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Abstract. We consider the problem of motion of a rigid body in the Hess-Appelrot
case when the equations of motion have three first integrals as well as the invariant
manifold of Hess. On the basis of the Routh-Lyapunov method and its generalizations,
the qualitative analysis of the above equations written on the manifold is done. Stationary
invariant sets for the equations are found and their Lyapunov stability is investigated.
By stationary sets, we mean sets which consist of the trajectories of the equations of
motion and possess the extremal property: the necessary extremum conditions for the
elements of the algebra of problem’s first integrals are satisfied on them. In this paper,
an extension of the technique for finding such sets is proposed: obtaining new sets from
previously known ones and by means of “the inverse Lagrange method”. Applying these
techniques, we have found a family of invariant manifolds for the differential equations on
the invariant manifold of Hess. From this family, several invariant manifolds of greater
dimension than those of the family have been obtained, and an analysis of differential
equations on one of them was done. Equilibrium positions and families of permanent
rotations of the body have been found. For a number of the solutions, sufficient stability
conditions have been derived, including with respect to part of variables.
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1. Introduction

By now there are many publications devoted to studying the classical
problems of rigid body dynamics and their generalizations (see, e.g., [3]
and references therein). Nevertheless, such problems draw the attention of
researchers so far. These often are a source of new ideas, extend the area
of application for the methods developed [10]. On this way it is possible to
obtain interesting results in the classical problems themselves.

By the analysis of the Hess-Appelrot problem [11], the paper discusses
additional possibilities of the Routh-Lyapunov method [8] for finding and
the study of stationary invariant sets of differential equations possessing
smooth first integrals.

By stationary sets, we mean sets of any finite dimension on which the
necessary extremum conditions for the elements of the algebra of first inte-
grals in the problem under study are satisfied. Zero dimension sets having
this property are traditionally called stationary solutions, while nonzero
dimension sets are named stationary invariant manifolds (IMs).

The problem of finding stationary sets of differential equations by the
Routh-Lyapunov method is reduced to solving the stationary equations
for the family of first integrals of the problem. In the case of systems
with polynomial first integrals, it consists in seeking solutions of a system
of algebraic equations. The non-degenerate system allows one to obtain
stationary solutions, while the degenerate one gives IMs and their fami-
lies [5]. The integrals and their families taking a stationary value on the
found solutions are used to derive the sufficient conditions of stability of
the solutions.

In the present work, within the framework of the Routh-Lyapunov me-
thod, we propose an extension of technique for seeking stationary sets:
obtaining new IMs by elimination of a family parameter from a previously
known family of IMs; using “the inverse Lagrange method”, when first we
find (constant) solutions from the equations of motion and then obtain
a combination of the integrals which assumes a stationary value on the
solutions. These techniques are applied to seeking stationary sets for the
equations of motion of a rigid body in the case under consideration that
gives a possibility to obtain new results. The qualitative analysis for the
equations of motion on found IMs is done. Other approaches to the analysis
of the problem in question were applied, e.g., in [1;2;4;7].

2. Formulation of the problem

Consider the problem of motion of a rigid body about a fixed point
in a constant gravity field. The equations of motion of the body in the
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Euler-Poisson form have the form:
Ap = (B = C)gqr + 2072 — Y03, Y1 =172 — q73-
The rest of them are derived from the above ones by circular permutation

(ABC,pqr, 17273, 0Y0%0)-
Let the following constraints be imposed on the parameters characteriz-

ing the geometry of mass of the body
Yo =0, z2A(B—-C)—22C(A—B)=0 (2.1)
or
B = AC(x% + 23)(Azd + C23) L. (2.2)
Having eliminated B and yo from the Euler equations with (2.1), we

have the differential equations describing the motion of the body in the
Hess-Appelrot case:

A(AzE + C22)p = C22(A — O)qr + z0(Az2 + C28)72,

AC(x2 + 22)¢ = (Axd + C22)[(C — A)pr — 2071 + 2073),

C(Ax2 + C22)i = Azk(A — C)qp — (Axd + C23)xoy2,

Vi =TY2 = QY3 Y2 =PYs— TV V8 =471 — Pre (2.3)
Equations (2.3) admit the first integrals
AC(zd + 22)

2H = Ap? 2rert+2 = 2h,
p° 4+ Al + 22 q°+ Cr* + 2(xoy1 + 2073)
AC (2% + 23)
Vi=Apy+ ——5 25 qy2 + Cryzs =m,
1 p1n Ax% T ng q72 rYys=m

Vo =1+ +73 =1
and the invariant manifold (the particular integral of Hess):
V3 = Axgp + Czor = 0. (2.4)

To write differential equations (2.3) on IM (2.4), we eliminate r from
them with the help of (2.4):

A(Azk 4+ C22)p = Aoz (C — A) pq + 20( Azt + C22)vs,

AC?2(23 + 228)¢ = —[Azo(C — A)p* + Czo(20m1 — z073)|(Azd 4+ C23),

_ Axg ) Axg )
=T P =P (072071 + 73), V3 = qv1 — P2 (2.5)
System (2.5) has the following first integrals:

)p2 AC(xf+ 25) -

. Am%
2H = A(f +1 q° + 2(zoy1 + 2073) = 2h,

ng Ax% + ng
~ xo AC (23 + 23)
e o)+ S D,
1 plm PN Y3 ) + A:c% +C’z§ qy2 =m
Va=n+7n+1=1 (2.6)
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Let us set the problem of the qualitative analysis of the above conser-
vative system according to Poincaré [9]. In other words, peculiar sets of
the differential equations shall be found and their vicinity (in some cases)
will be investigated. These sets and their properties mostly determine
the structure of the phase space and the qualitative behavior of solutions
of differential equations. Within the framework of the chosen method,
stationary solutions and IMs are considered as peculiar ones.

3. Finding invariant manifolds

3.1. USING DEGENERATE STATIONARY CONDITIONS

We compose the complete linear combination of integrals (2.6)
~ ~ 1
K=H- MV — 5/\2V2 (3.1)

and write the necessary extremum conditions for K with respect to the
phase variables:

%Ip( :A[p (gjg)Jrl) —/\1<'y1 — %73)} =0,

OK  AC(xd+ =3)

%—W(q—)\ﬂz)zoa
gi =-\ AAi%xi—gzg) q—Ay2 =0,
g:ﬁ =x0— MAp — Aay1 =0, g:z =20+ )qAZQ;Op— Aoy = 0. (3.2)
Under the condition
AC(z2 4+ 2N = —(Azd + C22)\s, (3.3)

system (3.2) is degenerate and has the family of solutions with the param-
eter \i:

x9 — MAp + )\%B 71 =0,
A
Zo+)\1%p+)\%373 =0, ¢g— A2 =0. (3.4)
0
From now and further B is expression (2.2).

Equations (3.4) define a family of stationary IMs of codimension 3 for
system (2.5) on the Hess IM.
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The equations of motion on the elements of the family of IMs (3.4) can
be written as:

Ap =

. CZO [MA(C — B)zop + C22),

Ap

Ba
4= )\1BCZO

————[MB(A = C)zop — Claf + 23)].

The energy integral for these equations takes the form:

: Axf 2(xf + 25)
of] = A(Czoﬂ)p + Bg® - 7

When condition (3.3) does not hold, system (3.2) has two solutions
p=aq="2="0,m=*zo(zg +2) "% 73 = £a(ag + 25) /> (3.5)

which correspond to equilibria of system (2.5). These solutions are sta-
tionary: integral K (3.1) assumes a stationary value on them. The 2nd
equilibrium position belongs to the elements of the family of IMs (3.4)
corresponding to A} = (3 + 22)B~2.

3.2. ELIMINATION OF A FAMILY PARAMETER FROM A FAMILY OF IMS

Eliminate, e.g., the parameter A\ = g7, 1 with the help of the last
equation of (3.4) from the rest of the equations. As a result, we have
two equations

(z0v2 — Apq) v2 + Bg*y1 = 0,
(2372 + Azopq) v2 + B2og*y3 = 0 (3.6)

which define an IM of codimension 2 of the system under consideration.
As can be seen from the method for its finding, it stratifies into the IMs of
codimension 3 (IMs (3.4)).

The equations of motion on IM (3.6) (after elimination 7,3 from (2.5)
with (3.6)) are given by

(C — A):L‘()Zo 20

. Ap 2, .2
j= Wzoq[B(A—C)xopq—0($0+zo)72]7
Yo = %(2)(]2 [A (A — C)xopq — (A$(2) + Cz(%)’)?]' (3'7)

It is not difficult to verify that expression A\ = q*y2 is the first 1ntegral
of equations (3.7). Note that IM (3.6) and the first integral A\; = g,
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be obtained as a solution of stationary equations (3.2) with respect to the
phase variables 71,73 and the parameters Aj, Ay [6].

The above IMs can be “lifted” into the original phase space. To do this,
it is enough to add the Hess integral to their equations.

Substitute expressions (3.5) into equations (3.6). These turn into iden-
tity. Whence we conclude, solutions (3.5) belong to IM (3.6).

Now eliminate the parameter A\; from equations (3.4) with the help of
the first of them. We obtain two following IMs of system (2.5):

1
—— _[2Bgv, — (Ap + —
2371[ gy — (Ap+ a)y] =0,

1
1Bl [ABz3~7 + (Ap £ @) (2Azopy1 + (Ap £ ) z973)] = 0, (3.8)
2071

where a = \/A2p2 — 4Bxgy;. As can be verified, these IMs belong to IM
(3.6).

Analogously, having eliminated the parameter A; with the help of the
2nd equation of (3.4), we have two more IMs of differential equations (2.5):

2B +(B+ A =0
2Bzoq73[ 20973 £ (8 £ Apzo)ye] = 0,

1
1522 [4Bxozivs + (B £ Apxo)((B £ Apxo) 71 £ 24z0py3)] = 0. (3.9)
2073

Here B = /22 A2p2 — 423 B~y3. These also belong to IM (3.6).
The relations

5\1(1’2) = (Ap £ a)(2By) ! and :\1(1!2) = —(Azop £ B)(220B73) ! are

the first integrals of differential equations on IM (3.8) and IM (3.9), respec-
tively.
So, it is true

Proposition 1. Elimination of a family parameter from a family of IMs
allows one to obtain new IM of the equations of motion, and an expression
for the parameter which appears in the process of its elimination is the first
integral of differential equations on the found IM.

3.3. THE INVARIANT MANIFOLDS OF 2ND LEVEL

Let us state the problem of seeking IMs on previously found IMs. Such
IMs we call the 2nd level IMs.
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Consider differential equations (3.7) on IM (3.6). Apart from the integral
Al =q7y ! these equations admit the following first integrals

- Ax% 2 o 2(xf+25) o
Vi = 1z [A2< + 1>p2 + BQqQ] =m,
Bq zO

Vo = B2 [AQ( + 1) 4+ B¢t + (23 + zg)'y%] =1 (3.10)

which are derived from integrals (2.6) after eliminating 1, 3 from them
with (3.6).
Integrals (3.10) are dependent. These can be represented, e.g., as follows:
2BH = Vi — 2(z2 4 22) BV,
Vi =ViVig, Vo = Vih [(af + 25) B*Vi3 + Vag),
where Vi1 = (2§ + 20)A%p? + 2§ B2¢%] 252 = ma, Via = 72(Bq) ™ = m,
Viz = (23 + 22)A%p? + 22 B%¢* = ms.
To seek IMs of equations (3.7), we compose the linear combination of
the integrals H and Vi1
K = V A Axj 1 B 2
= 1 =5 o 2 + p +

M 2(5'30
Pra2( 2o
2[ z2+

0

(=3 + 25)
Bq2 Y2

1>p2 + B%¢%] (n = const)

and write the necessary extremum conditions for the integral K with respect
to the phase variables:

K —wp[(5d 1) -ua(B )] -0,

dp Cz?
0K 2(zk + 23)73 9 OK 2,5,
94 It g nBla=0, 5= = 3 (5 + 20)72

Under the condition ;1 = B~!, the above system has the family of solutions:
v9 = 0, p,q are arbitrary.
The differential equations on this IM can be written as:
(Azd + C23)p = (C — A)xozopq, CBG= A(A — C)xop*. (3.11)
These possess the first integral:
Vi = CB22q* + (Axk 4+ Cz2)p* = const.
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Obviously, the integral V3 assumes a stationary value on the solution p =
g = 0 of differential equations (3.11). The solution defines an equilibrium
position, and it is stable.

Remark 1. The process of seeking new IMs can be continued by consider-
ing manifolds of the 3rd and higher level. It gives us a possibility to classify
IMs according to their embedding and degree of their degeneration [5].

4. Stationary solutions

In sect. 3, stationary solutions were obtained from the non-degenerate
stationary conditions for the family of first integrals in the problem under
study. Let us consider another technique. We shall solve in some sense
the “inverse” problem. First, we find constant solutions directly from the
differential equations, and then we derive families of the integrals which
take a stationary value on these solutions. In some cases, this approach
allows one to obtain both IMs and families of stationary solutions.

Equate the right-hand sides of differential equations (2.5) to zero

A(C — A)zozop q + 20(Axt 4+ C22)ye = 0,
—[Az(C — A)p® + Czo(20m — w073)](Azg + C=5) = 0,

Apzg

e =0 (Lx
CZO’YQ qy3 =VU, p C

Z(()] 7+ 73) =0,q71 —pyre=0.(41)

and construct a lexicographical Grobner basis with respect to some part of
the phase variables, e.g., p,v1,73, for the polynomials of system (4.1). As
a result, the initial system is transformed to the form:

C(C = A) 20¢%y3 — (Azj + C=5) 75 =0,
A(C = A) zog?n + (Axg + C=5) 73 = 0,
A(C — A) zopq + (Axd + C22) y9 = 0. (4.2)

It is easy to verify by IM definition that equations (4.2) define an IM of
codimension 3 of differential equations (2.5).

Next, resolve equations (4.2) with respect to p, 71,73 and substitute the
obtained expressions into (3.6). These turn into identity. Thus, IM (4.2) is
a submanifold of IM (3.6).

Differential equations on IM (4.2) are given by

q =0, ’3/2 =0

and have the following family of solutions:

q = q" = const, y2 = ) = const. (4.3)
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Equations (4.2) together with (4.3) and relation Vo = 325 72 =1 (2.6)
define 4 families of solutions of differential equations (2.5):

C(Az3 +Cz2)20 _, Azt + C22 0
P \/ AA—C)ag 71 AC(A — C)agz 2™
y1 = Cz0k™ 2, 72 =13, 73 = —Azor ™2 (4.4)

p:i\/C(Am%+ng)zo 1 :F\/ Azt + C22 0

AC— Ay T TN ACC = A woze 2"
v1 = —Czok 2, v =79, 73 = Aok 2, (4.5)

where k = ((A%2% + C?23)/(1 — 782))1/4, 79 is the parameter of families.
The conditions for solutions (4.4) to be real are:
78] < 1Tand (zg > 0,20 < 0 (29 < 0,20 > 0) when 0 < A < C) and (z¢ > 0,
20 >0 (29 < 0,29 < 0) when A > C). Correspondingly, the conditions for
solutions (4.5) have the form: |79] < 1 and (zg > 0,29 > 0 (79 < 0,29 < 0)
when 0 < A < C) and (zg > 0,20 <0 (zg < 0,20 > 0) when A > C).
From a mechanical viewpoint, the elements of the above families of
solutions correspond to permanent rotations of the body on the IM of Hess.
Now we find families of the integrals taking a stationary value on the
above solutions. First, consider the family of solutions (4.4).
From equations (3.2) we find constraints on A1, A2 under which solutions
(4.4) satisfy these equations:

A — j:\/ Axd +Cz3 \ (23 + 28) K?

AC(A— C)aozo ™27 T (A= C)aozo’

The latter expressions are substituted into (3.1) give

-~ Az? +Cz3 - (zd + 23) K2
Kio=H 0 0 i+ 90Ty, 4.6
2= F \/AC’(A " Cyaoo T 2A = Ch g (4.6)

As can be verified by simple computation, the integrals K; (K3) as-
sume a stationary value on the elements of the families of solutions (4.4).
Similarly, we find families of the integrals that take a stationary value on
solutions (4.5):

Kaa— I T \/ Axd + C23 i (z3 + 28) K* V.

AC(A—C) 20 e Q(C—A) Toc0
Thus, one can formulate

Proposition 2. The "inverse Lagrange method”, when we first find (con-
stant) solutions from the equations of motion, and then, from the necessary
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extremum conditions for a family of problem’s first integrals, the values of
the family parameters are derived under which the given family of integrals
takes a stationary value on the solutions, allows one to obtain both families
of stationary solutions, and the IMs which these solutions belong to.

5. Stability

Now we investigate the stability of the above found solutions. For this
purpose, the integrals taking a stationary value on these solutions are used.

5.1. ON STABILITY OF INVARIANT MANIFOLDS

Let us analyze stability for the elements of the family of IMs (3.4).
Introduce the deviations from the IMs

0
y1 =20 — MAp + BAIyi, y2 = 20 + N AP+ BXy3, y3 =q — A2

and eliminate 1, 79, 7v3 with the help of the above expressions from integral
K (3.1). As a result, we have the variation of the integral in the vicinity of
the elements of the family under consideration:

1

2AK = —
B\

(yi +v3) + Bys.

Since the quadratic form AK is sign definite at A; # 0, the elements of
the family of IMs (3.4) are stable under the above condition. It should be
paid attention to the fact that the stability condition imposes a constraint
on the parameter of the IMs family, isolating thereby a subfamily whose
elements are stable.

5.2. ON STABILITY OF EQUILIBRIA
Consider the question of stability for one of equilibrium positions (3.5):

—~1/2 -1/2.

p=q=9=0,v = —xo(xd + 22) V2, v3 = —z0(z2 + 22)

Introduce the deviations in the perturbed motion from the given solu-
tion:

p=&, q="5, Y2 =mn, 11 =m+zo(xi+25) "% y3 = mat+20(xf+25) /2.
The 2nd variation of the family of integrals K (3.1) on the manifold

6Vi = xom + zom3 = 0
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is written as:

25°K = A(‘é 2 + 1) & + BE —2x [A(Zg + 1)61771 + B

WO >1/2[<Zj 1) 4]

The elements of the above family of quadratic forms are sign definite
under the conditions:

A 2
B >0, A(C—jg + 1) >0, /23 + 22 (Axd + C23) — AC(2 + 25) A3 > 0.
0
These are reduced only to the constraints on the parameter of the family

of integrals:
M < \/ %3 +z(2)B_1.

Hence, the equilibrium position under investigation is stable.
It was proved that the 2nd equilibrium position is unstable.

5.3. ON STABILITY OF PERMANENT ROTATIONS

Investigate the stability of permanent rotations (4.4).
The variation of the integral K (K3) in the deviations

y1 = — C20k™ 2, Yo = Y2 — 75, y3 = 73 + Axgr 2,

CAx2 +C22) 2y _ Az + C22
y4=P:F\/( RS R B e b1

A(A - C) g AC(A—C)xozp 2

from the unperturbed motion is written as:

K AC 2
20K = (@f + ) (=¥ || g g 1)

V(A= C)xozo i Azt + C22

z3 + 23 _ 2
+< —0 0 ky F AB 1/2@/4)
(A= C)zo2o

3+ 23 p 0 )2
(A—C)J:‘()Zo Y3 By4

In the variables

o KY2 - AC o xd+ 22 -
1_‘/(,4_0)‘@020 A:L'3+Cz§y5’ TN A=) wozg !

2 2
g+ 2§

AB 2y oz e | S0

T
By
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the AK] o takes the form: 2AK; o = (23 + 22)27 + 23 + 23.

Since the latter quadratic form is sign definite with respect to its vari-
ables, the families of solutions under study are stable with respect to the
variables 0172 £ 02¢, 0371 £ Qap, 0373 + 05p;
where o1 = K [(A — C) xoz0] /2, 02 = (AC)Y?(Ax + C23)~1/2,

03 = (23 + 23)1/2[(A — C) mgz0)] V2, 04 = AB™V/2, o5 = :10(1)/2(203)_1/2.

For solutions (4.5), we have the analogous result.

Remark 2. Using the families of integrals assuming a stationary value
on the found solutions, we have obtained sufficient conditions for the sta-
bility of the solutions. As one can see, in some cases, these conditions are
reduced to constraints on the parameters A; of the families of integrals,
isolating thereby from these families some subfamilies whose elements give
a possibility to prove the stability of the solutions.

6. Conclusion

We have presented some results of the qualitative analysis for the equa-
tions of motion of a rigid body in the Hess-Appelrot case. The analysis was
rested on some generalizations of the Routh-Lyapunov method. The family
of IMs has been found on the Hess manifold as a solution of degenerate
stationary conditions for the family of problem’s first integrals. It was
shown that elimination of a family parameter from this family allows one
to obtain new IMs of greater dimension than the initial ones. An analysis
for the equations of motion on one of the IMs obtained in such a way
was done. By the Grobner basis method, the families of solutions whose
elements correspond to fixed points of the phase space in the problem under
study have been found. The linear combinations of the first integrals of the
problem that assume a stationary value on the solutions have been derived.
These were used to investigate the stability of the given solutions. Their
stability with respect to part of variables was proved. A way for “lifting”
the solutions obtained on the Hess IM into the original phase space was
given.
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O06 wHBapuaHTHBIX MHOXKECTBAaX YPABHEHUI NBUXKEHUS
TBepaoro TeJia B caydvae I'ecca — Anmeabspora

B. 1. Upreros', T. H. Turopenko®

L Hnemumym dunamuky cucmem u meopuu ynpassenus um. B. M. Mampocosa
CO PAH, Upxymcxk, Poccutickas @edepayus

Annoranusi. PaccmarpuBaercs 3aa4a O JBUXKEHUM TBEPOro Teja B ciydae lecca
— Anmenbpora, Kormga ypaBHEHUsI IBUKEHUST KPOMe TPEX MEePBLIX UHTETrPAJIOB UMEIOT WH-
BapuanTHOe MHOTOOOpasue ['ecca. Ha ocrose meroma Payca — JIsimyHnoBa u ero 06001eHmit
NIPOBOJUTCSA KAa4eCTBEHHbINA aHaJu3 auddepeHnnalbHbX YpaBHEHUH Ha 3TOM MHOI'000-
pa3un. BbI,Z[eJIHIOTCH CTallMOHapHbIe NHBapUAaHTHbIC MHOXKECTBa yKaBaHHI)IX ypaBHeHI/IfI u
UCCJIelyeTCs UX yCTORYuBOCTD 110 JIsmyHnoBy. I1oj cTanmoHapHBIMU TOHUMAIOTCS. MHOMKE-
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CTBa, COCTOSAIINE U3 TPACKTOPHUIl YPABHEHUI NBUKEHUS U 00JIA IAIONIIE SKCTPEMATHHBIM
CBOWCTBOM: Ha 3THUX MHOXKECTBAX YJIOBJIETBOPSIIOTCS HEOOXOUMbBIE YCJIOBUSI IKCTPEMY-
Ma 3JIEMEHTOB ajreOpbl IEPBBIX MHTETPAJIOB 33/a4u. B cTaThbe mpeiaraeTcss HEKOTOPOE
pacImpeHne MeTOAUKN HAXOXKIEHUsI TAKUX MHOXKECTB: MTOJIydYeHUe HOBBIX MHOXKECTB U3
paHee U3BECTHBIX, IIpUMeHeHue “obparHoro meroja Jlarpamnxka“. C uCrosIb30BaHIEM 9TUX
c11ocoboB myist muddepeHnmnaabHbIX ypaBHEHN Ha MHOroobpasun lecca HaiieHO cemeli-
CTBO MHBAPHAHTHBIX MHOI000pa3uil, U3 KOTOPOI'O IIOJIyYEeHO HECKOJIHBKO MHBAPUAHTHBIX
MHOT000pa3uit 60j1ee BHICOKOU PA3MEPHOCTH, 9eM MHOT00Opa3us ceMeiCcTBa, U MPOBEIEH
aHamn3 auddepeHnuaIbHbBIX YpaBHEHUI Ha OMHOM M3 HuUX. HalijieHbl MOJIOXKEHUs paB-
HOBECHsI W CEeMelCTBa MEPMAaHEHTHBIX BpaiteHnit Tena. st psma pemreHnit moJTy9eHbl
JOCTATOYHBIE YCJIOBUSI YCTONYUBOCTH.
KuaroueBrbie cioBa: ciayuait ['ecca, mHBapnaHTHBIE MHOXKECTBA, YCTONINBOCTb.

Cnucok JurepaTryphbl

1. Bensie A. B. O6 obmmeM perieHnn 3a1a49u O JBUYKEHUN TSAYKEJIOTO TBEPIAOrO TEJIa
B cayqae lecca // Maremarwaeckuit c6opumk. 2015. T. 206, Ne 5. C. 5-34.
https://doi.org/10.4213 /sm8335

2. bBenser A. B. O npencrapieHnn pelieHnii 3a1a491 O JBU?KEHUH TSKEJI0r0 TBEPIOTO
Tesia B ciydae KoBasieBckoit B (- u o- dyHkiusax Beiteprirpacca u HemHTErpupy-
€MOCTH B KBaJIpaTypax ciaydas Lecca // Maremarmaecknii c6opamk. 2016. T. 207,
Ne7. C. 3-28.
https://doi.org/10.4213/sm8552

3. bBopucos A. B., Mamaes U. C. Ilunamuka TBepaoro reja. [aMuIbTOHOBBI METOIBI,
MHTErPUPYyEMOCTh, Xaoc. MockBa ; VxkeBck : TH-T KOMIBIOTEPHBIX UCCJIEIOBAHMIA,
2005. 576 c.

4. Tony6es B. B. Jleknuu 10 MHTErpupOBaHUIO YPaBHEHUM JIBUXKEHUS TSXKEJIOTO
TBEPJIOrO Teja 0KoJsio HemoaBmKuOM Touku. M. : TU'T-TJI, 1953. 287 c.

5. MHpreros B. /I. luBapuanTHbIe MHOrOOOpa3usi CTAIIMOHAPHBIX JIBHXKEHUA U UX
ycroitansocTs. HoBocnbupck : Hayka, 1985. 144 c.

6. Upreros B. /1., Turoperko T. H. O6 mHBapuaHTHBIX MHOroOGpa3UsIX CHCTEM C
nepebiMu uaTerpasavu // Ilpuknannas maremarnka m mexanuka. 2009. T. 73,
Ne 4. C. 531-537.

7. Kosases A. M. O nsukenun tesa B ciaydae Lecca // MexaHuka TBEpIOIO Tela.
1969. Ne 1. C. 12-27.

8. JlamynoB A. M. O moCTOSIHHBIX BUHTOBBIX JBUXKEHUAX TBEPIOro Tesa B 2Kuakocru
// Cobpanme coumnenunii. M. : AH CCCP, 1954. T. 1. C.276-319.

9. Ilyamkape A. O KpuBbIX, OlpenesieMbiX auddepeHnralbHbIMU ypaBHeHnsiMu. M.
; JI: O3, 1947. 392 c.

10. Xapmamon M. II. Torosmoruvueckuit ananus u 6ynaesnl pyHkiuu. 1. Meroas u npu-
JIOXKeHUs! K KiaccudeckuM cucremaM // Hesuneiinas puaamuka. 2010. T. 6, Ne 4.
C. 769-805.

11. Hess W. Uber die Euler’schen Bewegungsgleichungen und iiber eine neue
partikuldre Losung des Problems der Bewegung eines starren Korpers um einen
festen Punkt // Math. Ann. 1890. Vol. 37, N 2. P. 153-181.

BanenTtun AMmurpueBud UpTeros, 1oKTop HGU3NKO-MATEMATHIECKAX
HayK, CTapIIuil HAyIHBIA COTPYAHUK, VIHCTUTYT AMHAMUKU CHCTEM U TEO-
pun ynpasiyenust um. B. M. Marpocosa CO PAH, Poccuiickast @eneparusi,



34 V.D.IRTEGOV, T.N. TITORENKO

664033, 1. Upkyrck, yi. Jlepmonrosa, 134, renr.: (3952) 453092,
e-mail: irteg@icc.ru.

Tarpsina HukosaeBna TuTopeHKO, KaHAXIAT TEXHUIECKUX HAYK,
CTAPINiT HAYIHBIH COTPYAHUK, NHCTUTYT JMHAMUKH CHCTEM W TEOPHUH VII-
pasjenust um. B. M. Marpocosa CO PAH, Poccuiickas ®@eeparms, 664033,
r. Upkyrck, yi. Jlepmonrtosa, 134, ren.: (3952) 453012,
e-mail: titor@icc.ru.

Hocmynuaa 6 pedaxyuro 19.05.2020

Wssectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
2020. T. 33. Cepust «Maremaruxas. C. 20-34



