to a proper, l.s.c., and convex function TS on L?(S; X),
defined as:

/S\Il(z(y))dt, if U(z) € L1(S),

o0, otherwise;

z e LX(S; X) s U9(2) =

on L?(S; X), in the sense of Mosco, as n — oo.

Example 2 (Example of Mosco-convergence). Let {f}.>0 C C(R) be the
sequence of monexpansive convex functions, as in (2.2). Then, for any
o > 0, f€ — fe0, uniformly on R, as € — g, so that:

f&— f° on R, in the sense of Mosco, as € — €.

Basic and specific notations. For arbitrary rg, sg € [—00,00], we de-
fine:

ro V So := max{rg, So} and rg A so := min{rg, so},
and in particular, we set:
[r]* :==rVvO0and [r]” := —(r A0), for any r € R.

Finally, we remark on the specific functionals V, : H — [0, 00|, W :
H — [0,00], and ®, 3 : H — [0, 00], that are defined in (1.2), (1.3), and
(1.1), respectively.
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Remark 2. (cf. [1;4]) The functional V, coincides with the so-called
lower semi-continuous envelope of the following convex function:

0 € WH(Q) — Vo (0) == / a|0:0] dz € [0, 00),
Q

more precisely,

Va(6) = inf{ lim V,(9;) (2.4)

1—00

{~1§Z}f§1 c WH(Q), and }

Yi—>0in H, asi— oo )’
for any 0 € H.

In the light of (1.2) and (2.4), we can verify the following facts.

(Fact 3) V, is a proper, l.s.c., and convex function on H, such that:
— the restriction VQ\WM(Q) coincides with ‘N/a;
— D(V,) D BV(Q), and D(V,,) = BV(Q) if mina(Q) > 0.
(Fact 4) For any 6 € D(V,), there exists {9;}52, € WhH(Q) such that
Y¥; = 0 in H, and V,(9;) — V,(0), as i — oc.

Remark 3. The functional W3 is a proper, Ls.c., and convex function on
H, such that D(Wp) = V. Moreover, the subdifferential 0W3 C H x H is
a single valued operator, such that

[0,0%] € OWp in H x H, iff. 80,0 € HL(), and 0* = —0,(80,0) in H.

Remark 4. Let us fix € > 0 and let ®F, 5 be a function on H, defined as
follows:

5 / ar/e2 + 10,0)% dx + 1/ Bl00|*dxz, if 6 €V,
as0) =1 Jo 2 Ja

oo, otherwise.

(2.5)

Under the assumption (2.1), the functions @ 4, for € > 0, are proper, Ls.c.,
and convex on H. Especially, when ¢ = 0, the corresponding functional
<I>g’ 5 coincides with the convex function @, g, defined in (1.1).

Remark 5. Let us fix any € > 0, and let us define a map A° : D(A%) C
H — H, by putting:

D) = {0V | a(f)(0:6) + 50,0 € HY (D)}

and

0 € D(A°) C H s A0 := —0, (a(f°) (0.0) + B0,0).

Then, by applying the standard variational technique, we can observe that:
A® = 0®, 5in H x H.
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3. Auxiliary lemma

In this Section, we prove an auxiliary lemma which is associated with
the approximating approach to the Main Theorem.

Lemma 1. Let {e,}5°_; C (0,00) be arbitrary sequence such that £, — 0
as m — oco. Then, for the sequence {@Z’"ﬂ}%’:l, it holds that:

(I)Zmﬁ — @, 5 on H, in the sense of Mosco, as m — 0.

Proof. First, we show the lower-bound condition (M1) in Definition 1. Let
6 € H and {0™}°_, C H be such that:

0™ — 0 weakly in H, as m — oo. (3.1)

Then, it is sufficient to consider only the case when lim,,, ,  ®77;(0™) < oo,
since the other case is trivial. So, by taking a subsequence {m;}7>, C {m},
one can say that:

lim 57 (0™) = lim &7 (6™) < oo. (3.2)

m—00 k—o0

With (2.5), (3.1), and (3.2) in mind, we further see that:

0,0 — 0,6 weakly in H,
and \/Bﬁﬁm’“ — \/B&EQ weakly in H, as k — oo, (3.3)

by taking more one subsequence if necessary. In the light of (2.2), (3.1)-
(3.3), Remark 3, weakly lower semi-continuity of ®, g, the lower-bound
condition can be verified (M1), as follows:

lim B.7F(6™*) > Hm @q5(6™*) > B p(6).

k—o00 k—o0

Next, we show the optimality condition (M2) in Definitionl. Let us fix
any 0 € D(®,,5)(= V), and let us take a sequence {¢*}2  C C*(Q) such
that:

¢©* — 0 in V, and in the pointwise sense, a.e. in Q, as k — co. (3.4)

By (3.4) and Lebesgue’s dominated convergence theorem, we can configure
a sequence {my}7>, C N such that 1 =:mg < m; <mg < --- <my T o0,
as k — oo, and for any k € NU {0},

c 1
Sup ‘f m(aa:()ok) - ’aa:()ok“Ll(Q) < (35)

m>ma 2k (Ja| ooy + 1)
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Based on these, let us define:

kif <m < for k € N
o™ ::{90 T = TS Mty 10T " for any m € N. (3.6)

gol if 1 <m < my,
Taking into account (3.4)—(3.6) and Holder’s inequality, we obtain that:
| B575(0™) — @a,p(0)]

/( fEm(0,0™) — 0|0,0]) dx| + /m\a 0™ — 0,0?| dx
Q

IN

|a’L°°(Q) </Q sup |f€m(8w90k) - ‘8w90k|‘dx + /Q“ax‘:pk’ - |8x9|‘ dw)

mzmk

B0 5
N "L2<m,¢k 9y (/ﬂz(\axso’“ﬁ + |ax0\2>dx>

1
ok + [ — Oy

. (\/ 2L’a‘Loo(Q) + ‘B’L;O(Q) </ 2(|8x<pk!2 + \8956]2) dl’) 2) ,
Q

for any K € NU {0} and any m > my,

IN

and therefore,
DL5(0™) — ap(0), as m — oc.

Thus, we conclude this lemma. ]

4. Proof of Main Theorem

In this Section, we give the proof of Main Theorem. Let us define a
set-valued map A" : D(A%) ¢ H — 27 by putting:

there exists w* € L>°(2) such that
DAY :={ 0 cV | ew* cSgn(d.0) ae. inQ , o (4.1)
e aw* + 30,0 € HL(Q)

and
0 e DA CcH
0% = —0, (aw* + B,0) in H,
— A% :={ 0* € H| for some w* € L®(Q), satisfying . (4.2)
w* € Sgn(0,0) a.e. in Q

We prove Main Theorem in accordance with the following two Steps.
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Step 2: 09,3 =90V, +0Wpgin H x H.

Verification of Step 1.

First, we show A" C @, 5 in H x H. Let us assume § € D(A°) and
0* € A%9. Then, by (4.2), there exists w* € L>°(Q) such that:

w* € Sgn(0,0) a.e. in Q and 6 = —0,(aw™ + $0,0) in H. (4.3)

From Remark 2, (2.3), (4.3), and Young’s inequality, we can compute that:
0,0 — g = (0 (aw* + £0,0), 0 — 9)H
= / aw 05 (p — 0) dx + / B 020 0z (p — 0) dx
Q Q

< /Q o(|0upl —18:0]) d + /Q B(10.pl? — 10,61%) da
=0, 3(p) — o 5(0), for any p € V.

This implies that:
6 € D(0®,,5) and 0" € 0P, 5(0) in H.

Thus, the inclusion A° C 9@, 5 in H x H is verified.

Next, we prove the equality (A° + Iy)H = H. Since, the inclusion
(AY + I'y)H C H is trivial, it is sufficient to prove the converse inclusion.
Let us take any h € H. Then, by Remark 5 and Minty’s theorem

(cf. [3, Theorem 2.2]), we can configure a class of function {6°}.~¢ C V, by
setting {6° := (A° + Iy) " 'h}eso in H, ie.

h —6° = A°0° = 0%, 45(6°) in H, for any € > 0, (4.4)
so that:
[ (U @7) + p0.07)oupdo + [ s
Q Q
= / hedz, for any ¢ € V, and any € > 0. (4.5)
Q

In the variational form (4.5), let us put ¢ = 6°. Then, with (2.2) and
Young’s inequality in mind, we deduce that:

1 1
5\9% + VBB, < §]h\%{, for any £ > 0. (4.6)

The above (4.6) enable us to take a function § € V and a sequence £; >
€9 > €3> -+ > ey 0, a8 m — oo, such that:
0°m — 0 in H, weakly in V,
and /$8,0°" — /0,0 weakly in H, as m — oc. (4.7)
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In the light of Lemma 1, (4.4), (4.7), and (Fact 1), it follows that:
h—0€0P,5(0) in H, and ®775(0°") — @4 5(0), as m —oco.  (4.8)

Also, by Remark 2, (2.2), (4.7), (4.8), and weakly lower semi-continuity of
the norm | - |g7, we can compute that:

1 —
/ Plo0F" do < < 5 Lim [ Bl0y6°*de < o Tim / 810,65 da
Q 2 m—oo Jq

m%oo

m—o0 ’ m—00 JQ

< lim @7p(0°") — lm [ af™"(0,0°")dx

1
< d,3(0) —/Qoz|819|d:v = 2/96\8339]2dx. (4.9)

Having in mind (4.7), (4.9), and the uniform convexity of L2-based topolo-
gies, it is deduce that:

\/B(‘?IH‘E’” — \/B&EH in H, as m — oo. (4.10)
Furthermore, by (2.1), (4.7), and (4.10), we obtain that:
6" — 0 in V, and 0,6°™ — 0,0 in H, as m — oo. (4.11)

In the meantime, by Example 1, |(f™) (9,0°™)| <1 a.e. in , for any
m € N, and one can say

(o) (0:0°™) — w* weakly-* in L>°(Q), as m — oo,
for some w" € L*™(Q), (4.12)

by taking a subsequence if necessary.
From (2.3), (4.11), (4.12), Example 2, (Fact 1), and [5, Proposition 2.16],
it is inferred that:

w” € Sgn(d,0) a.e. in . (4.13)

On account of (4.10)—(4.12), letting m — oo in (4.5) yields that:
/Q(aw* + 80,0) 0,0 dx: —l—/ﬂ@gp dx = /thp dx, for any o € V. (4.14)
In particular, putting ¢ = po € Hi(Q) in (4.14), we have:
(h=0,00)m = /Q(OM* + B8, 8xp0) da, for any @o € H(S),

which implies:

—0y(aw* + B0,0) =h—6 € H, in 7'(Q). (4.15)
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In addition, we observe that:

(aw* + 50,0,8) = [(a(x)=" (@) + B(w)00)) (a)]

He

-L
= /an((aw* + 58300) [@b]ex) dx
= _ / (h—0)[¢]™ dx + / (o™ + B0,0) 0, [Y)]™ da
Q Q
=0, for any ¢ € Hp with any extension [¢)]** € V. (4.16)
(4.15) and (4.16) lead to:
aw® + 0,0 € H} (Q). (4.17)

As a consequence of (4.1), (4.2), (4.13), and (4.17), we obtain that:
(A°+1x)0=hin H, ie. he (A" + Iy)H,

and we verify H C (A% + Iy)H.
Finally, the inclusion A° C 09,5 in H x H, and the equality (A" +
Iy )H = H enable us to apply Minty’s theorem (cf. [3, Theorem 2.2]), and to
verify that A° is a maximal monotone. Moreover, the inclusion A C 89, 5
and the maximality of A° will lead to the coincidence A° = @, 5 in H x H.
Thus we finish the proof of Step 1.

Verification of Step 2.

By the general theory of the convex analysis [7, Chapter 1], we imme-
diately have 0®,53 D 0V, + 0Wgin H x H. So, we prove the converse
inclusion:

o5 C Vo + W in H x H. (4.18)

Let us take any [6,0%] € 0®, g in H x H, and apply the result of previous
Step 1, to have a function w* € L*°(Q2) as in (4.3). On this basis, we verify
this Step 2, via the verifications of four Claims.

Claim #1). 6 € H*(Q2) and 9,0 € H(Q).

For every a > 0 and b > 0, let p(up) : R — 2R be a set-valued function,
defined as:

Pap)(T) == aSgn(r) + br C R, for any r € R, (4.19)

and let p?a b) be the inverse of p(, ). Then, as is easily checked from (2.3)

and (4.19),

[r—a]" —[r+a]”
b

*

Plap) T € R—

€R, (4.20)

i.e. (p(ap))” is a single-valued Lipschitz function, such that



80 S.KUBOTA

1
0 < (plup) < 5 on R, for every a > 0 and b > 0.

Here, from (4.19), (4.20), and Step 1, we immediately see that:
0 = pla(),5())(0a0) = aw” + BI,0 € H} (), and * = —9,0 in H. (4.21)

Therefore, having in mind (4.20) and (4.21), and applying the generalized
chain rule in BV-theory [1, Theorem 3.99], it is inferred that:

0l = (a5 (0) = ol _Pral

€ Hy (%),

i B
o [[ ot ;ma]
- ; 920 — ) X(a(.00)(B) + O (0 + 0)X (o) (0)]
—%f({é—aﬁ—[ém] )en

Thus, Claim 1) is verified.

Claim #2). 39,0 € H} () and [0, —0,(80,0)] € Wz in H x H.
This Claim £2) is immediately observed from Claimfl) and Remark 3.

Claim #3). aw* € H}(Q) and [0, —0,(aw*)] € OV, in H x H.
By using (4.21), Claimf2), and the integration by part, we can observe
that:

aw* =0 — 0,0 € H(Q), (4.22)

and

/ — Og(aw™)(p — 0) dx = / aw* 0y (¢ — 0)dx
Q Q
< / a|0zp| dx — / a|0,0| dz, for any ¢ € WhH1(Q). (4.23)
Q Q

Next, let us take any z € D(V,,), and invoke (Fact4) to take a sequence
{pi}22, € WhH(Q) such that:

@i — z in H, and V() <— / a|0zpil dx) — Va(2), as i — oco. (4.24)
Q
Besides, putting ¢ = ¢; in (4.23), with 7 € N, and using (4.24), we deduce
that
(—0z(aw™), z — 0) g + Vo (0)
= lim [ —0,(aw™)(p; — 0)dx + V,(0)

1—00 9]
< lim Va(g;) = Va(z), for any z € D(V,,). (4.25)

1—00
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(4.22) and (4.25) finish the verification of Claim £3).

Claim #4). 0* € 0V, (6) + 0W3(0) in H.
This Claim #4) will be a straight forward consequence of (4.2), Step1,
Claim §1)—Claim £3), and the linearity of distributional differential:

0" = —0,(aw” + B0,0) = —0u(aw™) — 0,(B0,0) in Z' ().

Claim §1)—Claim f4) enable us to verify the inclusion (4.18), and to com-
plete the proof of Main Theorem. O

5. Conclusion

In this paper, the regularized total variation functional with nonhomoge-
neous coefficients is considered, and it is concluded that the subdifferential
of this functional is decomposed to the sum of a weighted singular diffusion
and a weighted linear diffusion. The result, stated in the Main Theorem,
is to guarantee the H2-regularity of the nonhomogeneously weighted quasi-
linear equations. The novelty of this work is in the point that the result
is obtained by means of the approximation based on Mosco-convergence,
and the generalized chain rule in BV-theory [1, Theorem 3.99]. Indeed,
the mathematical method adopted here is different with the traditional
approach based on the PDE-theory (cf. [10]), and also, it would be a simple
method to extend the result of the previous work [12].
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Cyoand depennmaabHoe pa3iioyKeHne OJJHOMEPHOI peryJis-
PU30BAaHHOM IIOJIHOI Bapualiui C HEOJHOPOJAHBIMHU K03 dhu-
IEHTaAMU

C. Kybora

Vnusepcumem Yuba, uba, Hnonus

AnHoTanusa. PaccmarpuBaercst BbIIyKJiash (DyHKIUs, OopeeisieMast KaK OJHOMEp-
Hasl peryJisipu30BaHHAs TIOJIHAsI Bapualus ¢ HEOTHOPOJHBIMU Kod(ddurmerntamu. Jloka-
3bIBAETCsl OCHOBHAsI TeOpeMa, Kacalolasicsi pas3jioxKeHusi cybauddepennuaia 3Toil Bbl-
MyKJION (DYHKINU HA B3BEIEHHYIO CUHTYISPHYIO Tud@y3Ui0 U JIMHEHHYIO PETYIISPHYIO
muddysuro. OcHOBHAsI TeopeMa 3aKJ/II0YaeTCsl B YCUJIEHUU IIPEJIBIIYINEro Pe3yJibraTa O

Wssectus VIpKyTCKOro rocyapCTBEHHOIO YHUBEPCUTETA.
Cepust «Maremarukas. 2021. T. 36. C. 69-83
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PeryasapHOCTH JJI KBa3UJIMHETHOI0 ypaBHEHHS C CUHI'YJISPHOCTBIO U, KpOMe TOT0, IIPeI0-
CTaBJIECHUN HeKOTOpOﬁ II0JIE3HOM I/IH(bOpMaLH/II/I B IIPOJABUHYTBHIX MaTEeMaTUYCCKUX HCCJIe-
JOBaHWSAX JIBUXKEHUsI TPAHUIL 3ePEH, OCHOBaHHBIX Ha Hepruu tuia KWC.

Kuarouessbie cioBa: cybauddepennuaabHoe pa3ioKeHne, HeOTHOPOIHbIE KO3hdu-
[IUEHTHI, KBA3WJIMHEHHOE ypaBHEHHE C OCOOEHHOCTHIO.
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