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Abstract. The paper considers the stability property of tubes of discontinuous solutions
of a bilinear system with a generalized action on the right-hand side and delay. A feature
of the system under consideration is that a generalized (impulsive) effect is possible
non-unique reaction of the system. As a result, the unique generalized action gives rise
to a certain set of discontinuous solutions, which in the work will be called the tube
of discontinuous solutions.The concept of stability of discontinuous solutions tubes is
formalized. Two versions of sufficient conditions for asymptotic stability are obtained.
In the first case, the stability of the system is ensured by the stability property of a
homogeneous system without delay; in the second case, the stability property is ensured
by the stability property of a homogeneous system with delay. These results generalized
the similar results for systems without delay.
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1. Problem Statement

Consider the bilinear system of the differential equations with delay

m—1
#(t) = | At) + D Di(t)o;(t) | 2(t) + g(t)om () + Ar (B)a(t — 7)+
j=1
0
+/G(t, )zt + s)ds + f(t), >t (1.1)

—T
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Here A(t), A-(t), G(t,s), D;(t), j € 1,m are continuous of the bounded
matrix functions of dimension n x n, v;(t) (j € 1,m) are components
bounded variation vector functions v(t) = (v1(t),va(t),...,vm(t))?, 7> 0
is constant delay, ¢(t) — is initial function, which is n-dimensional vector
function of bounded variation, defined on [ty — 7, to], f(t) is n-dimensional
vector function with the integrated elements, g(t) — is continuous n —
dimensional vector function.

Characteristic of the system (1.1) is that its right part contains an
incorrect multiplication operation discontinuous function to generalized
one. This is due to the next fact. If the function v(t) is discontinuous
at some moment time, then the system is subjected to impulse action at
this moment. Therefore, the function x(¢) appears breaking at the same

m
moment, and in the term ) Dj;(t)v;(t) z(t) is an incorrect operation of

multiplying a generalized function by a discontinuous functions, which leads
to the problem of formalizing the concept of decisions.

The formalization of the concept of a solution to the system (1.1) has
been considered by various authors. The monograph [10] provides a fairly
complete overview of possible approaches. Note that various formalizations
of the concept of a solution lead to different trajectories. In this work we
will take an approach, which is based on the approximation of generalized
actions by smooth approximations and the determination of a solution
based on the closure of the set of continuous trajectories resulting from
the approximation of generalized actions by summable functions. For more
information, see [2;4;10]. N.N. Krasovskii in the monograph [3] noted, that
such definition is natural from the point of view of control theory. In the
case where the matrices D; are mutually commutative, for any admissible
t > tg, any sequence vi(t), which converges pointwise to v(t), generates a
sequence of solutions of the equation (1.1), which will have a single limit
and will not depend on the method of approximating the function of the
function of bounded variation v(t). This case for systems without delay
was considered in [2;4;10], and for systems with delay was considered in
[7].

In the case when the sequence of smooth solutions is not convergent, in
[6;10] it is proposed to take all partial pointwise limits of such sequence.
As in [6;10] we will say that the sequence vg(t) V — converges to v(t),
if vi(t) converges pointwise to v(t) and var vg(-) converges pointwise to

to,t

V(t) € BV [to,?]. For this convergence we will use the symbol vy (¢) Y v(t).

Definition 1. Any partial pointwise sequence limit xy(t), k = 1,2,...,
generated by arbitrary V -convergent sequence of absolutely continuous func-
tions vi(t), k =1,..., we will call V' - solution of the system (1.1), which
satisfies the initial condition x(t) = p(t), t € [to — T, to].
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Let z(0) = z(t), 1(0) = v(t) are the initial conditions of the system

m—1

Di(t )+ f@mm (&) (&) = n(E). (1.2)

=1

According to [10] all V— solutions of the equation (1.1) will satisfy the
following integral inclusion:

m—1 t t
) € plto) /ﬁ §dc+ Y. [ D)) dvi(e) + [ o€ v €)+
=1 to to

to —7

+jf(£) d£+/tC(E)ac(g—T)ngr/t/0G(&S)I(Hs)dwyr

+ > St - 0),Av(t; — 0), V(£ — 0), AV (¢; — 0)+

t; <t,t;€Q_

+ > St a(t), Av(t +0), V(t:), AV (¢ +0)) (1.3)

ti<t,t; €0

where v°(t) - is the continuous component of the vector of the function of
bounded variation v(t).

In (1.3) set S(,z(t), Av(t), V(t), AV (t)) (where t =¢; — 0 t; € Q_ and
t=t;if t; € Q4) defined as a sectional shift (u(AV(t)) = v(t;) if t; € Q_
and p(AVt) = v(t; +0), if t; € Q) are system reachability sets (1.2) at a
size —z(t) at the moment & = AV (), where the control n(¢§) satisfies the
constraint, ()] < 1, ()] = S [ (€).

Thus, to each discontinuity point (left or right) of the function v(t) and
every possible jump in the trajectory of the system (1.1) at moment ¢ the
function n® (€), defined on the segment [0, AV (£)], which, by solving the
system of equations (1.2) will determine the jump value of Ax(¢) of the
trajectory at the time t.

Definition 2. Continuing solutions of integral inclusion (1.3) for [tg, 00)
will be called the solution of the equation (1.1) on the interval [tg, 00).

We denote the tube section of the solutions of the integral inclusion (1.3)
by X (¢,0(:),v(-), V(-)) which is generated by the initial condition ¢g(-)
and a pair of functions v(-), V(-)

Definition 3. We say that the solution tube for the integral inclusion
X(t,p0(-),v(-), V(-)) is stable if Ye > 0 3d(e) > 0, what if

sup  [po(§) —¢1(§)] <6,
£€[to—T,to]
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that
p(X(taSDO(')’U(')’ V('))’X(t’ Qpl(g)av(')a V())) <g,

for any t > to, where p(A, B) is the Hausdorff distance between the sets A
and B.

Definition 4. We say that the solution tube for the integral inclusion
X(t,p0(+),v(-), V(-)) is asymptotically stable, if it is stable, and also equal-
ity s validity

lim p(X(t,.%’o,’U('), V(')),X(t,f,?}('), V())) = 0.

t—00

2. Stability of discontinuous solutions tubes

The results obtained below are a generalization of [9] for systems with
delay.

Theorem 1. Let the fundamental matriz Y (t,s) of the system & = A(t)x
satisfy the estimate

1Y (2, 8)]] < cemfett=2), (2.1)
where o and ¢ are some constants such that o > 0, ¢ > 1, t > s > ty. In
addition, suppose that the estimates

|D;(t)] < K, |G(t,s)|| < KVt e [ty,00),s € [to,t],j€l,m—1 (2.2)

Here K - is a positive constant. Then if z(t) and T(t) are integral inclusion
solutions generated by the initial conditions o(t) and p1(t), as well as the
same system of functions n(f) (&) which generates jumps of the trajectorys
x(t) and T(t), then the following estimate holds:

[Z(t) —z(t)]| < sup  [lo1(€) = po(§)]| x e~ (@Tto)meRelt=tot VD) (9 3)
E€lto—T,t0]

Proof. According to [6], z(t) and Z(¢) will satisfy the integral equation

t t

m—1 ¢
z(t) = plto)+ | Az (&) dé+ D;(€)x (&) dvs(€) + [ 9(€) duy, (€)+
e[y | /
+ / A (&)a(¢—7) dé+ / F©de+ > St x(ti—0), 1" 0 (), V(t:—0),

o ti<t, t;€Q_

AV —0)+ S0 Stalt)n®™(),V(E), AV (L), (2.4)

ti<t, t;€Q4
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where p(to) will be equal to pg(tg) and ¢1(tg) for z(t) and Z(t) respectively,

S(&x(B), 10 (), V(5), AV(D) = 2(AV (D)) — = (D),

where z(&) is a solution to the equation
Z DD () + gDnD(E), 20) =a@).  (25)

Using the Cauchy formula [10] we get that the solutions z(t) and Z(t) will
satisfy the integral equation

m—1 t t
£ =Y (1, t)plto) +> / (t,€)D <s>+/Y<t,s>g<s>dv;<s>+
=l to

t t 0
+ [Ye.9a- @0t - nde+ [ [ v oGEs)sle -9 deast

to to —7

+ Y (t,1;)S (ti, x(t; — 0),nE =0 (), V(t; — 0), AV (t; — 0)+
t<t, t:€0_
t

+ Z Y(t7ti)§(tiaw(ti)7n(ti)(')vV(ti)aAV(ti)) + /Y(t7§)f(§) d§
ti<t, t; €EQ4 to

(2.6)
According to (2.6), T(t) — x(t) will satisfy the integral equation

z(t) —z(t) =
m—1 t
=Y (o)1 o) — a(t0) + 3 [ V(L ODUE@(E) - 2(6) dus(€)+

=1 to

/Ytg (e —T)—z(E—T) d£+/Yt£/G§, 7(€—8)—

—x(€—s))dsdé+ Y V() (S(ti, 2(ti—o)m o (), V(tizo), AV (ti—g))—

= S(ti, x(ti — 0),n" =0 (), V(t; — 0), AV (t; — 0))) +
+ Y Y () (S E), (), V (), AV (t - 0)—
ti<t, t; €94

- g(tivw(ti)an(ti)(')7 V(ti)7 Av(ti + 0))) (2'7)
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As shown in [9] (the equation describing the jump of the trajectory does
not depend on the delay) fair inequality

AV (t)

[Z(AV(t) =z(t) = ((AV (D)) —z(®)[| < K[z(t) —z()]- / I (€)1l dé+

0

AV (t)
+K / I2(8) — 2(t) — (2(&) — ()10 (&[] d€).
0

According to the Gronwall-Bellman lemma [1] rom the last inequality we
get
AV(2)

[Z(AV(t) —=z(t) — (2(AV(?)) —2(@)]| < K / In* ()Nl Z(t) — w(t)]x
0

AV (t)

K [ |In®(©)llde
0 )

x (e (2.8)

Using the obvious estimate ae® < eBe — 1 for all @ > 0 and B > e the
inequality (2.8) with || (€)|| < 1 leads to the inequality

IZ(AV () =Z(AV () = (2(1) —2()]| < [F(t) —2(O)]I(eFAV D ~1). (2.9)

We introduce the notation

y(t) = T(t) — z(t). (2.10)

We calculate the norms of the left and right sides in (2.7) taking into account
(2.1),(2.2),(2.8), (2.9) and obvious inequality (¢ > 1) c(e* — 1) < e* — 1,
from (2.8) we get

to,

t
o) < cle™ Oyt + K [ 9 y()]d var v°()+
to

t

t 0
LK / Oy (¢ — 7 de + K / eo(t-9) / ly(€ — 5] dé ds)+
to —T

to

i Z efa(tfti)(ecKSHAV(ti*O)” — 1) |ly(ti — 0)||+
t;<t,t; €Q_

4+ Z e*a(t*ti)(eCKe”AV(ti)”_1)”y(ti)”.

ti<t,t;€Q4
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We multiply the last inequality by e**~%) and introduce the notation

q(t) = e ly(t)]), (2.11)

we get:

t
alt) < cly(to)] + ek / () yor o)+

t
+cK/e””q(§ —7)dé+ Y (eRARVETOT_1)g(t; — 0)+
io ti<t,t; EQ_

N Z (ecKeHAV(ti)”_l)q(ti).

ti<t,t;€Q4

We introduce another notation h(t) = SUP[;_7. ] q(+). Then the last inequal-
ity can be rewritten as

h(t) < ch(to) + cK / B(E) d((e° + T)E + var v°())+

to, €]

+ Z (eKelAVE=OT _ 1) h(t; — 0) + Z (eKelAVEN _ 1) p(t,).
ti<t, t;EQ_ ti<t,t;€Q4

Multiply the integral on the right-hand side of the last inequality by e and

replace [var ve(-) to V¢(t). As a result, we obtain the inequality
0,

h(t) < chity) + cKe / h(€) d((e° + 7)€ + VE(E))+

to

4 (ecKelAV =0l _ 1)p(t; — 0) + Z (ecKelAVEI — 1)p(t,).
t;<t,t;€Q_ ti<t,t;€Q4
(2.12)
According to Lemma 5.4.3 from [10] every solution to the inequality (2.12)
will satisfy the estimate

h(t) < eKeU=otVO e sup  lp1(€) — @o(&)]].
£€[to—T,to]

Multiplying this inequality by e~*(t=%) and taking into account the designa-

tion (2.11) we obtain the estimate (2.3). O
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Theorem 2. Under the assumptions of the theorem 1 inequality is fair

p(X(t (), 2(),0(), V), X (& 0()z(),v(-), V() <

<c sup [lp(€) — @o(§)|| x e (o) eRelt=totV(E), (2.13)
E€[to—T,to0]

Proof. Between the sets of V — solutions X(¢,¢(-),z(-),v(-),V ("))
and X (¢,¢(-),z(+), v(-),V(-)) one-to-one correspondence is established: ev-
ery trajectory from X (¢, ¢(-), z(-),v(-), V(+)) is associated with a trajectory
from X (¢t,¢(-),z(-),v(-),V(:)) by the rule - the initial conditions are differ-
ent (¢(-) and @(+)), and the system of functions 7y, that defines jumps is
the same.

First, note that according to [5] the sets X (¢, p(+),z(-),v(), V (-)) and
X(t,¢()z(-),v(),V(:)) are closed. Their boundedness follows from the
previous theorem. Then

p(X(t, 90(')7 1‘(), U(')? V())? X(t7 @()j()v U(')v V())) =
N maX{:vEX(t, (-I)Iﬁ-)i v(),V() yeX(, ‘(%18 QOR40) e =yl

max — . 2.14
VX X v eex (B vy 1 I (2.14)

Let the extremum in (2.14) achieved when z € X (¢, ¢(-),z(-),v(-), V (*))
and g € X(t,(-)z(-),v(-),V(+)) ie.

p(X(t (), 2(),v(), V (), X (& 0()x(-),v(-), V() =

= max min ||z —yl| =
zeX (L ()2 ()0(),V () yeX(,2()Z(),v(-),V ()
= min 1z =yl = [lz = 7l|

YEX (t,0()T()w(),V ()
The element z can be matched z € X (t,o()z(-),v(:),V (-)). It’s obvious
that

min z—yl|l=|lz—9y|| <||T— x|
yexw(.)j(_)m(_)y(.))|| =1z =gl <l |

Then from (1.2),(1.3),(2.1) and the theorem 1 implies the validity of the
theorem 2.

O
Corollary 1. Let the assumptions of theorem 1 holds. Then if
(o — cKe)(t —to+ V(1) > g,
for all t € [tg,0), where ¢ — some constant, then the tube of solutions of

the unperturbed motion X (t,@o(-),v(-), V(-)) will be stable, and if
lim (o — cKe)(t — to+ V(1) = oo,
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then the tube of solutions of the unperturbed motion X (t,¢o(-),v(-), V(+))
will be asymptotically stable.

Next, we consider another variant of the sufficient stability conditions
for the solution tubes. First we give the Cauchy formula for a linear system
with delay [1]

0
#(t) = A(t)x(t) + A-(t)x(t — 1) + /G(t, s)x(t + s)ds + p(t), (2.15)

with the initial condition ¢(t), defined on the interval [ty — T, to], p(t) —
is an integrable function. The matrix functions A(t), A, (t), G(t, s) satisfy
the same conditions as in the equation (1.1)

According to [1] in the case when p(t) — is an integrable function, , the
solution of the equation (2.15) with the initial condition ¢(t) = x(t), to —
T <t <ty exists and is unique.

Denote (Q as the square in the plane s and ¢t , wheretg < s < Jtg <t < 9.
According to [1] under the assumption that p(t) — is an integrable function
the solution of the equation (2.15) can be represented as

x(t) = F(t,to)e(to) + / F(t,s+71)Ar(s+7)p(s)ds + /F(t7 s)p(s) ds.

to—T
(2.16)
The function F'(t, s) is a solution to the equation

OF(t
8( 8) _ —F(t,s)A(s) — F(t,s + 1) A (s + 7) (2.17)

s

with initial condition

F(t,t—0)=FE; F(t,s)=0s>t. (2.18)

Now apply the formula (2.16) to the equation (1.1) under the assumption
that v(t) is an absolutely continuous function. As a result, we get:

(1) = F(t to)o(to) + tto_ Pt s+ 7)Ar (5 + 7)0(s) ds+

+ 3 [P0 @@ @ ds + [ F6 g ds+

J=l g, to

+ [Feof©d (219)
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We substitute in (1.2) v(t) = v®)(t), where v*)(¢) is a sequence of ab-
solutely continuous functions that converge pointwise to the function of
bounded variation v(t). By z(*)(t) we denote the sequence of absolutely
continuous solutions of the equation (1.1), generated by the sequence
v®)(t). Tt is not difficult to show that the sequence z(¥)(t) is bounded
and the sequence of variations of these functions will also be uniformly
bounded. Then according to Helly’s theorem, from this sequence we can
distinguish a subsequence z(¥?) (t) which converges pointwise to some func-
tion of bounded variation z(t). In (1.2) we pass to the limit for k; — co.
The main difﬁculty in performing this limit transition takes place in the

expression > ") f F(t,&) D;j(&)x(&)v;(€)ds. The passage to the limit in

this expression can be done by replacing the time & =t + [Var} v#i) in the
to, t

same way as in [6;7;10]. As a result, we get that z(¢t) will satisfy the

integral equation

t

m—1 ¢
= Flt.to)e(to) + 3 [ FEOD €€ () + [ Flt.09(6) desy(6)+

J=1 to to

+ > F(t )8t a(t — 0),n" 0 (), Vit — 0), AV (£ — 0)+

Y P )82t 0 (), V(8), AV () + / F(,)f(€) d.

t;<t,t;€Q4

(2.20)

Suppose that, as in the theorem 1 z(¢) and Z(t) are integral inclusion
solutions generated by the initial conditions ¢o(t) and ¢;(t) as well as the
same system of functions nx (§)which generates jumps in the trajectories
x(t) and Z(t). Then for the difference Z(t) — x(t) the expression is true

m—1 t
T(t) — 2(t) = F(t, o) (1 (o) — 1(t0) + 3 / F(t,€)Di(€) (2(6)
=1 to
LR F(t,ti)(Sm,f(ti_o),n“i*)(-),V(ti_o),

ti <t, t;€Q_

AV (ti-o)) = S(t alts — 0), 0O (), V(t; = 0), AV (£ — 0)) ) +

+ > Rt (St 30 1M (), V k), AV (4 — 0))-

ti<t,t;€Q4
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St (), n (), V (), AV(ti))). (2.21)

Further we will assume that the Cauchy matrix F(¢,s) satisfies the
inequality
1B, 5)]] < e, (2.22)

and also evaluations are performed
ID;(1)]] < K., j € Tym,t € [to, 00). (2.23)

As in the theorem 1, we calculate the norms of the left and right sides
n (2.21), using the estimates (2.22), (2.23) and using notation (2.10). As a
result, we obtain

(o) < ey + e [ &9 y(©)]d var v°()+

0,
to

+ Z efa(tfti)(ecKeHAv(tifO)H _ 1)Hy(tz _ 0)H+

ti<t, t;€Q_

by ealet eeRelsnrol _ )y (e, (224)

ti<t,t;€Q4

Multiply (2.24) by e**~%) and introduce the notation

p(t) = Xy ()] (2.25)

As a result, we obtain

p(t) < CHy(to)chK/p(S)d[tvag Vet Y (e RAAETOT_1)p(1-0)+

i 0 ti<t,t;€Q_
+ Z (ecKeHAv(tiJrO)H _ 1)p(ti)
ti<t,t;€Q4

Now, as in the theorem 1, we introduce the notation

h(t) = [tS_llpt]p(-)- (2.26)

Given the notation (2.26) the last inequality can be written as
h(t) < ch(to)+cK / €)d var v°()+ Y (eKAAEOIN_1)p(t;—0)+

[to, &
o €] ti<t,t; €Q_
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+ Z (ecKeHAv(ti—I—O)H _ 1)p(ti) (2‘27)

t;<t,t;€Q4

Applying Lemma 5.4.3 from [10] to (2.27) we obtain the estimate
h(t) < KV Och(ty).

Multiply the last inequality by e~*(—t0) and then take into account (2.25),
(2.26) and (2.10). As a result we will receive

|2(t) —z(®)] <c  sup [[@1(€) — po()]|e”@UTTIeRVED o (2.98)
£€[t077—,t0]

As a result, the following theorem is proved.

Theorem 3. Suppose that the fundamental matriz F(t,s) of the system
(2.15) satisfies the estimate (2.22) and the matrices D;(t) satisfy the esti-
mates (2.23). Then the solutions of the integral inclusion (1.3), generated
by the initial conditions ¢o(t) and ¢1(t), as well as the same system of
functions ni(§), which determines the jumps of the solutions x(t) and ZT(t),
satisfy the inequality (2.28).

Similar to theorem 2 and corollary 1 we can state the following theorem

Theorem 4. Under the conditions of theorem 3, the inequality is fair
p(X(E, (), z(-),v(), V (), X (¢, @()z(-), v(-), V()
<c sup |[pi(€) = po(§)|[e @l meRV), (2.29)
E€[to—T,to]
Therefore, if
a(t —tg) —cKeV(t)) > q
for all t € [ty,00), where ¢ — is some constant, then the tube of solutions

X(t, (), z(-),v(-), V() is stable, and if

lim (a(t —tyg) — cKeV (t)) = oo,

t— 00

then the solution tube X (t,(-),z(-),v(-),V (-)) is asymptotically stable.

3. Conclusion

We investigated the stability property of solutions of a bilinear sys-
tem with a generalized actions and delay. A distinctive feature of the
system under consideration is that a non-unique reaction is possible on
the generalized actions. In this regard, the paper gives a formalization of
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the concept of stability of discontinuous solution tubes and two sufficient
conditions are obtained that ensure the stability of discontinuous solution
tubes. The results of the paper generalize the corresponding theorems for
systems without delay obtained in [9].
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06 ycroitunBocTH TPYOOK pa3pbIBHBIX pPEHIeHUIT OuInHeli-
HBIX CHCTEM C 3amna3AblBaAaHUEM

A. H. Cecexun’?, H. 1. ?Kemonkuna'

L Vpanvexuti dedeparvrviti yrusepcumem, Examepunbype, Poccuitickas De-
depavus

2 Unemumym mamemamuru u mexanuru um. H. H. Kpacosckozo ¥YpO PAH,
Examepunbype, Poccutickas Pedepayus

Awnnoramusi.  Vccieayercs CBOWCTBO yCTONYNBOCTH TPYOOK Pa3pPBIBHBIX PeIeHUit
OMJIMHEHHONW CHCTEMBI ¢ ODODIIEHHBIM BO3JIEHCTBHEM B IIPABON YacTH W 3ala3/IbIBAHU-
eM. OCOGEHHOCTBIO PACCMATPUBACMON CHCTEMBI SIBJISIETCS TO, UTO Ha 06o0IeHHOe (MM-
IyJIbCHOE) BO3MEHCTBUAE BO3MOXKHA HECJIMHCTBEHHAS DEAKIMs CHCTEMbL. B pesysbrare
€IMHCTBEHHOE O0OOIIEHHOE BO3/IECTBIE B KAYECTBE PEAKIINU CUCTEMBI TTOPOXKIAET HEKO-
TOPYIO COBOKYITHOCTH PA3PBIBHBIX PEIIEeHMiT, KOTOPYIO B paboTe 6yaeM HAa3bIBaTh TPYOKOIt
pa3pbIBHBIX pemntennii. POpMan30BaHO MOHSITHE YCTONYMBOCTH TPYOOK Pa3pbIBHBIX pe-
mienuii. Ilosyuensr gBa BapuanTa JOCTATOYHBIX YCJIOBHI aCHMITOTHYECKON YyCTOWINBO-
cru. B mepBoM citydae yCTORYMBOCTE CHCTEMBI O0ECIIEINBAETCST CBOMCTBOM YCTOMIUBOCTH
OJTHODOJTHOM CHCTeMBbI 6e3 3ala3/IbIBaHWsI, BO BTOPOM CJIydae CBOWCTBO yCTOWYIUBOCTHU
00€eCIIeINBAETCS CBOMCTBOM YCTOWYMBOCTHU OHOPOHOM CHCTEMBI C 3aMA3/IbIBAHIEM. DTHU
pe3ynbTaThl 0600IIAI0T AHATOTHYHBIE PE3YJIBTATHI JIJIsl CUCTEM 0e3 3ara3/bIBaHus.

KuroueBrlie ciioBa: crabuim3ariusi, 0OpaTHast CBA3b, JEIEHTPATIN30BAHHOE YIIPABIIE-
HUE.

Cnucok Jureparypbl

1. Bellman R. Stability Theory of Differential Equations. Dover Books on
Mathematics, 2008.

2. Hpixta B. A., Camconok O. H. OnruManbHOe UMIYJIbCHOE YIIPABJIEHUE C TIPUIIO-
xkeuusimu. M. : @uamariaut, 2000.

3. Kpacosckuit H. H. Teopusi ynpasnenuns neuxkenuem. Jluneitnbie cucrembr. M. :
Hayxa, 1968.

4. Miller B. M., Rubinovich E.Y a. Discontinuous solutions in the optimal control
problems and their representation by singular space-time transformations
// Automation and Remote Control. 2013. Vol. 74. P. 1969-2006.
https://doi.org/10.1134/S0005117913120047

5. Sesekin A. N. The properties of the attainability set of a dynamical system with
impulse control // Automation and Remote Control. 1994. Vol. 55, N 2. P. 190-195.

6. Sesekin A. N. On sets of discontinuous solutions of nonlinear differential equations
// Russ. Math. 1994. Vol. 38, N 6. P. 81--87.

7. Sesekin A. N., Fetisova Yu. V.. Functional Differential Equations in
the Space of Functions of Bounded Variation // Proceeding of the
Steklov Institute of Mathematics. 2010. Vol. 269, suppl. 2. P. 258-265.
https://doi.10.1134/S00& 1543810060210

8. Sesekin A. N., Zhelonkina N. I. On the stability of linear systems with generalized
action and delay. // IFAC-PapersOnLine, Proceedings of the 18th TFAC World



110 A. N. SESEKIN, N. I. ZHELONKINA

Congress. Milano, Italy, 2011. P. 13404-13407. https://doi.org/10.3182/20110828-
6-1T-1002.02426

9. Sesekin A. N.; Zhelonkina N. I. Tubes of Discontinuous Solutions of Dynamical
Systems and Their Stability // AIP. Conference Proceeding. 2017. Vol. 1895.
P.050011 1-7. https://doi.org/10.1063/1.5007383

10. Zavalishchin S. T, Sesekin A. N. Dynamic Impulse Systems: Theory and
Applications. Kluwer Academic Publishers, Dordrecht, 1997.

Anexkcanap HukomaeBud CecekunH, JOKTOP PU3UKO-MATEMATHICCKAX Ha-
yK, mnpodeccop, THCTUTYT ecTeCTBEHHBIX HAYK W MATEMATHKM, ¥ PAJbCKHil de-
nepanbHbIil yHuBepcuTer uM. mepsoro [Ipesmmenta Poccun B. H. Expnuna, Poc-
cuiickas @eneparust, 620002, r. ExarepunOypr, yir. Mupa, 19; Beaymuii HayIHBIH
corpynuuk, Macruryr marematukn u Mexannkun nM. H. H. Kpacosckoro ¥YpO
PAH, Poccuiickas @eneparus, 620219, r. Ekarepunbypr, yi. Codbu Kopasesckoit,
16. Tem.: (343)375-41-40, e-mail: sesekin@list.ru,

ORCID iD https://orcid.org/0000-0002-1339-9044.

Haranpsa Uropesua 2KesoHKHHA, cTapiimil MpenoiaBaTeb, Y paabCKui
DHEePreTUvIecKnii MHCTUTYT, ¥ PATbCKUl (eIepaTbHBIN YHUBEPCUTET WM. IIEPBOTO
IIpesunenta Poccun B. H. Enpruna, Poccuiickas @eneparus, 620002, r. Exare-
punOypr, yi1. Mupa, 19, ten.: (343)375-41-40, e-mail: 312115@mail.ru

Hocmynuaa 6 pedaxyuro 19.11.2019

WzBectusi IpkyTCKOro rocyjapCTBEHHOI'O yHUBEPCHUTETA.
2020. T. 31. Cepusa «Maremaruxas. C. 96-110





