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Abstract. This article deals with a stabilization problem for a team of linear in-
terconnected systems via bounded feedbacks. Effective approaches to stabilization of
constrained systems from model predictive control theory are developed for the decen-
tralized case when each system of the group is controlled by its local controller. We
propose formulations of local optimal control problems and an algorithm based on them
that constructs a distributed feedback guaranteeing asymptotic stability of the group.
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1. Introduction

In recent years, control problems for teams of interacting dynamical sys-
tems has received a significant attention from the research community [6;7],
which is motivated by a large amount of practical applications — these are
control problems for teams of mobile robots, unmanned aerial vehicles,
energy systems, transport systems, etc. In such applications classical con-
trol theory methods may not be applicable, since they assume centralized
control of the whole team, often representing a large-scale system. Besides,
they do not account for networked or communication restrictions (e.g.,
delays in the communication between systems) within the team. In these
cases distributed control techniques are needed.

One approach to tackle stabilization problems, popular in theoretical
research and in practice, is Model Predictive Control [15] (MPC), and
Distributed Model Predictive Control (DMPC) [10; 11] for interconnected
systems. Within the DMPC framework many approaches have been pro-
posed for systems with coupled dynamics [9; 16] and multi-agent systems
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[13; 14]. The underlying idea is to break a large-scale control problem
into sub-problems (local problems) where only inputs of the local system
are optimized. For multi-agent systems a stabilization problem is most
studied [11; 13], however, other control objectives, such as consensus and
synchronization, are also of great practical interest (see e.g. [14]).

In this paper we consider a stabilization problem for a team of linear
time-invariant systems with coupled dynamics subject to delays in commu-
nication between the systems. The goal is to achieve asymptotic stability [2]
of the team via distributed feedback control. The proposed algorithms
develop ideas of centralized model predictive control methods based on
linear programming [8;15], related stabilization methods based on optimal
damping problems [1;5] and distributed feedback control schemes for opti-
mal control problems developed in [3; 4; 12]. The focus is on constructing
local optimization problems and analyzing information to be communicated
between the systems in order to establish a rather small amount of data
that is sufficient for the algorithm implementation.

2. Problem formulation

We consider a team of q linear time-invariant control systems with
coupled dynamics of the form

ẋi = Aixi +
∑

j∈Ii
Aijxj +Biui, xi(0) = xi0, (2.1)

where xi = xi(t) ∈ R
ni denotes the state, ui = ui(t) ∈ R

ri denotes the
control of the i-th system at time t, i ∈ I = {1, 2, . . . , q}, Ai = Aii, Bi,
Aij , j ∈ Ii = I \ {i}, i ∈ I, are given matrices of respective dimensions.
The matrix Ai characterizes system’s self-dynamics, Bi is the input of the
i-th system, the matrices Aij characterize dynamical coupling between the
systems in the team.

As feasible inputs we use sampled-data functions ui(t), t ≥ 0, with the
sampling time h > 0: ui(t) ≡ ui(s), t ∈ [s, s+ h[, s ∈ Th = {0, h, . . .}.

Along with the team of systems (2.1) we consider its representation

ẋ = Ax+Bu, x(0) = x0, (2.2)

where x = (xT1 , . . . , x
T
q )
T ∈ R

n, u = (uT1 , . . . , u
T
q )
T ∈ R

r, A = (Aij , i, j ∈ I),
B = diag(Bi, i ∈ I) is block diagonal, n =

∑
i∈I ni, r =

∑
i∈I ri.

Let B(i) = (0, . . . , BT
i , . . . 0)

T ∈ R
n×ri . In the following we assume that

for each i ∈ I the pair (A,B(i)) is controllable in the class of sampled-data
inputs.

A function u(x), x ∈ R
n, is called a discrete feedback if for each x0 the

trajectory x(t), t ≥ 0, of the closed-loop system

ẋ = Ax+Bu(x), x(0) = x0, (2.3)
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is a recursive solution of the linear equation ẋ = Ax + Bu(x(s)), x(s) =
x(s − 0) (x(−0) = x0), on the intervals t ∈ [s, s + h[, s ∈ Th. Obviously,
the closed-loop system (2.3) has a unique solution.

Let D denote a region around the origin x = 0, and let L > 0 define a
feasible input set in the form U = {u ∈ R

r : ||u||∞ ≤ L}.
Definition 1. [1] A discrete feedback u(x), x ∈ D, is called a bounded
stabilizing discrete feedback for (2.2) if: 1) u(x) ∈ U , x ∈ D; u(0) = 0; 2)
for every x0 ∈ D the states x(s), s ∈ Th, of system (2.3) stay in D; 3) the
trivial solution x(t) ≡ 0, t ≥ 0, is asymptotically stable in D.

Obviously, the feedback u(x), x ∈ D, with properties 1)–3) is not
uniquely defined. In this paper we consider two approaches. In Section 3
we review centralized stabilization based on MPC methods [8; 15] and re-
lated works [1; 5]. In Section 4 we propose a new approach to distributed
stabilization which combines the methods from [1;5] and ideas from [3;4;12].

Throughout this paper the following notations are used: x(t1|t0, x0, u(·))
denotes the state at time instant t1 of system (2.2) with the initial condition
x(t0) = x0 and input u(·) = (u(t), t ∈ [t0, t1]); F (t) = eAt, t ≥ 0; Fi(t) ∈
R
n×ni denotes the corresponding block of the matrix F (t), i.e. F (t) =

(F1(t), . . . , Fq(t)); D(s) = F (tf − s − h)
∫ h
0 F (t)Bdt, Di(s) = F (tf − s −

h)
∫ h
0 Fi(t)Bidt; 1p = (1, . . . , 1) ∈ R

p. The following norms of the vector

y ∈ R
p are used: ||y||∞ = max{|y1|, . . . , |yp|}, ||y||2Q = yTQy, Q > 0.

3. Centralized stabilization

In the centralized stabilization case the team has a single central con-
troller, which, based on the team’s current state, chooses a control input
for all systems in the team. In what follows the team’s current state is
denoted by x∗(τ) and is assumed to be available for complete and accu-
rate measurements. We stress that it may differ from the states of the
mathematical model (2.2) due to inaccuracies of mathematical modeling,
presence of disturbances, and other uncertainties.

As discussed in the introduction, a popular approach to solving stabi-
lization problems is MPC. The overall idea of all MPC methods is based
on repetitive solution at each current discrete time instant τ ∈ Th the so-
called predictive optimal control problem subject to a finite time interval
[0, tf ] (tf = Nh, N ∈ N), and the initial condition for the predictive model
(2.2) coinciding with the current state x∗(τ). The general formulation of
the predictive problem (in the centralized case) has the form

J0(x∗(τ)) = min J(u),

ẋ = Ax+Bu, x(0) = x∗(τ), (3.1)

x(tf ) ∈ Xf , u(t) ∈ U, t ∈ [0, tf ],
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where J(u) is some cost; Xf ⊂ D is the terminal set, {0} ∈ Xf . Problem
(3.1) may also include path constraints if those are imposed on the transient
trajectories.

Let u0(t|x∗(τ)), t ∈ [0, tf ], denote the optimal open-loop input of prob-
lem (3.1).

The MPC algorithm can be described as follows: at each time instant
τ ∈ Th, the controller solves the optimal control problem (3.1) and feeds
the first value u0(0|x∗(τ)) of its optimal open-loop input to the team on
the interval [τ, τ +h[. As a result, we obtain the so-called discrete feedback
realization

u∗(t) ≡ u0(x∗(τ)) := u0(0|x∗(τ)), t ∈ [τ, τ + h[, τ ∈ Th.

Asymptotic stability of the closed-loop system is achieved by a proper
choice of the cost J(u) of the predictive problem (3.1) and a suitable ter-
minal condition at time instant tf . Significant attention in the literature is
given to MPC schemes with quadratic costs J(u) of the form

J(u) =

∫ tf

0
||x(t)||2Q + ||u(t)||2R dt+ ||x(tf )||2P , Q,R, P > 0,

and terminal sets Xf being ellipsoids for wich there exists a local linear
feedback uloc(x) = Kx ∈ U , x ∈ Xf , such that A + BK is a Hurwitz
matrix. This approach allows us to reduce problem (3.1) to a quadratically
constrained quadratic program and to solve it efficiently, e.g. using the
interior-point methods. Simplest approaches (see, e.g. [15]) use the terminal
constraint x(tf ) = 0, i.e. Xf = {0}.

For linear systems a linear cost of the form

J(u) =

∫ tf

0
||Qx(t)||∞ + ||Ru(t)||∞ dt+ ||Px(tf )||∞

is popular, and allows to reduce the predictive problem (3.1) to a multi-
parametric linear program [8].

In this paper bounded stabilizing feedbacks are constructed according
to the approach in [1], where we use

J(u) = max
t∈[0,tf ]

||u(t)||∞, Xf = {0}.

Hence the predictive problem is the optimal damping problem. For an
arbitrary initial state z ∈ R

n it has the form

P(z) : ρ(z) = min
u

max
t∈[0,tf ]

||u(t)||∞, (3.2)

ẋ = Ax+Bu, x(0) = z, x(tf ) = 0.
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Under the controllability assumption of Section 2 and for a control horizon
tf ≥ nh/r every problem P(z) of family (3.2) has a solution that is denoted
by u0(t|z), t ∈ [0, tf ].

Let D = {z ∈ R
n : ρ(z) ≤ L}. In the following we assume that x0 ∈ D.

In [1; 5] the following result is proved

Proposition 1. A function u0(x) = u0(0|x), x ∈ D, is a bounded stabi-
lizing feedback for system (2.2).

Algorithm 1 (centralized stabilizing control construction):
1) Set τ = 0, x∗(τ) = x0.
2) Find an optimal open-loop input u0(t|x∗(τ)), t ∈ [0, tf ], to the problem
P(x∗(τ)).
3) Apply input u∗(t) ≡ u0(x∗(τ)) := u0(0|x∗(τ)), t ∈ [τ, τ + h[ to system
(2.2).
4) Set τ := τ + h, return to Step 2).

The algorithm for centralized stabilization is specified as Algorithm 1.
Now we briefly discuss how the problem P(x∗(τ)) is solved during Step 2)
of Algorithm 1. In the class of sampled-data inputs it is equivalent to a
linear program

ρ∗(τ) = min
ρ,u

ρ, Du = −g(x∗(τ)), u− ρ1rN ≤ 0, −u− ρ1rN ≤ 0, (3.3)

where ρ ∈ R, u = (uT (0), uT (h), . . . , uT (tf − h))T ∈ R
rN , g(z) = F (tf )z;

D = (D(0),D(h), . . . ,D(tf − h)) ∈ R
n×rN .

The linear program (3.3) has rN+1 variables, n equality constraints and
2rN inequality constraints. The paper [1] proposes to reduce the problem
dimension using the following change of variables: ξ = 1/ρ, v = u/ρ (ρ > 0
for x∗(τ) 6= 0). This results in a linear program

ξ∗(τ) = max
ξ,v

ξ, g(x∗(τ))ξ +Dv = 0, ||v||∞ ≤ 1, (3.4)

with rN +1 variables, n equality constraints and geometric constraints for
the variables v. Now we have ρ∗(τ) = 1/ξ∗(τ). Since problem (3.2) has to
be solved at each τ ∈ Th for the current state x∗(τ) in time less than h,
solving problem (3.4) is preferable to solving problem (3.3).

Using the optimal damping problem (3.2) for predictions as compared to
the classical MPC approaches allows us to propose a rather simple approach
to distributed feedback control, which is described in the next section.
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4. Distributed stabilization

In the distributed stabilization case it is assumed that each system
(2.1) has its own (local) controller that generates a (distributed) bounded
stabilizing feedback only for the associated system. The local controller
constructs the inputs as in centralized case, i.e. on the base of solution of
the (local) predictive optimal control problem. This problem is denoted by
Pi(xi, z), where xi is the state of the i-th system, z is information on other
systems’ behavior. In the particular control process it is assumed that by
the current time instant τ ∈ Th \ {0} information arriving from systems
k ∈ Ii consists of 1) the state x∗k(τ −h), and 2) the input u∗k(τ −h) applied
to system k at the previous time τ − h.

The above assumption means that communication is delayed by one
sampling period h, and the current position of the control process, as it is
available to the i-th controller at time instant τ , is (x∗i (τ), z

∗(τ)), where
z∗(τ) = {x∗k(τ − h), u∗k(τ − h), k ∈ I}.

The solution of the problem Pi(τ) := Pi(x∗i (τ), z∗(τ)) is denoted by
udi (t|τ), t ∈ [0, tf ], and is referred to as the local optimal open-loop input
of system i predicted at time τ . For every τ we define an overall open-loop
input ud(t|τ) = (udk(t|τ), k ∈ I), t ∈ [0, tf ], as an input composed of all
local optimal open-loop inputs.

Following [3] and taking into account the centralized problem P(x∗(τ))
formulation, the local predictive problem Pi(τ) of the i-th controller at time
τ ∈ Th \ {0} is formulated in the form

Pi(τ) : ρi(τ) = min
ui

max
t∈[0,tf ]

||ui(t)||∞, (4.1)

ẋi = Aixi +
∑

j∈Ii
Aijxj +Biui,

ẋk = Akxk +
∑

j∈Ik
Akjxj +Bku

d
k(t+ h|τ − h), k ∈ Ii,

xi(0) = x∗i (τ), xk(0) = xdk(τ |τ − h), k ∈ Ii, x(tf ) = 0.

In problem (4.1) the optimization variable is the input ui, and the inputs
uk of all other systems k ∈ Ii are held as fixed parameters equal to their
local optimal open-loop inputs udk(t|τ−h), t ∈ [h, tf ], of problems Pk(τ−h),
predicted at the previous time τ − h and assumed trivial on the intervals
[tf , tf + h]: udk(t|τ − h) := 0, t ∈ [tf , tf + h], k ∈ Ii.

The initial state of the i-th system in problem (4.1) is its current state
x∗i (τ). For the initial states of all other systems k ∈ Ii we use the compo-
nents xdk(τ |τ −h) of the state xd(τ |τ − h) = x(t|τ − h, x∗(τ −h), u∗(τ − h))
of system (2.2) with the initial condition x(τ−h) = x∗(τ−h) and the input
u(t) ≡ u∗(τ − h), t ∈ [τ − h, τ ].

The proposed formulation (4.1) has a drawback: to form the constraints
the controller of the i-th system needs to know the local optimal open-loop
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inputs udk(t|τ − h) on the whole interval [0, tf ]. In the following we show
that information communicated during the control process can be reduced
to the data z∗(τ) chosen above.

We note that the terminal state x(tf ) of system (4.1) can be represented
as a sum

x(tf ) = x̄(tf ) +
∑

k∈Ii
ydk(τ), (4.2)

where

ydk(τ) = Fk(tf )x
d
k(τ |τ − h) +

∫ tf−h

0
Fk(tf − t)Bku

d
k(t+ h|τ − h)dt, k ∈ I,

and x̄(tf ) is the terminal state of the following system

˙̄xi = Aix̄i +
∑

j∈Ii
Aijx̄j +Biui, x̄i(0) = x∗i (τ),

˙̄xk = Akx̄k +
∑

j∈Ik
Akjx̄j , x̄k(0) = 0, k ∈ Ii.

It is easy to establish that for u∗(τ − h) = ud(0|τ − h) the following
equality holds

∑
k∈I

ydk(τ) = F (h)x(tf |0, x∗(τ − h), ud(·|τ − h)). (4.3)

Let τ = h, and ud(t|0) = u0(t|x0), t ∈ [0, tf ]. Obviously,

∑

k∈I
ydk(h) = F (h)x(tf |0, x∗(0), ud(·|0)) = 0,

since ud(·|0) is the solution of the centralized problem P(x0).
Assume that for some τ ∈ Th \ {0, h} we have

∑
k∈I y

d
k(τ) = 0. Then

(4.2) takes the form x(tf ) = x̄(tf )− ydi (τ) that allows us to reformulate the
problem Pi(τ) in the equivalent form

P̄i(τ) : ρi(τ) = min max
t∈[0,tf ]

||ui(t)||∞, (4.4)

˙̄xi = Aix̄i +
∑

j∈Ii
Aij x̄j +Biui,

˙̄xk = Akx̄k +
∑

j∈Ik
Akjx̄j,

x̄i(0) = x∗i (τ), x̄k(0) = 0, x̄(tf ) = ydi (τ).

The following equalities hold

x(tf |0, x∗(τ), ud(·|τ)) =
∑

k∈I
x̄(tf |0, x∗k(τ), udk(·|τ)) =

∑
k∈I

ydk(τ) = 0.

Hence, from (4.3) we have
∑

k∈I y
d
k(τ + h) = 0.
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Summarizing, we have established that 1) the overall open-loop input
ud(t|τ), t ∈ [0, tf ] steers system (2.2) from x(0) = x∗(τ) to the origin in
time tf , i.e. it is feasible in the centralized problem P(x∗(τ)).
2) For all τ ∈ Th \ {0} the equality

∑
k∈I y

d
k(τ) = 0 holds.

3) The local problem may be formulated as (4.4).
Obviously, to form problem (4.4) the i-th controller needs the states

x∗k(τ − h) and applied inputs u∗k(τ − h) from other systems k ∈ Ii, which
in turn composes information z∗(τ).

When solving problem (4.4) numerically, one has to reduce it to a linear
program

ξi(τ) = max
ξi,vi

ξi, gi(τ)ξi +Divi = 0, ||vi||∞ ≤ 1, (4.5)

where ξi ∈ R,vi = (vTi (0), v
T
i (h), . . . , v

T
i (tf − h))T ∈ R

riN ,

Di = (Di(0),Di(h), . . . ,Di(tf − h)) ∈ R
n×riN ,

gi(τ) = Fi(tf )x
∗
i (τ)− ydi (τ).

Note that (4.5) has riN +1 variables and n equality constraints, and its
dimension does not depend on the number of systems in the team.

The algorithm for distributed stabilization is specified as Algorithm 2.
The algorithm constructs the distributed feedback ud(x, z) = (udi (xi, z),
i ∈ I) as a function of a position (x, z), and its realization in a particular
control process

u∗i (t) ≡ udi (x
∗
i (τ), z

∗(τ)) := udi (0|τ), t ∈ [τ, τ + h[, τ ∈ Th, i ∈ I. (4.6)

Algorithm 2 (distributed stabilizing control construction):
1) Set τ = 0, x∗(τ) = x0.
2) Find a solution u0(t|x0), t ∈ [0, tf ], to the centralized problem P (x0).
For each k ∈ I set udk(t|0) = u0k(t|x0), t ∈ [0, tf ].
For each system i ∈ I (in parallel):
3) Apply input u∗i (t) ≡ udi (x

∗
i (τ), z

∗(τ)) := udi (0|τ), t ∈ [τ, τ + h[.
4) Communicate x∗i (τ), u

∗
i (τ) to all systems k ∈ Ii.

5) Set τ := τ + h, and obtain current state measurement x∗i (τ).
6) Solve problem (4.4) and find udi (t|τ), t ∈ [0, tf ]. Return to Step 3).

Proposition 2. A distributed feedback ud(x, z) is a bounded stabilizing
feedback for the overall system (2.2) with the region of attraction D.

Proof. 1. We need to establish that an input

ui(t) =

{
udi (t+ h|τ − h), t ∈ [0, tf − h],
0, t ∈ [tf − h, tf [,

(4.7)
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is a feasible open-loop input of the problem P̄i(τ). Indeed, since system
(2.2) is not affected by disturbances, we have xd(τ |τ − h) = x∗(τ). By
construction of ydi (τ) in problem (4.4), the input ui(t), t ∈ [0, tf [, satisfies
the terminal constraint, which means that P̄i(τ) is feasible.

2. Function (4.7) in the problem P̄i(τ) has the cost equal to ρi(τ − h)
that is not less than the optimal value ρi(τ) of this problem. Therefore, for
all i ∈ I we have ρi(τ) ≤ ρi(τ − h).

3. The cost of the cenralized problem P(x∗(τ)) at the input ud(·|τ) =
(udk(·|τ), k ∈ I) equals to ρd(τ) = maxk∈I ρk(τ), that yields ρd(τ) ≤ ρd(τ −
h), τ = 2h, 3h, . . .; ρd(h) ≤ ρ(x0).

This implies that 1) any trajectory of system (2.2) with x0 ∈ D and
input (4.6), i ∈ I, stays in D, and 2) u∗(τ) ∈ U .

4. Following [1], we show that if x∗(τ) 6= 0 then ρd(τ + tf ) < ρd(τ),
i.e. at least after N steps of Algorithm 2 we obtain a strict decrease of
the cost of the problem P(x∗(τ)). Assume the opposite: for any l = 1, N
the equality ρd(τ) = ρd(τ + lh) holds. Then there exists i0 ∈ I such that
ρd(τ) = ρdi0(τ) = ρdi0(τ + lh), l = 1, N , and the optimal open-loop input in

the problem P̄i0(τ + lh) is a function ui0(t) = udi0(t+ lh|τ), t ∈ [0, tf − lh[,
ui0(t) = 0, t ∈ [tf − lh, tf [. For the time instant τ + tf we obtain the
optimality of the trivial input, which implies that ρd(τ) = ρd(τ + tf ) =
ρdi0(τ + tf ) = 0, and therefore, x∗(τ) = x∗(τ + tf ) = 0. Further proof
repeats the arguments given in [1].

5. Examples

To illustrate and compare the stabilization algorithms based on central-
ized and distributed feedbacks we consider two examples.

Example 1. Consider the team of two systems:

ẋ1 =

(
0 1

−11 0

)
x1 +

(
0 0
−1 0

)
x2 +

(
0
2

)
u1, (5.1)

ẋ2 =

(
0 1

−10.25 0

)
x2 +

(
0 0

−0.25 0

)
x1 +

(
0
0.5

)
u2.

Choose the following parameters: L = 2, tf = 3, h = 0.1. As initial
states at time instant τ = 0 we choose x1(0) = x10 = (−1, 0)T , x2(0) =
x20 = (0.5, 0)T . We verify that the initial state x0 = (xT10, x

T
20)

T of system
(5.1) is in the domain D by solving the problem P(x0), and obtaining
ρ(x0) = 1.52197255 < L.

On the base of the predictive problem P (x∗(τ)), τ ∈ Th, Algorithm 1
constructed a realization of the centralized stabilizing feedback. On the
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Figure 1. Trajectories and realizations of stabilized and distributed feedbacks in
example 1

base of two predictive problems P1(τ), P2(τ), τ ∈ Th, Algorithm 2 con-
structed a realization of the distributed stabilizing feedback for the example
under consideration.

Figure 1 presents fragments (for 0 ≤ t ≤ 20) of the trajectories and
feedback realizations. Solid lines correspond to centralized solution and
dash lines correspond to distributed solution.

For the centralized stabilization the neighborhood ||x∗(τ)|| < 10−5 was
reached by the time instant τ = 37.5, by that time the total control impulse
was 8.3651. For the distributed stabilization the same neighborhood was
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Figure 2. Trajectories and realizations of stabilized and distributed feedbacks in
example 2

reached faster, by the time instant τ = 28.5. This is due to the control
inputs of greater amplitude. By the time instant τ = 28.5 the total control
impulse was already 8.9213.

Example 2. Consider a team consisting of five coupled oscillating systems:

ẍ1 = −2kx1 + kx2 + u1, (5.2)

ẍi = −2kxi + kxi−1 + kxi+1 + ui, i = 2, 3, 4,

ẍ5 = −2kx5 + kx4 + u5.

We choose the following parameters’ values: k = 10, L = 10, tf = 3,
h = 0.1. We assume that at time τ = 0 all systems are stationary in
different states: x1(0) = −4, x2(0) = 3, x3(0) = 0, x4(0) = 2, x5(0) = −3.
The initial state belongs to the region D since ρ(x0) = 8.6621 < L.

Figure 2 presents fragments (for 0 ≤ t ≤ 15) of the trajectories and
feedback realizations. In the centralized control process team (5.2) reached
the neighborhood ||x∗(τ)|| < 10−5 by the time instant τ = 42.2, the total
input impulse was 125.7846. In the distributed control process same neigh-
borhood was reached in comparable time, by the time instant τ = 42.3,
however, the total impulse of the distributed inputs was 162.9104.
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6. Conclusion

This paper proposes an algorithm for constructing distributed bounded
stabilizing feedbacks for a team of linear time-invariant coupled systems.
The algorithm is based on a parallel solution at each time instant of local
predictive optimal control problems associated with each system in the
team and having lower dimensions compared to the centralized predictive
problem. Local problem’s solution yields the feedback realization only for
the respective system. The proposed algorithm guarantees feasibility of
all local problems during the control process, communication of a small
amount of data, and asymptotic stability of the overall team.
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Стабилизация линейных взаимосвязанных систем огра-
ниченными децентрализованными обратными связями

Н. М. Дмитрук

Белорусский государственный университет, Минск, Республика Бе-

ларусь

Аннотация. Рассматривается задача стабилизации группы линейных взаи-
мосвязанных систем ограниченными обратными связями. Эффективные подходы к
стабилизации при наличии ограничений из теории управления по прогнозирующей
модели развиваются на децентрализованный случай, когда каждая система группы
управляется своим локальным регулятором. Предлагаются формулировки локаль-
ных задач оптимального управления и основанный на них алгоритм, который строит
децентрализованную обратную связь, обеспечивающую асимптотическую устойчи-
вость группы.

Ключевые слова: стабилизация, обратная связь, децентрализованное управле-
ние.
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