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Abstract. We introduce a new concept of equilibrium based on Nash and Berge equi-
libriums. This equilibrium is called Anti-Berge equilibrium. We prove an existence of
Anti-Berge equilibrium in the game. Based on Mills theorem [9], we reduce finding Anti-
Berge equilibrium to a quadratic programming problem with linear constraints. The
proposed approach has been illustrated on an example.
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1. Introduction

Game theory plays an important role in applied mathematics, economics
and decision theory. There are many works devoted to game theory. Most
of them deals with a Nash equilibrium. A global search algorithm for
finding a Nash equilibrium was proposed in [13]. Also, the extraproximal
and extragradient algorithms for the Nash equilibrium have been discussed
in [3]. Berge equilibrium is a model of cooperation in social dilemmas,
including the Prisoner’s Dilemma games [15].
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The Berge equilibrium concept was introduced by the French mathe-
matician Claude Berge [5] for coalition games. The first research works of
Berge equilibrium were conducted by Vaisman and Zhukovskiy [18;19]. A
method for constructing a Berge equilibrium which is Pareto-maximal with
respect to all other Berge equilibriums has been examined in Zhukovskiy
[10]. Also, the equilibrium was studied in [16] from a view point of dif-
ferential games. Abalo and Kostreva [1;2] proved the existence theorems
for pure-strategy Berge equilibrium in strategic-form games of differential
games. Nessah [11] and Larbani, Tazdait [12] provided with a new existence
theorem. Applications of Berge equilibrium in social science have been
discussed in [6;17]. Also, the work [7] deals with an application of Berge
equilibrium in economics. Connection of Nash and Berge equilibriums has
been shown in [17]. Most recently, the Berge equilibrium was examined in
Enkhbat and Batbileg [14] for Bimatrix game with its nonconvex optimiza-
tion reduction. In this paper, inspired by Nash and Berge equilibriums, we
introduce a new notion of equilibrium so-called Anti-Berge equilibrium.
The main goal of this paper is to examine Anti-Berge equilibrium for
bimatrix game.

The work is organized as follows. Section 2 is devoted to the existence
of Anti-Berge equilibrium in a bimatrix game for mixed strategies. In
Section 3, an optimization formulation of Anti-Berge equilibrium has been
formulated.

2. Bimatrix Game

Consider the bimatrix game in mixed strategies with matrices (A, B) for
players 1 and 2.

Denote by X and Y the sets

m
X:{xERm\inzl, x; >0,i=1,...,m},
i=1

n
Y={yeR"|) yj=1,y4>0j=1,..,n}
j=1

A mixed strategy for player 1 is a vector z = (z1, z2,. .. ,:cm)T € X repre-
senting the probability that player 1 uses a strategy i. Similarly, the mixed
strategies for player 2 is y = (y1,¥2,...,yn)’ € Y. Their expected payoffs
are given by :

file,y) =a" Ay, fo(a,y) =" By.

Ussectust IpKyTCKOro roCylapCTBEHHOTO YHUBEPCUTETA.
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First, we introduce the definitions of the equilibriums

Definition 1. A pair strategy (x',y') € X x Y is a Nash equilibrium if

{ fl(xlayl) Z fl(l'ayl)7 vV S X7
fa(zh,y') > fa(z!y), VyeY.

Definition 2. A pair strategy (22,vy%) € X x Y is a Berge equilibrium if

fl(anyQ) > fl($27y)7 Vy € Y,
f2(2?,y?) > folx,y?), Vo € X.

Definition 3. A pair strategy (x3,3%) € X x Y is an Anti-Berge equilib-
rium(with respect to player 2) if

fl(x3ay3) > fl(.fL‘?’,y), Vy € Y,
fa(23,92) < fo(z,9?), Vo e X.

It is clear that
fl(xgv y3) = max fl (1.37 y)7
yey

fo(a®,y?) = min folz, y°).

Definition 4. A pair strategy (z*,y*) € X x Y is an Anti-Berge equilib-
rium(with respect to player 1) if

f1($4ay4) < fl(lAay)? Vy € Y,
fo(z y?) > fo(x,y?), Vo€ X.

In Nash equilibrium both of players maximizes their payoff functions
simultaneously. In Berge equilibrium both of players mutually supports
each other to maximize their payoffs while in the Anti-Berge equilibrium
one of them minimizes other’s payoff function. In other words, one of them
behaves unpleasantly and is antagonistic to other.

Before we introduce Anti-Berge equilibrium for 3-person game, it is
worth mentioning Berge equilibrium [10] for the game.

Definition 5. A triple strategy (z*,y*,2*) € X XY X Z is a Berge
equilibrium if

]fl(x*a y*7 Z*) > fl(l'*’ya Z), V(y, Z) €Y x Za
f2($*ay*72*) 2 fQ(xvy*vz)v V(.’E,Z) S X X Z7
fa(@*,y*,2) > fa(m,y,2%), Y(z,y) € X x Y,

where the functions fi(a:,y, z),i =1,2,3 defined on a set X xY x Z of
strategies are payoff functions of the players.

Now we introduce Anti-Berge equilibrium in the following.
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Definition 6. A triple strategy (x*,y*,2*) € X xY X Z is an Anti-Berge
equilibrium (with respect to player 3) if

file*,y*,2%) = fie*,y,2), Vl(y,2) €Y x 2,
]ig(af;*,y*,z*) > fg(:c y*,2), Y(r,z)e X x Z,
fa(a*,y*, 2%) < fa(a,y,2%), Y(z,y) € X x Y.

An existence of Anti-Berge equilibrium for a bimatrix game is given by
the following proposition.

Theorem 1. There exists an Anti-Berge equilibrium in a bimatriz game
for mized strategies.

Proof. We follow up similarly the proof done for Berge equilibrium in [14].
Define the sets S1(z) and S2(y) as follows:

yey

i@ = {5 e YIie.0) = max iz |

$:0) = {7 € X|o(e,) = miy o)}

Since the functions fi; and fo are continuous and the sets X, Y are
compact then there exist maxycy f1(Z,y), mingex fa(z,y). Thus Si(z) # 0
and Sa(y) # 0.

Introduce the mapping K in the following:

,CZXXY—>51XSQ.

O

It is clear that if (2*,y*) is Anti-Berge equilibrium then (z*,y*)
K(z*,y*). We show that K is convex compact. Indeed, for any (Z,7)
K(z,y) and (2,9) € K(z,y) we have

m Mm

f1(z,9) = f;lg}fl(ﬂc Y,

f2(.’1~3, g) - ;Iél)I{l f2(x737)7

fl(jayA) = gle%z(fl(i'vy):

f2(£7 y) - ;Iél;{l f2($,g)

Since fi and fo are bilinear functions, for a € [0, 1] these equalities imply
that

fi(Z,ay + (1 — a)y) = max f1(Z,y),
yeyY

Ussectust IpKyTCKOro roCyIapCTBEHHOTO YHUBEPCUTETA.
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fQ(Oéj + (1 - O‘)Qa g) = ;Iél)r{l f2(x7g)a

which means that

(aZ+ (1 —-a)y,ay+ (1 —a)y) € K(z,7).
Thus K is convex.

On the other hand, max,cy f1(Z,y) and mingex fa(x,y) are continuous
functions on X x Y, then K is continuous mapping. Since X and Y are
compact then by Tikhonov theorem [8] K is also compact.

Therefore, conditions of fixed point theorem [4] are satisfied.

Hence, there exists (z*, y*) such that

(", y%) € K(z%, ")
with 2* € Sa(y*) and y* € Si(z*).

This means that

filz®,y") = I;lea;cfl(ﬂ:*,y) > fi(z",y), Yy €Y,

fa(z™,y") = min fa(z,y") < folz,y"), Vo e X

which proves the assertion.
For further purpose, it is useful to formulate the following theorem.

Theorem 2. A pair strategy (x*,y*) is an Anti-Berge equilibrium if and
only if
filz*,y*) > [m*TA] LJi=12...,n, (2.1)
j
fo(z®,y*) < [By*];, i=1,2,...,m. (2.2)
Proof. Necessity. Assume that (z*,y*) is an Anti-Berge equilibrium.
Then by Definition 3, we have

filz*,y*) > x*TAy, Yy €Y, (2.3)

fo(z*,y*) < 2T By*, Vo € X. (2.4)
In the first inequality (2.3), successively choose y = (0,0,...,1,...,0) with
1 in each of the n spots, in (2.4) choose x = (0,0,...,1,...,0) with 1 in
each of the m spots. We can easily see that

fl(x*vy*) Z |:x*TA:| ) ] - 17"‘7”7
J
f2($*,y*) S [By*]z ’ Z = 17 ceey M.

Sufficiency. Suppose that for a pair (z*,3y*) € X x Y, conditions (3.11)

and (3.12) are satisfied. We choose z € X, y € Y and multiply (3.11) by
y; and (3.12) by x; respectively. We obtain
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* ok e .
yifi(z*,y") > [ﬂc A]jyj, j=1,2,...,n.

Summing up these inequalities and taking into account that Z?Zl Yj =
1, we get

* *T
fila*,y*) = <Z§L:1 yj) Al y*) = 300 Yo aijaiy; =« Ay.

By analogy, we also have

fola*,y*) = (L @) fala*,y*) < 300 305, bijriy} = =7 By,

Thus, we arrive at

[ ") = fila®,y), Yyevy,
f2($*7y*) < fQ(xay*)7 Vo € X7

concluding that (z*,y*) is an Anti-Berge equilibrium. The proof is
complete. ]

3. Quadratic Programming Formulation of Anti-Berge
Equilibrium

Theorem 3. A pair strategy (z*,y*) is an Anti-Berge equilibrium (with
respect to player 2) for the bimatriz game if and only if there exist scalars
(p*,q*) such that (z*,y*,p*,q*) is a solution to the following quadratic
programming problem :

max F(z,y,p,q) =2 (A= B)y—p+q (3.1)
(z,y,p,q)
subject to :
[xTAL, <p j=1,...,n, (3.2)
[Byl, >q,i=1,....m, (3.3)
m
sz—l, z;>0,i=1,...,m, (3.4)
=1
n
dyi=1y;=0,j=1,...,n (3.5)
j=1

Proof can be done similarly to the theorem in [14] proven for a Berge
equilibrium.

Ussectust IpkyTCKOro rocyIapCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2021. T. 36. C. 3—13
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Proof. Necessity. Suppose that (z*,y*) is an Anti-Berge equilibrium.
Choose scalars p* and ¢* such that p* = fi(z*,y*), ¢* = fa(a*,y*).

We show that (z*, y*, p*, ¢*) is a solution to problem (3.1)—(3.5). First,
we show that (z*, y*, p*, ¢*) is a feasible point for problem (3.1)—(3.5).

By Theorem 2, the equivalent characterization of an Anti-Berge equilib-
rium point, we have

* * % «T .
p =ty = [ A] L =1,
J

¢ = fo(z*,y") < [By*];, i=1,....,m.

The rest of the constraints are satisfied because of x* € X and y* € Y. It
means that (z*,y*, p*, ¢*) is a feasible point.

Choose any € X and y € Y. Multiply (3.2)-(3.3) by y; and a;,
respectively. If we sum up these inequalities, we obtain

fl(xay) = xTAy < b,

fa(z,y) = 2" By > q.

Hence, we get
F(z,y,p,9) =2 (A= B)y —p+¢ <0

for all z € X, y € Y. But with p* = fi(z*,y*) and ¢* = fo(z*,y*), we
have F(z*,y*,p*, ¢*) = 0. Hence, the point (z*,y*,p*, ¢*) is a solution to
problem (3.1)—(3.5).

Sufficiency.Let (Z, 7, p, ¢) be a solution to problem (3.1)—(3.5).

We show that (z,y) is an Anti-Berge equilibrium of the game. Since

m
[ZTA] <p,j=1,...,n, Y Z=1,2>0i=1,...,m,  (3.6)
=1
n
[Bg]1>Q7Z: ) , 1, _]:17 _]207.7:17 > 1, (37)
j=1
Hence, we have
n
fi@g) =2"Ag<p)y 5 =p, (3.8)
j=1
m
f(2,9)=2"By>q)Y zi=q (3.9)

@
Il
—
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Summing up these inequalities, we obtain
F(z,5,p.9) =2 (A~ B)j —p+q<0. (3.10)

Taking into account (3.8) and (3.9), we conclude that the function F(z,y,
P, q) reaches its maximum at zero:

F(z,5,p,9) = (2" Ay —p) + (2" By —q) =0 (3.11)

with
2" Ay = p, (3.12)
#'By=q (3.13)

From (3.12)-(3.13) and (6)-(7) we have
p=hzyg) =a"Ag > [z74], j=1,..n,

g=f2(%,9) =7 By < [By), i=1,...,m.

Now by Theorem 2, (Z,y) is an Anti-Berge equilibrium which completes
the proof. O

Note that the condition
F(z*,y",p",q") =0

is necessary and sufficient for a (z*,y*) to be an Anti-Berge equilibrium.
We can also formulate the following assertion for Anti-Berge equilibrium
(with respect to player 1).

Theorem 4. A pair strategy (*,9*) is an Anti-Berge equilibrium (with
respect to player 1) for the bimatriz game if and only if there exist scalars
(p*,q*) such that (&*,9*,p*,¢*) is a solution to the following quadratic
programming problem :

max F(x,y,p,q) = a:T(B —Ay+p—q

(z.y,0,9)
subject to :
[xTA]*>p7J: ) y 1y
J
[By]lgqa =1, , M,
m
in—l, x; >0,i=1,....,m,
=1

n
Zyjzl, y; =0, 5=1,...,n.
j=1

Ussectust IpkyTCKOro rocylapCTBEHHOTO YHUBEPCUTETA.
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As an example, consider the following bimatrix game with matrices A
and B :

911 6 20 15 10 5 19
7 4 10 21 13 18 1 16
A=121615 9 and B= ] 11 17 18 12
59 9 17 6 11 3 10
4 3 5 2 8§ 12 8 7

Problem (3.1)—(3.5) for finding Anti-Berge equilibrium (with respect to
player 2) is formulated as:

mazx F(x,y,p,q) = —6x1y1 + 192 + T1y3 + 21ys — 6x2y1 — 14aoys +
9$2y3 + 5x2y4 — 9x3y1 — X3Yy — 3m3y3 — 3x3y4 — T4Y1 — 2x4y2 + 63343/3 +
Trays — 4x5y1 — 9T5y2 — 3T5Y3 — dx5ys +p — ¢

( 911 4+ Txo + 203 + by + 425 — P <0
11z +4x9 + 1623 + 924 + 325 — p <0
6x1 + 10z 4+ 1523 + 924 4+ b5 — p <0

20x1 + 21xe + 923 + 1724 + 225 — p <0
1+ x2+x3+xst+a5=1

15y1 + 10y2 4+ 5y3 + 19y4 — q >0
13y1 + 18y2 +y3 + 16y4 — ¢ >0
11y + 17y2 + 18y3 + 12y4 — q >0
6y1 + 11y2 + 3y3 + 10ys — ¢ >0
8y1 + 12y2 + 8ys + Tys — q >0

ity tys+ys=1
leOa $2207 $3207 1‘420, 335207
\ Y1 207 yQZO, y3207 y4207 y520

We can easily check that F(z*, y*, p*, ¢*) =0 with *=(0, 0, 0,0.273,0.727)7,
y* = (0,0,0.375,0.625), p* = 6.09, ¢* = 7.375 and F* = 0. It means
that (z*,y*) is an Anti-Berge equilibrium(with respect to player2) for the
bimatrix game.

On the other hand, the game has also Anti-Berge equilibrium (with
respect to player 1) in pure strategies: z* = (0,1,0,0,0)7, y* = (0,1,0,0)7.
But there are two another Anti-Berge equilibria:

2t = (0.8125,0,0.1875,0,0)T, y* = (0.764706,0.235294, 0, 0)7 ,

22=(0.532895, 0.447368, 0.019737,0,0) , 4>=(0.6875, 0.21875, 0.09375, 0)” .
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Conclusion

We examined so-called Anti-Berge equilibrium in a bimatrix game. By
analogy of Nash and Berge equilibriums, we proved the existence of Anti-
Berge equilibrium in the game. Finding an Anti-Berge equilibrium in the
game has been reduced to a quadratic programming problem with an in-
definite matrix. An example has been considered. We introduced also
Anti-Berge equilibrium, a new concept of equilibria, for 3-person game.
Computational aspects of Anti-Berge equilibria will be discussed in a next

paper.
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PaBHoBecue anTu-Bepka j11 OMMaTpUIHBIX UTP

P. 9ux6ar

Hnemumym mamemamury u yudposott mexnoaoeuu Axademuu nwayrx Monzoauu,
Vaan-Bamop, Mownzoaus

Amnvporanmsi.  PaccmarpuBaercsi HOBasi GMMaTrpuyHasi UI'pa HA OCHOBE PABHOBECHIl
Hsmia u Bepxka. Pemrenne manmoit urper OymeMm HasbiBaTh paBHOBecmeM auHTH-bBepxka. C
nomompio TeopeMbl Mumiica [9] 3amada HaxoxKIeHWsI paBHOBecHsi aHTU-Beprka cBommt-
csd K 33/1a9e KBaIPATHIHOIO ITPOrPAaMMHUPOBAHUS C JMHEHHBIME OrpanmdeHusMu. Hosoe
IIOHATHE PaBHOBECUA a,HTI/I-Bep}Ka NJUIIOCTPpUPYETCAd Ha YUCJIEHHOM IIpUMeEpe.

KurouyeBbie cioBa: paBHoBecue beprka, onruMusarus, OuMaTpudHasi Urpa, paBHO-
Becue aHTH-Bepxa.
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