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Abstract. The paper deals with possible behaviour at infinity of solutions to the Cauchy
problem for a parabolic type equation whose elliptic part is the generator of a Markov
jump process , i.e. a nonlocal diffusion operator. The analysis of the behaviour of
the solutions at infinity is based on the results on the asymptotics of the fundamental
solutions of nonlocal parabolic problems. It is shown that such fundamental solutions
might have different asymptotics and decay rates in the regions of moderate, large and
super-large deviations. The asymptotic formulae for the said fundamental solutions are
then used for describing classes of unbounded functions in which the studied Cauchy
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functional classes.
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1. Introduction and Statement of the Problem

1.1. INTRODUCTION. THE CONTACT MODEL

Parabolic type equations with a nonlocal elliptic operator on the right-
hand side play an important role in the analysis of a population evolution
in models of mathematical biology and population dynamics. The presence
of a nonlocal operator on the right-hand side of the equation reflects the
fact that the interaction in these models has a nonlocal character. Let us
describe one of these models, the so-called continuum contact model in R?,
see e.g. [7T-9]. It is a continuous time birth and death Markov process in
continuum defined on the space of infinite (but locally finite) configurations
v € T lying in the space R%: v ¢ R?. The process is characterized by the
birth and death rates. Each point = € v of a configuration vy might create
an offspring y independently on other points of the configuration. The off-
spring location is distributed in the space with the density a(x—y) (so-called
dispersal kernel), and we assume [, a(z)dz = 1. In addition any point of
the configuration has an independent exponentially distributed random life
time determined by the mortality rate m(z) > 0, and in the general case
the mortality rate is a spatially inhomogeneous function m(z) > 0. The
generator of the dynamics of this process takes the form

LFG) =3 [ale=y) (FGUY) - FQ) dy+ Y m@) (FG\a) - F(2)).

xEﬂ/Rd xrey

The case of homogeneous mortality m(z) = k has been studied in details
in the paper [7]. The most interesting case is K = 1 - the critical regime,
when a family of stationary distributions exist.

One of the remarkable property of the contact model is the fact that
the evolution equation on the first correlation function (so-called density
of configurations) is decoupled and can be considered separately. That
is the case only for the first correlation function, evolutions of the higher
order correlation functions have more complicated hierarchical structure
involving lower order correlation functions. The evolution problem has the
form

du
ot

where

= Au, w=u(t,z), xR t>0, w0 x)=uy(z)>0 (1.1

Aua) = —m(ayu(e) + [ ale—y)uty)dy. (1.2
If m(z) = 1, then the operator A takes the form
Au(z) = —u(z) + /Rda(fﬂ—y)U(y)dy = Ada(fﬂ—y)(U(y)—U(w))dy- (1.3)
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NONLOCAL PARABOLIC TYPE PROBLEMS 101

We notice that correlation functions in the contact model, as well as in
other models of the population dynamics, need not vanish at infinity, and in
some models they can even grow. Thus to study the behaviour of correlation
functions we have to consider the evolution equations (1.1)-(1.2) in suitable
classes of bounded or increasing functions.

1.2. ESTIMATES OF FUNDAMENTAL SOLUTIONS TO SOME PARABOLIC
TYPE PROBLEMS

In this section we consider some important classes of parabolic type
equations and give a short review of known results on the asymptotic
behaviour of the corresponding fundamental solutions.

The fundamental solution of the classical heat equation

Oyu — Au = 0,

where A is the Laplace operator in R?, is given by the Gauss-Weierstrass
function

1 x —y|?
pe(w,y) = W exp ( - %) (1.4)

For a general parabolic equation
Ou — Lu =0,

where L is a uniformly elliptic second-order operator in divergence form,
the Aronson estimates, see [1], for the fundamental solution are well-known:

(o) = Srexp - 2240
bt 'Y Atd/Q p ot )

where the sign < means that both < and > inequalities hold with probably
different constants ¢ > 0 and C > 0.
The fundamental solution of parabolic type equation

du+ (—A)Y?u=0, 0<a<2,

where (—A)a/ ? is an integro-differential operator of the form

«@ f x _f
(A £ (2) = caapov. /R d %dy, (1.5)

has been studied using the subordination techniques, see [2;5]. The follow-
ing asymptotic relation holds:

g C ]w—y[ —(d+a)
Dbt (xay) - td/a <1+ tl/a >
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1.3. THE STATEMENT OF THE PROBLEM

In this paper we are concerned with parabolic type equations, where
instead of the elliptic differential operator L we consider its nonlocal analog,
namely, the convolution type operator A given by

Af@ = [ G ra)el—yan (1.6

where the convolution kernel a(z) is a nonnegative, even, bounded, inte-
grable function with bounded second moments:

a(@) > 0; a(e) =a(-2);  a(2) € LXRYNLNRY,  (L7)

/Rd / lz]2a(x)dz < co. (1.8)

In particular, condition (1.8) implies that the matrix o = {0;;} with

O'Z‘j:/ xivja(x)de
rd

is well defined and positive definite. It follows from (1.7) that a(x) €
L%*(R%), and for its Fourier transform a(p) we have:

a(p) € Cy(RY) N L2(RY), max a(p) =a(0) =1, a(p) =0 as |p| — co.

Moreover, we assume that the convolution kernel a(x) has a light tail at
infinity:
a(z) < ce bl with some b >0 and p > 1. (1.9)
Since A is a bounded operator in L? ([Rd), its heat semigroup e admits
the following representation:

1 e ka*k e . xk

tA _ _—t tax _ _—t _ ot —t

et =e e =¢ g t_k:! e 'Id +e E t i
k=0 k=1

This sum contains the singular part e~‘Id and the regular part

00 *k
=ty k('x). (1.10)
k=1 )

Therefore, the fundamental solution of (1.6) has the form
u(z,t) = e '6(x) +v(x,t), (1.11)
and for any f € L? ([Rd) the solution to the nonlocal Cauchy problem

Ou — Au =0, u‘tzo =f (1.12)
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NONLOCAL PARABOLIC TYPE PROBLEMS 103

has the form
u(z,t) = e ' f(z) + (v = f)(x,1), (1.13)

where v is defined by (1.10). Notice the similarity of the representation
(1.13) for the solution of nonlocal problem (1.12) and the Poisson in-
tegral for the classical Cauchy problem. In the present work we study
unbounded at infinity solutions of problem (1.12) using formula (1.13) and
the asymptotical estimates of the function v(z,t). Some particular cases
of convolution kernels have been considered earlier in [4]. Our approach
applies to the generic convolution kernels that satisfy the above conditions.

It should also be noticed that there is a crucial difference between
the nonlocal operators defined in (1.5) and in (1.6). Namely, in contrast
with the nonlocal operator in (1.5) the operator A defined in (1.6) has
an integrable kernel a(x — y). It is also useful to note the probabilistic
interpretation of the function v(x,t). Under conditions (1.7), (1.8) the
operator A given by (1.6) is a generator of a continuous time Markov
jump process. If this process starts at zero, then formula (1.11) determines
transition probabilities of the process at time ¢, and v(x,t) is the density
of the process under the condition that at least one jump has been made.

2. Asymptotic estimates of v(x,t) as t — oo

The asymptotic behaviour of the function v(x,t) depends crucially on
the relation between |z| and ¢. We consider four regions in space-time (z, t):
1) |z| < rtY/2(1 4 o(1)) (standard deviations region)

2) |z| = rtlTH(l +0(1)), 0 <d <1 (moderate deviations region)
3) |z| =rt(1+0(1)) (6 =1) (large deviations region)
4) |z| = rt%&(l +0(1)), 6 > 1 ("extra-large” deviations region)

Theorem 1 (see [6]). Assume that a(x) satisfies conditions (1.7) - (1.9).
Then for the function v(x,t) the following asymptotic relations hold as t —
oo in regions of standard and moderate deviations:

1) if x| < rt? for some r > 0, then

(07190 x)

A9 == (1 1 0(1)), (2.1)

S

v(x,t) =

[S]ISW

t

where c¢(o) > 0 is a constant depending on the covariance matriz o;
2)if x = rtlTH(l +0(1)) with 0 < § < 1 and r € RN\{0}, then

v(z,t) = 67(072?’1)(”0(1)) = ¢ a(07 T (14o(D) (2.2)

3) If v = rt(1 + o(1)) (the region of large deviations), then we get
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v(x, t) < e~ ®MtFo(l) t — oo. (2.3)

The rate function ®(r) possesses the following important properties:
®(0) =0, ®(r) >0 forr #0, ® is a convex function,

2(r) = 5o rr)(L+o(1)),  as Ir| =0 (2.4)

In addition, if p =1, then
O(r) =blr|(1+0(1)), |r] — oo, (2.5)

and if a(z) has a compact support, then
1
O(r) > —|r|ln|r| |r| — oo, (2.6)
1

where p depends on the support of a(x).
If the function a(z) satisfies the following two-sided estimate

C2€_b‘x‘p < a(x) < Cle_b‘x‘p’ b > 1a
then the following asymptotic formula holds
v(x,t) = e~ PHFL) t — o0. (2.7)

Here the function ®(r) for p =1 is defined by (2.5), and if p > 1, then

p 1 p=1
2(r) = L5 (0 = 1) Pl )T (1 +0(1), ] oo (28)
Theorem 2. In the region of "extra-large” deviations, when |x| > t, the
following estimate holds for all sufficiently large t:

v(zx,t) gexp{ —c\x!(ln\%])%l} (2.9)

If a(x) has a compact support, then in the region of ”extra-large” deviations
and large t:

v(x,t) < exp{ —c|z|In ]%]} (2.10)

It should be noted that the Gaussian form of the asymptotics (2.1) in the
region of standard deviations is the immediate consequence of the local limit
theorem for processes with independent increments. Formula (2.1) can also
be derived from the asymptotic representation of the corresponding Fourier
transform, see e.g. [3]. In the moderate deviations region the asymptotics of
the fundamental solution still coincide with that in the standard deviations
region, but only in the logarithmic order. For the pre-exponential factor
we can only state the sub-exponential rate of decay. Crucial modifications
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of the Gaussian form of the asymptotics occurs in the region of large devi-
ations, when x = rt, see formulae (2.3), (2.7). It is there, at the distances
of order ¢, that the nonlocal character of the operator A starts to play an
important role. As seen from (2.4), the fundamental solution is still close
to the Gaussian function for small r, but it differs essentially from the cor-
responding Gaussian function for sufficiently large r, see (2.5), (2.8), (2.6).
In the ”extra-large” deviations region this difference is further enhanced.
As follows from estimates (2.9), (2.10) the nonlocal fundamental solution
v(x,t) has more heavy tail at infinity than the classical heat kernel (1.4).

3. Classes of unbounded solutions

Let us observe that the formula (1.13) makes sense for a wider class of
initial functions f(z) than the class L? ([Rd). For the classical heat equation
one can take as the initial data a function f(z) growing at infinity. Then
using the representation for the solution through the Poisson integral one
can conclude, see e.g. [10], that if f(x) is a continuous function satisfying
estimate

1f(z)| < Ce™, b>0, (3.1)

then the solution exists as 0 < ¢ < 1/4b. Moreover, the solution also
satisfies an estimate of type (3.1), and it is unique in this class.

A similar statement holds for the nonlocal parabolic type problems con-
sidered in this paper. It is clear that the admissible growth of the initial
condition will be determined by the behavior of the fundamental solution
at infinity, i.e. in the region of ”extra-large” deviations.

We need the following lemma.

Lemma 1. There exists a constant ¢ > 0 such that in the region {(x,t) :
t>0, % > 1} the following estimate holds

p—1
p

v(z,t) < exp{ —élz|(In ‘%D } (3.2)
forp>1, and
v(z,t) < exp{ — ¢z (ln‘%‘)} (3.3)
if a(x) has a compact support.

Proof. For the proof of (3.3) we use representation (1.10). According to
estimates (3.60)-(3.61) from [6], there exist constants a;, > 0 and s > 0
such that for all sufficiently large « and all k with 1 < k < oy |z| we have:

jzf?
kpr—1 }

a*(z) < exp { —
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If k satisfies 1 < k < |z|(log ('%'))7%, then

a**(x )<exp{—%lw\[(log(’ ‘))%] B }—exp{—%\xl(log(’ ‘))%1}

We also have

(]

=
I
—

kol (g (151)) 7
|z|

1
Notice that the relation |z| > ¢ implies |z|(log (F)) » > t. If k >
|x|(log (l |)) », then, by the Stirling formula,

k 1

%<exp{ — klog (%) —l—k:} <exp{ _—|$|(10g(‘ ’)) 7 log (@)}

<exp { - Hlal(1og (1)) 7).

Combining the last three estimates yields the desired inequality (3.2).
The proof of (3.3) relies on similar arguments. Since a(-) has a finite
support, then

—t Z tk *k:

k>plx|

< Cre! exp{ r>na|x|tSo(k t)}
wlz

where p is a constant that depends on the size of the support of a(-), and
So(k,t) = klnf + k. One can easily check that So(k,t) is a decreasing
function of k, if k£ > ¢. Since |z| > t, we have

max So(k,t) = So(p|z|,t) = —plz|In M(1 +o(1)).
k> p|z| t
This yields estimate (3.3). O

Remark 1. It should be noted that in the formulation of Lemma the value
of ¢t might be finite and arbitrary small. In addition, for all sufficiently large
x the constant ¢ in estimate (3.3) is greater than the corresponding constant
¢ in bounds (2.9) - (2.10).

We now turn to the main result of the paper.

Theorem 3. Let conditions (1.7) - (1.9) on the function a(x) be satisfied,
and assume that the initial condition f(x) is a continuous function such
that

-1

p—1
|f(x)| < Keblelinlzl) 7 with 0 <2b<c (3.4)

WzBectusi IpKyTCKOro rocyZjapCTBEHHOI'O yHUBEPCUTETA.
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ifp>1, or
|f(x)| < Keblelnlzl, with 0 < 2b < ¢, (3.5)

in the case, when a(x) has a compact support. Here c is the same constant
as in (2.9) or (2.10), respectively.

Then for any t > 0 there exists the solution of Cauchy problem (1.12)
defined by formula (1.13). This solution satisfies the upper bound

~ p=1
fu(z, £)] < K(t)e =7 (3.6)

asp>1, or i
lu(z, )] < Koo (t)edlIm 2l (3.7)

in the case, when a(x) has a compact support, where ¢ is a constant such
that 2b < ¢ < c.

Moreover, the solution of the Cauchy problem is unique in the class of
functions that satisfy growth condition (3.6) or (3.7), respectively.

Proof. First we prove the existence of solution of the Cauchy problem in
the class of functions that satisfy estimate (3.6) (or (3.7)). As follows from
representation (1.13) it is sufficient to estimate (v f)(z,t). In what follows
we consider the case of a(z) with a compact support. If the function a(x)
meets the general bound (1.9) with some p > 1, the reasoning will be
similar. We first estimate (v * f)(x,t) for |z| > st=% with s = »#(c,b) =

c+2b
Dc—2b -

(v f)(z,t) = / v(z,t) f(x — 2)dz (3.8)

= / v(z,t)f(Rx —z)dz + / v(z,t)f(x — z)dz.

|2]<|z| |2|> ]

For the first integral in (3.8) we have

/ v(z,t)f(z — 2)dz < / v(z, t) K eble#mle=zl g,

|2|<lz| |2|<|z]

<K / U(Z7t)62b|l‘|ln2|l‘|dz < Keax\ln|$| / v(z,t)dz < Keé\x\ln\x\’
l#I<le] j2I< 2]

where 2b < ¢ < ¢. We have used here the inequality |z — z| < 2|z| that is
valid for |z| < |z|, and the estimate |z|In2|z| < (1 + ¢)|z|In |z|, that holds
for sufficiently large |z| and small & > 0.

For estimating the second integral on the right-hand side in (3.8) we use
the inequality |z — z| < 2|z| and the asymptotic formula (2.10) for v(z,t)
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_c _
in the region of "extra-large” deviations |z| > |x| > ste25:

vz ) f — 2)dz < / o—clzlIn |2 f 26l n2f2] g,

c
|2[> x| |2]>|@|> st =20

ct2b  _c
If |z| > 2e=2 te=2% | then
—c|z|In 2|z|+2b|z| In 2|2| + ¢|2| In 2t = —|z[((c—2b) In |22 —cIn 2t) < —alz|
(3.9)
with some o > 0. Consequently,

/ v(z, ) f(x — 2)dz < K / e Fldz = Ky (t) < 0o, (3.10)

|z|>%tﬁ \z\>%tﬁ
Thus, for |z > ste 2 the following estimate holds:
lu(z, )] < K (t)efl=mlel (3.11)

with 2b < ¢ < c. .

In the case, when |x| < sxte=2  we estimate each of integral on the
right-hand side of (3.8) separately. For the first integral we get the same
estimate as above:

/ v(z,t) f(r — 2)dz < / v(z, t) Kbl le=zlg, < peetlelinlal,
|2[<|z| |2]<|x]

We divide the second integral into two integrals:

v(z,0)f (2 — 2)dz (3.12)
|2>]=|
= / v(z,t)f(z — z)dz + / v(z,t)f(x — 2)dz.
\x\<|z|<%tﬁ |z|>%tcT‘:2l7

Considering the inequality |z — z| < 2|z|, for the first integral on the right-
hand side we obtain

/ v(z, t)ePIFI M2z g, < 20t 720 In2octe=20 | /v(z,t)dz = Ko(t).
|z|<| 2| <t =25 R4

The second integral admits the same bound as above:
/ v(z,t) f(z — z)dz < Kq(t).
|2 >t =25
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Thus, for |z| < %177 we also obtain the desired estimate (3.11).

In the case of kernels a(-) satisfying condition (1.9) the existence of a
solution in the class of functions for which estimate (3.6) holds can be
proved in a similar way. There is only one difference. Namely, in this case
we should show that for all sufficiently large |z| the following inequality
holds:

-1
—c|z|(In %)q +2blz|(In2[2])* < —alz|, ¢= P— "¢ [0,1).  (3.13)
p

This inequality ensures that the integral in (3.10) is finite. To justify (3.13)
it suffices to show that for|z| > st? with some > > 0 and v > 0 we have

|2z|\2 _ 2b q
The validity of the latter inequality can be easily checked if we let v =

(1— (2_cb)1/q)*1 and » = 27.

The next step is to prove the uniqueness of solution of the Cauchy
problem for nonlocal parabolic equation. The proof is based on Holmgren’s
principle and follows the line of Section 7.7 in [10]. Let typ > 0, and assume
that u(z,0) = 0, = € RY. We want to prove that this initial condition
implies that u(x,t) = 0 in the whole strip [0,%y) x RY.

Consider the adjoint Cauchy problem

X / ale = y)wly) —w@)dy,  wl,_, =),

with the terminal condition ¢ (x), where ¢ € D(R?) = C5°(R?) belongs to
the space of smooth functions with compact support. The solution of this
problem admits the representation similar to that in (1.13). It reads

w(z,t) = e O y(x) + (v ) (x,tg — t), t<to, (3.15)

where the function v(z,t) was defined by (1.10). Since % has a compact
support, the solution (3.15) satisfies

lw(z,t)| < Cy max v(r—y,to—1t) (3.16)
yEsupp ¥

for t <ty and |z| > R > 0, where R is sufficiently large.
From (3.3), (3.16) and Remark 1 it follows that

2]

B B R . R
lw(z,t)| < Cy eXp{ C|x|<ln max{1,ty —t}

)}, 0<t<ty. (3.17)

The corresponding estimate also holds in the case of a(z) with a light tail
at infinity with p > 1.
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Thus, the estimate (3.17) implies that the integral
(ulast), w(o ) = | utatyus, s
R4

exists and converges uniformly for 0 < ¢t < tg. Moreover, the integrals
obtained by replacing v and w with their derivatives with respect to ¢ also
converge uniformly for 0 < t < ty. Therefore, the function

X(t) = (u(x,t), w(x,t)>

is continuous at t € [0,%p). Our assumption u(x,0) = 0, = € R, implies
that x(0) = 0. The function x(t) is differentiable on the intervbal ¢ € (0, ty),
and by the symmetry condition on a(z — y) we have

dx(t) ou(z,t) ow(x,t)
fi—t_/Rd( o vt 'u(w’t)>dw

/Rd /Rd a(x —y)(u(y,t) —u(z,t))w(z, t)dyde (3.18)
_ /Rd /Rd a(z — y)(w(y, t) — w(z, t))u(z, t)dyde = 0.

Thus, x(t) = const = 0.
The formula (3.15) for w(z,t) yields

/Rd u(z,to)(z)dr = lim u(x, t)w(z,t)dx.

t—to—0 Rd

Since
li = 1 =
Jim y u(z, t)w(z,t)dx t_}ltron_ox(t) 0,
then [.qu(x,to)(x)dx = 0 for every ¢ € D(R?). Consequently, u(z,t) =0
for 0 <t <ty. O

4. Conclusions

In this work we described some classes of initial conditions for which the
nonlocal parabolic problems studied here are well-posed. It was shown that
the initial conditions of exponential and even slightly stronger growth at
infinity are admissible. Moreover, the critical growth condition is char-
acterized by the behaviour at infinity of the convolution kernel of the
corresponding nonlocal operator. In particular, it follows from our esti-
mates that the class of admissible initial conditions for the studied here
nonlocal Cauchy problem is more narrow than that for the classical heat
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equation. Such a difference between the structures of the classes of admissi-
ble initial conditions is caused by the fact that the fundamental solution of
the nonlocal problem decays at infinity slower than the usual heat kernel,
the difference in the behaviour becoming apparent at the distance of order
t.
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O noBeneHunm Ha OECKOHEYHOCTU PEMNIEHUII HEJIOKAJIbHBIX
3a/1a4 napaboJin4ecKoro TUia

E. A. Kmkuual, A. JI. Iaramxumiih?

L Hnemumym npobaem nepedavu ungopmavuu PAH, Mockea, Poccudi-
ckan Dedepayus
2 Apkmuneckuti ynusepcumem Hopeezuu, wamnyc Hapeux, Hopeezus

Awnnoranusi. V3ygaercss BO3MOXKHOE TIOBeIeHUE Ha OECKOHEYHOCTH PEIIEHUH 3aa49n
Ko g1 ypaBHeHunii mapaboIMIecKoro TUIa, B KOTOPBIX B KAYeCTBE SJIIUINITHIECKOrO
oneparopa 6epércsi reHepaTop MapKOBCKOI'O CKAYKOOOPA3HOrO IPOIECCa, T. €. OIepaTop
HeJIOKaJIbHON uddysun. VccienoBanre nosejieHust perreHnil Ha GeCKOHETHOCTH 0a3u-
pyercsa Ha aCUMOTOTHKE (DYHIAMEHTATHHOTO PENIEHUs HEJOKAJIHHBIX MapaboIndeCKuX
3amaqd. Ilokasano, 4To Takoe dyHIaMEHTAJIbLHOE pelleHHe UMeeT DPa3HYI0 aCHMITOTH-
Ky U CKOPOCTb yOBbIBaHMsI B 0OJIACTSX yMEPEHHBIX, OOJIBINNX U CyIep-OOIbIINX yKJIOHE-
Huit. Ha ocHOBaHWU 3TUX aCUMIITOTHYECKUX (DOPMYJI OMUCAHBI KJIACCHI HEOTPAHUIEHHBIX
byHKIMIT, B KOTOPBIX KOPPEKTHBI paccMarpuBaeMble 3agadu Ko, O6cyK1aercst Takke
€/IMHCTBEHHOCTDb PEIleHNsI B 9TUX KJiaccax (DyHKIIHIA.

KuroueBrblie ciIoBa: HEJIOKATbHBIE OIIEPATOPHI, TapabOJIMIecKie ypaBHeHus, pyH1a-
MEHTAJIbHOE DPEIeHIe, MapPKOBCKHUI CKAYKOOOPA3HBIN MPOIECC ¢ HE3aBUCHUMBIMHU IIPUPa-
[IEHUSIMH.
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