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1. Introduction

The equations studied in the article can be called Sobolev-type equa-
tions, or composite-type equations. Among the numerous works on the the-
ory of Sobolev-type equations (see [1-7;10;11;13]), distinguish the works
devoted to equations with degenerate (noninvertible) operator at the time
derivative — see [2;10;13]. In the present paper, we also consider equa-
tions with noninvertible operators at the higher part but, firstly, the na-
ture of the noninvertibility of the operator coefficients is different than
in the works of the predecessors, and, secondly, in contrast to the numerous
earlier works, we study equations with two time variables.

2. Statement of the Problem

Suppose that  is a bounded domain in R™ with smooth boundary I'
(of class C?), T and A are given positive numbers, @ is the cylinder Q x
(0,T7)x (0, A) of variables z, t, a, S = I'x (0,7) x (0, A) is the lateral bound-
ary of Q, ap(t,a), ai(t,a), Bo(t,a), fi(t,a), m“(z,t,a), m'(z,t,a), i,j =
1,...,n, mo(x,t,a), f(x,t,a) are given functions, defined for z € €, t €
[0,T], a € [0, A]. Furthermore, let L,, Lg, and M be differential operators
whose action at a given function v(z,t,a) is defined by the equalities

Lov = ag(t,a)v + ai(t,a)Av, Lgv = fy(t,a)v+ fi(t,a)Av,

Mv =m" (z,t,a)vp,z, +m'(2,t,a)ve, +mo(z,t,a)v

(A is the Laplace operator with respect to the variables 1, ..., x,, Here
and below, repeating indices imply summation from 1 to n).

The aim of the article is the study of the solvability of boundary value
problems for the equations

Lous + Lgug — Mu = f(z,t, a). (1)

Introduce the notations

v ={(z,t,a): z€Q, t=0, ac(0,4)},
72:{('%'71570’): era t:T7 QG(O,A)}7
73:{(1',t,a): xGQ, t€(07T)’ a:0}7

ya={(z,t,a): z€Q, te(0,T), a=A}.

As we will show below, in well-posed boundary value problems for equa-
tions (1), on each of the sets ~;, ¢ = 1,4, boundary conditions can be given
or not given.
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Let l;, @ = 1,4, be numbers equal to 0 or 1. Refer as the Py i1,
condition for equation (1) to the condition that the value of the solution
u(x,t,a) is given on v, if l; = 1, and, respectively, the value u(x,t,a) is not
given if [; = 0.

The Boundary Value Problem P}, ;,1,,: Find a function u(x,t,a) that
is a solution to equation (1) in the cylinder Q) and satisfies the Py 1,141, -
condition and also the condition

u(x,t,a)lg = 0. (2)

Obviously, there are 16 different problems of the given form. But it is
also obvious that, among these problems, there are those similar to each
other, or those reducible to one another by the change t' =T —t or a’ =
A — a (for example, the problems Pj19p and Ppo11 are in essence identical,
the problems Pjggp and Fpyigp are reduced to each other by the change
t' =T —t etc.). An easy analysis makes it possible to distinguish six basic
problems among all the problems Py ;,;,;,, — the problems Pi111, Pi11o,
Pi100, Pio1o, Piogo, and Pyooo. It is for these problems that we will prove
existence theorems for regular solutions below.

Denote by Vj the linear space of functions v(z,t,a) belonging to Ls(Q)
and such that their weak derivatives wi(x,t,a), vq(x,t,a), vg,(z,t,a),
Vgt (T, t,0),  Vga(T,ta), Ve, (T,ta),  Veai(®ita),  Vpga(T,tia)
i,7=1,...,n, exist and also belong to Ly(Q). Normalize this space:

ol = /

Q

)

n
R A S S (A B
=1

1/2

n
+ Z <v§m + vfmﬂ + Ugixja> dz dt da
ij=1
Obviously, endowed with this norm, V) becomes a Banach space.
It is in the Banach space V|, that we will establish the solvability of the
boundary value problems under study.

3. Solvability of the Boundary Value Problems P;11; and Py

The boundary value problems Pj111 and Pyggo can be called dual to each
other — in the first of them, boundary conditions are given on all the sets 71,
Y2, 3, and 4 (and hence, with account taken of condition (2), the boundary
value problem Pj11; becomes the Dirichlet problem with defining the bo-
undary data on the whole boundary of the cylinder )), and in the second,
— on the contrary, all the sets 1, ¥2, 3, and 4 are free from boundary
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data, and hence no boundary conditions are given with respect to the time
variables t and a.

Let w(z) be a function of the space I/IO/ 2(€2). We have the inequality

/ dm<d02/ (3)

Q i=1q

in which the number dj is defined only by the domain Q [12, Chapter I,
§ 9; 4, Chapter II, § 2].

Theorem 1. Suppose the fulfillment of the following conditions:

1) m¥(z,t,a) € C?(Q), m(z,t,a) € CHQ), -
'j = 1,...,n, mp(z,t,a) € CHQ), ag(t,a) € CY(D), au(t,a) €
CA(D), folt,a) € CL(D), A(t,a) € CL(D);
H)m(wta) mﬂ(wta) i,j=1,...,n, (z,t,a) € Q,
mH(z,t,a)&E > wolé|?, po >0, (w t a) €Q, £eRYy;
> 4

I1I) %mii(x,t, a) — %mfgﬂj (w,t,a) —mo(x,t,a) > p1 >0, (x,t,a) € Q;

IV) Ko — %alt(t’ CL) - %ﬁla(t’ a) > 0; H1— %aot(ta CL) - %ﬁla(ta CL) > 0’ (t’ CL) €

i1 + Soor(t, @) — H6oa(t,a)] & + 00 (t, @) + Bor(t, a)) Eomo +
(11 = 00e(t,@) + 30a(t, 0)] 1§ >0, (t,0) €D, & € R, 10 €;
(1o = st a) + 5B1a(ta)] €17 = [ara(t a) + Bult.a)] &mi+
[0 + Law(t,a) — $B1a(t,a)] |nf? > pa (€2 + [0]?), p2 > 0, (t,a) € D,
e R", neR;

V) a1(0,a) > 0, ap(0,a) = api(a) + apga(a), api(a) < 0, apz(a) > 0,
a1(T,a) <0, ao(T,a) = aps(a) + anala), aos(a) = 0, ap(a) < 0,
aq (T, CL) — d0a04(a) <0,a€ [0, A],

VI) B1(t,0) >0, Bo(t,0) = Bor(t)+ Lo2(t), Boi(t) <0, Boa(t) >0, B1(t,0)—
doBo2(t) > 0, p1(t,A) <0, Bo(t,A) = Boz(t) + Boa(t), Bos(t) > 0,
504( ) 0, ,Bl(t A) doﬂo4(t) <0,te [O,T].

Then, for any function f(z,t,a) such that f(z,t,a) € La(Q), fi(z,t,a) €
Ly (Q), falz,t,a) € Lo(Q), the boundary value problem Poygoo has a unique
solution in V.

Proof. Make use of the regularization method. Let € be a positive num-
ber and let L. be the differential operator whose action at a given func-
tion v(z,t,a) is defined by the equality

Lov = e(Avy + Avgq — Av) + Love + Lgvg — M.
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Consider the boundary value problem: Find a function u(z,t,a) that is
a solution in the cylinder Q) to the equation

Leu = f(z,t,a) (4)
and satisfies (2) and also the conditions
ug(x,0,a) = u(z, T,a) =0, z€Q, ac(0,A4), (5)

gz, t,0) = ug(z,t,A) =0, z€Q, te(0,7T). (6)

Define the linear space Vo as the set of functions in V; whose weak deriva-
tives (%7 ((L.a t7 a)a Vaa (IL', t7 a)a Ul‘itt(x7 ta (],)7 Ul‘iaa(x7 ta (],)7 U$i$jtt (IL', t7 a)a
Vgszjaa(T,t, @), 4,5 = 1,...,n, exist and belong to L2(Q). Normalize the

space Vj:

1/2

n n
ollg, = | vl + > /viﬂjtt dvdtda+ ) /v;wa dx dt da
Lj=1¢ Lj=1¢

O

We prove that, for fixed e, under conditions I-VI, the boundary value
problem (4), (2), (5), (6) is solvable in V} for any function f(z,t,a) from
L2(Q). Use the method of continuation in a parameter ([see 14, Chapter I11,
5 14]).

Let A be a number in [0,1]. Consider the problem: Find a func-
tion u(x,t,a) that is a solution in the cylinder Q to the equation

L yu = eA(ug + ugq — Au) + X[ Lous + Lgu, — Mu] = f(x,t,a)  (4))

and satisfying conditions (2), (5), and (6). Denote by A the set of those
numbers A in [0, 1] for which this boundary value problem is solvable in Vo
for fixed e and under conditions I-VI for any function f(x,¢,a) in La(Q).
If it turns out that this set is nonempty, open, and closed simultaneously,
then it will coincide with the whole interval [0, 1] (see [14, Chapter III,
§ 14]).

It is obvious that the set A is not empty — it contains 0.

The openness and closedness of A will follow from the a priori estimate

[ullg, < Nollfllzo(q) (7)

for all possible solutions u(z,t,a) to the boundary value problem (4,), (2),
(5), (6) in Vp, which is uniform over A (again see [14, Chapter III, § 14]).
Show that the desired estimate indeed holds.
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Consider the equality
/Le,)\uudwdtda = /fudwdtda. (8x)

Q Q

Integrating by parts and using the boundary conditions, it is not hard
to pass from this equality to the following:

n
£ Z/ (w2, +ul, +ul) dodtdat
- Q

1 n
+A /[m Uz, Ug; + 2(a1t+ﬁ1a)2uii] dz dt da+
i=1
4 1 .. 1 1
+/ |:_m:2m_§ Zm]imj_mo_iaot_§60a:| u? dv dt da—
Q
1
—|—§ //a10a an)dxda——Z//alTa 2, (2, T,a)dr da+
i:10 = 10 Q
A A
1 1
5//0401 wOadwda+§//a03 xTa)dxda—i—
0 0
1L [ 1 [
+§ //ﬁltO xtOdmdt—§Z//ﬁltA (z,t, A) do dt—
=19 =17 0

T

1
//501(75) (m,t,O d$dt—|—§
0 Q

/A/aog() 2(x,0,a) dz da —
0 Q

Do | >

+;0/TQ Boa(t)u? (z, £, 0) dxdt——//ﬁm

/T
0
A
//a04 (z,T,a)dx da+
0

(z,t,A) dx dt—|—/ fudzdtda.
Q

/503 $ t A) dx dt

1\3|>/

(9)
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Estimating the first four summands on the right-hand side of (9) with the
use of (3) and applying Young’s inequality to the last summand on the right-
hand side of (9) and also inequality (3), we conclude that the conditions
of the theorem imply the a priori estimate

n
€ w2, +ul 4wl )drdtdat
Z ( x;t T;a X4
i=1
Q

o[

Q

in which the number N; is defined by the functions m¥(z,t,a), m‘(z,t,a),
Z’,j = 1a s 1y mO(x’ta CL), Oéo(t,a), al(t’ CL), 60(ta CL), 61(ta CL), and also
by the numbers dg, T', A, and ¢.

Consider the equality

i=1

u? + Zui] dz dt da < Nl/f2 dx dt da, (105)
Q

— / L yu(uy + Uqq) dz dt da = — /f(utt + Uqq) dx dt da. (11y)
Q Q
Integrating by parts once again and using the boundary conditions (2), (5),

and (6), applying conditions I-VI and inequality (3), we conclude that this
equality implies the estimate

n
£ Z / (U2 4+ U2 + U2 g H S, + Ul ) dodtdat
i=1
Q

o[

Q

where the number Ny is defined by the functions m¥(z,t,a), mi(x,t,a),
g = 1,....m, mO(x’ta CL), O‘O(t’a)a al(t’ CL), 50@’ CL), 51@’ CL), and also
by the numbers dy, T', A, and ¢.

Consider the equality

uf—i—ui—i—Z(uit—kuia)] dxdtdagNg/f2dwdtda, (125)
=1
Q

—/Le,AuAudwdtda— —/fAudwdtda. (13y)
Q Q

Integrating by parts, using the second main inequality for elliptic operators
(see [8], [9, Chapter III, § 8], estimate (12)), and Young’s inequality, we
conclude that (13)) implies the estimate

6/ [(Aut)2 + (Aug)? + (Au)2] dz dt da+
Q
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n
+A Z /uixj dz dt da < Ng/f2 dz dt da, (14,)
e Q
in which the constant N3 is defined by the functions m% (x,t, a), m‘(x,t,a),
ija = 1a s ’I’I’Lo(,I, t, CL), Oéo(t, CL), al(t’ CL), 50@’ CL), 51@’ CL), the domain Qa
and also by the numbers T, A, and e.
Finally, consider the equality

- / L yu(Auy + Augg) dr dt da = — / fAuy + Augg) dedtda.  (15))
Q Q

Integrating by parts again, using estimates (12)) and (14,), the second
main inequality for elliptic operators, and Young’s inequality, we conclude
that solutions u(x,t,a) to the boundary value problem (4y), (2), (5), (6)
satisfy the estimate

6/ [(Autt)Q + (Auaa)Q] dx dt da+
Q

A / (U201 + Uz o) du dt da < Ny / f2da dt da, (16))
L= Q

with the constant N, defined by the functions m™(z,t,a), m*(z,t,a), i,j =
1,...,n, mo(z,t,a), ap(t,a), ai(t,a), Bo(t,a), fi1(t,a), the domain 2, and
also the numbers T', A, and &.

From (12y), (14,), and (16y), we have the estimate

8/ [(Auge)? + (Auge)® + (Au)?] dzdtda < Nj / f*dz dt da,
Q Q

in which the constant Nj is defined by the functions m% (x,t, a), m‘(x,t,a),
Z’,j = 1’ s 1 mO(x’ta CL), O[(](t,a), al(t’ CL), 50@’ CL), 51@’ CL), the domain Qa
and also the numbers T, A, and ¢. This estimate implies the desired
estimate (7).

As we already said above, estimate (7) implies that the boundary value
problem (4y), (2), (5), (6) is solvable in V; for fixed &, under conditions I-VI,
and for all A € [0,1].

Thus, the boundary value problem (41), (2), (5), (6) has a solution
u(z,t,a) belonging to 170. Let us demonstrate that, under conditions I-VI,
for f(z,t,a) such that f(x,t,a) € L2(Q), fi(z,t,a) € La(Q), fo(z,t,a) €
L(Q), this solution satisfies a priori estimates uniform over e.
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Observe first of all that, under conditions I-VI, equality (81) implies
the estimate

Q

n n
52/ (W2, +ul,+ul) dedtda+ [ |u? +Zui] dx dt da <
=1 i=1
Q

gﬁl/ﬂdmdtda, (17)
Q

with the constant N, defined by the functions m¥(z,t,a), m*(z,t,a), i,j =
1,...,n, mo(z,t,a), ap(t,a), ai(t,a), Bo(t,a), and Bi(t,a), and also the
number dj.

Further, it is not hard to transform equality (117) to the form

— /La,lu(utt + Uqq) dx dt da = /(ftut + faug) dz dt da.
Q Q

Transforming the left-hand side of this equality as it was done in proving
estimate (12)), using the conditions of the theorem and estimate (17), and
applying Young’s inequality, we conclude that solutions u(z, ¢, a) to the bo-
undary value problem (41), (2), (5), (6) satisfy the estimate

n
€ Z /(uiitt + uiita + uiiaa) dﬂf dt da+
i=1
Q

o

Q

n
up g+ (uhy + u2)] dedtda < Ny / (f*+ f7 + f2) dz dt da,
=1 Q
(18)
with the constant Ny defined by the functions m¥(z,t,a), m*(z,t,a), i,j =
1,...,n, mo(x,t,a), ag(t,a), ayi(t,a), Bo(t,a), and B1(t,a), and the num-
ber dy.
Equality (13;), estimates (17) and (18) and also the conditions of the the-
orem and the second main inequality for elliptic equations imply the third
a priori estimate

6/ [(Aut)2 + (Aua)2] dz dt da+
Q

+) /uim] dz dt da < K@/(f2 + 2 + ) da dt da, (19)
ni=lg Q
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in which the constant Nj is defined by the functions m¥ (z, ¢, a), mi(z,t, a),
i,j7 = 1,...,n, mo(x,t,a), ap(t,a), ar(t,a), Po(t,a), Bl(t, a), and also
by the domain 2.

At the last step, consider equality (151). Transforming the right-hand
side of this equality by integration by parts, using the conditions of the the-
orem, the second main inequality for elliptic operators, and estimates (17)—
(19), we conclude that solutions u(z,t,a) to the boundary value prob-
lem (41), (2), (5), (6) satisfy the fourth a priori estimate

6/ [(Autt) + (Augq) ] dx dt da + Z / Ug, ;¢ d dt dat
Q e

+Z/ xxadwdtda<N4/(f2+ft + f2) da dt da, (20)
4,]= 1 Q

in which the constant Ny is defined by the functions m#(z,t,a), m*(z,t, a),
i,j7 = 1,...,n, mo(x,t,a), ap(t,a), aq(t,a), Po(t,a), pi(t,a), and also
the domain €.

Estimates (17)—(20) are desired estimates of solutions u(z, t, a) to the bo-
undary value problem (41), (2), (5), (6) uniform over . These estimates
and the reflexivity of a Hilbert space imply that there exists a sequence
{em}°_; of positive numbers {uy, (z, ¢, a)}2o_; of solutions to the boundary
value problem (41), (2), (5), (6) and a function wu(z,t,a) such that, as
m — oo and for 4,7 = 1,...,m, we have the convergences

€m — 0,
U (2,1, @) — u(z,t,a) weakly in Wy (Q),
Umnaa; (T, 1, 0) = Ugye, (7,1, a) weakly in La(Q),
Umna;e;t(T5 1, a) = Ugz;0(T,t, @) weakly in La(Q),
Umnasz;alT, T, ) = Uga(2,t,a) weakly in La(Q),
EmAupy, (z,t,a) = 0 weakly in Lo(Q),
EmAumu(x,t,a) — 0 weakly in L2(Q),
EmAUmaq(z,t,a) — 0 weakly in Lo(Q).

Obviously, the limit function u(x, ¢, a) belongs to Vj and is a desired solution
to the boundary value problem FPyygg.

Uniqueness in V{y of solutions to the boundary value problem Py
obviously follows from the equality

/(Laut + Loug — Mu)udx dt da = 0. (21)
Q
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The theorem is proved.

Turn to investigating the solvability of the boundary value problem
Piy11.

The solvability of the boundary value problem P;111 in Vg will be proved
again by the regularization method, we will again use equation (4) but
no additional boundary conditions will be given.

Define some conditions to be used below:

VI;. 1(0,a) <0, ap(0,a) >0, a1(T,a) > 0, apg(T,a) <0, a € [0, Al;
VIII;. B1(t,0) <0, Bo(t,0) >0, B1(t,A) >0, Bo(t,A) <0, te[0,T];
VIII,. Bi1(t,0) <0, Bo(t,0) >0, B1(t,A) >0, Bo(t,A) <0, t€[0,T7;
VIII;. B1(t,0) <0, Bo(t,0) >0, B1(t, A) >0, Bo(t,A) <0, t € [0,T);
VIII;. B1(t,0) <0, Bo(t,0) >0, Bi(t,A) >0, Bo(t, A) <0, t €[0,T]

Theorem 2. Suppose the fulfillment of conditions I-1V, of one of condi-
tions VII;-VII;, and of one of conditions VIII;-VIIl;. Then, for
any function f(x,t,a) such that f(x,t,a) € Lo(Q), fi(xz,t,a) € L2(Q),
folwit,a) € La(Q), f(w,0,0) = f(5,T,a) = 0 for (x,a) € @ x (0, 4),
flx,t,0) = f(x,t,A) = 0 for (x,t) € Q x (0,T), the boundary value

problem Pi111 has a unique solution in V.

Proof. Consider the boundary value problem: Find a function u(x,t,a)
that is a solution to equation (4) in the cylinder Q and satisfies the Pyi11-
condition and also condition (2). The proof of the solvability of this
problem in Vy for fixed £ and f(z,t,a) € L(Q) is again carried out
by the method of continuation in a parameter and a priori estimates.
In view of the analogy of the procedure of applying of the method of contin-
uation in a parameter with the corresponding procedure used in the proof
of Theorem 1, we just show that solutions to the above-proposed boundary
value problem satisfy estimates in Vj valid if f(z,t,a) € L2(Q), and then
— that, under additional conditions on the function f(z,t,a), there are
estimates uniform over e.

Consider equality (81). Using the Pjj11—condition, condition (2), condi-
tions I-IV, we infer that solutions u(x,t,a) to the boundary value prob-
lem for equation (4) with the Pjji1-condition and condition (2) satisfy
estimate (101).

Now, consider equality (117). After integration by parts with the use
of the boundary condition, this equality takes the form

n
€ Z /(uiitt =+ 2u§¢t(l + uiiaa + uiit + uil(l) d'm dt da’+
i=1
Q
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1 . 1 1 1 9
+ / { [iméi - §m§ix] — Mo + 50— 5504 ui+
1 1 1 1
+(Bot + o) uaqut + 3, — §mggm] —mo + 5&)@ 500t | u dx dt da+
+
Q
1 1 =,
+ 505115 - 561a Z Upia — (ﬁlt + O‘la)u:vitu:via dz dt da+

i=1

i
m]umituxjt+< ﬁla_ alt) § u t"’m um aum]a+

ij ij g1
+/ [mt Ug; Uz st + Mg Ug U0 + (mwjt M) Ug, Ur+
Q

—i—(mfgja — M g, g — Moguny — moauua] drdtda p +

A
1
/aOOaut an)dxda—§

n

A
Z//al()a mt(mOa)da:da—|—
0 Q

=1

1
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Under the fulfillment of one of conditions VII;, VI, VII3, or VII;, one
of conditions VIII;, VI, VIIlg, or VIII;, the sum of the last four sum-
mands on the left-hand side of this equality is nonnegative. Using this
fact and conditions I-IV, we infer that a solution u(x,t,a) to the boundary
value problem for equation (4) with the Pjj11-condition and condition (2)
satisfies estimate (12;).
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Further analysis of equalities (131) and (151) gives the fulfillment of esti-
mates (14;) and (161) for a solution u(z, ¢, a) to the boundary value problem
for equation (4) with the Pj111-condition and condition (2). The sum of esti-
mates (101), (121), (141), and (161) gives estimate (7); this estimate implies
the existence in Vj of a function u(z,t,a) that is a solution to equation (4)
in the cylinder @ and satisfies the Pjj11-condition and also condition (2).

The presence of a priori estimates uniform over ¢ for solutions w(z,t,a)
to the boundary value problem for equation (4) with the Pjq11-condition
and condition (2) is proved by an additional integration by parts in (117)
and (151). The possibility of choosing a sequence converging to a solution
to the boundary value problem Pj1; stems from the obtained estimates
uniform over € and the reflexivity of a Hilbert space.

The uniqueness of solutions to the boundary value problem Pj111 in V
is easy to show with the use of equality (21) and conditions I-1V.

The theorem is completely proved. ]

4. Solvability of the Boundary Value Problems P19, Pio10,
Py100, and Pygoo-

The boundary value problems Pi119, Pio10, Pi1og, and Piggg are prob-
lems intermediate between the problems Pyyyg and Pj111 — in them, part
of the sets 71, 72, 73, and 4, are free of boundary value conditions, whereas
the value of the solution is given on the remaining part. The solvability
of these problems in the space Vj is studied by a combination of the meth-
ods of investigating the problems Pygoo and Pj111. More exactly, we once
again use the regularization method, where equation (4) again serves as
the regularizing equation. Only the boundary conditions change — for each
of the problems Pi119, Pio10, P1100, and Piggg, on the sets on which the val-
ues of the solution are not given, in the regularizing problem, the values
of the derivative u; or u, are given (for example, in the problem regularizing
the problem P;q11g, the additional condition

ug(z,t,a) =0 for z€Q, t€0,T

is given). The technique of the necessary a priori estimates as for fixed e
as of estimates uniform over & completely corresponds to the technique
used in the proof of Theorems 1 and 2. The convergent sequence is cho-
sen in a standard manner: with the use of the estimates obtained and
the reflexivity property of a Hilbert space.

Let us give the exact results for each of the problems.

Theorem 3. Suppose the fulfillment of conditions I-IV, of one of condi-
tions VII;, VIIy, VIIz, or VII;, of the condition

Bi(t,A) <0, PBo(t,A) = Bos(t) + Poa(t), Pos(t) >0, Loa(t) <O,
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Bi(t, A) — dofoa(t) <0, te[0,T];

and also of one of the conditions
/81(t70) < 07 /BO(t7O) > 07 € [OaT]a

: B1(t,0) <0, PBo(t,0) >0, €10,7).

Then, for any function f(z,t,a) such that f(x,t,a) € La(Q), fi(x,t,a) €
Ly (Q), falz,t,a) € La(Q), f(x,0,a) = f(z,T,a) =0 for (z,a) € 2x(0,A),
f(z,t,0) =0 for (z,t) € Q x (0,T), the boundary value problem Pi119 has
a unique solution in V.

Theorem 4. Suppose the fulfillment of conditions I-IV, of one of condi-
tions VII;, VI, VIlg, or VII;, and also of the conditions

B1(t,0) >0,  Bo(t,0) = Bor(t) + Poz(t), Bor(t) <0, PBoz(t) >0

B1(t,0) — doBo2(t) >0, te€[0,T];
Bi(t,A) <0, PBo(t, A) = Bos(t) + Poa(t), BLos(t) >0, Boa(t) <0
Bi(t, A) — dofoa(t) <0, te€][0,T].

Then, for any function f(z,t,a) such that f(z,t,a) € La(Q), fi(z,t,a) €

L2(Q)7 fa(wat7a) € L2(Q)7 f(x,O,a) = f(w7T7a) = 0 for (x,a) € Q%
(0,4), f(x,t,0) = f(z,T,a) =0 for (z,t) € Q2 x (0,T), the boundary value
problem Pi109 has a unique solution in V.

Theorem 5. Suppose the fulfillment of conditions I-IV, of one of the con-
ditions
al(o’a) <0, aO(Oa CL) >0, ac€ [O,A],

or
01(0,a) <0, ap(0,a) >0, ac[0,A]

of one of the conditions
/81 (t,O) < Oa IBO(t7O) > Oa € [OaT]a

or
/81(t70) S 07 /80(t70) > 07 S [OaT]7

and also of the conditions
a1 (T,a) <0, ao(T,a) = ag(a) + amula), am(a) =0, amla)<0,
(T, a) — docoa(a) <0, a € [0, Al
Bu(t, A) <0, Bo(t,A) = Bos(t) + Poa(t), Posz(t) =0, Boa(t) <0
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Bi(t, A) — doBosa(t) <0, te[0,T].

Then, for any function f(z,t,a) such that f(z,t,a) € La(Q), fi(z,t,a) €
Ly(Q), fa(z,t,a) € La(Q), f(2,0,a) =0 for (z,a) € 2x(0,A), f(z,t,0) =
0 for (z,t) € Q x (0,T), the boundary value problem Piy19 has a unique
solution in V.

Theorem 6. Suppose the fulfillment of conditions I-1V, of one of the con-
ditions
01(0,a) <0, ao(0,0) >0, a € [0, Al

or
01(0,a) <0, ap(0,a) >0, ae [0, A]

and also of the condition
ar(T,a) <0, ao(T,a) = ags(a) + aga(a), agsa) =0, aoi(a) <0,
a1(T,a) — doaps(a) <0, a€]0,A]
Bi(t,0) =0,  Bo(t,0) = Bor(t) + Boz(t),  Bo(t) <0, Boz(t) =0,
B1(t,0) = doBoz(t) 20, t€[0,T];
Bi(t, A) <0, Bo(t, A) = Bos(t) + Poa(t), Pos(t) =0, Boalt) <0,
Bu(t, A) — dofoa(t) <0, € [0,T].

Then, for any function f(x,t,a) such that f(x,t,a) € La(Q), fr(z,t,a) €
Ly(Q), fa(z,t,a) € La(Q), f(x,0,a) =0 for (z,a) € Qx (0,A), the bound-

ary value problem Piogy is uniquely solvable in V.

5. Conclusion

We have studied the solvability of boundary value problems for third-
order Sobolev-type equations with two time variables not solved for the de-
rivatives. Existence and uniqueness theorems are prove for regular solu-
tions.

The equations under study have model form. It is not hard to obtain
analogous theorems on the solvability of the corresponding boundary value
problems also for general equations. For example, the Laplace operator
can be replaced by an arbitrary second-order elliptic operator whose coeffi-
cients «g, a1, By, and 81 can depend also on the variables x1, ..., x,, and
the number of time variables can be arbitrary. The calculations and con-
ditions for such general equations will ne substantially more cumbersome
but the essence of the results on solvability will not change.
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YiabTpanapabosindeckue ypaBHEHUsI C ONI€PATOPHBIMU
Ko durmeHTaMu Mpu BPEMEHHBIX MPOU3BOIHBIX
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AnHoTauusa. Pabora mocBsiliieHa HCCIIEIOBAHUIO Pa3pEIIMMOCTH KPAEBBIX 3a1ad
s auddepeHImaabHbIX YPABHEHW COOOJIEBCKOTO THIIA TPETHETO MOPSIKA C JIBYMS
BPEMEHHBIMH [I€PEMEHHBIMY (IIOJOGHBIE YPABHEHUsI HA3BIBAIOTCS TAKIKe YPABHEHUSIMU
COCTABHOIO THUIIA, WJIM YyPABHEHUSMHU, HEPA3PEIICHHBIMA OTHOCHUTEJBHO ITPOM3BOIHON).
OTanYuTeTbHBIMYE OCODEHHOCTSIMU U3yYaeMbIX YPABHEHUI SIBJISTIOTCSI, BO-IIEPBBIX, TO, YTO
nuddepeHnraabHbIe OEPATOPHI, IEHCTBYIOINE Ha BPEMEHHbBIE TTPOU3BOHBIE, HE TPE/INO-
JIararoTcsi OOpPaTHBIMU, BO-BTOPBIX, TO, YTO MIOCTAHOBKM KPaeBbIX 3aJ1a4 JIJIs HUX OIIpeje-
IA10TC KOdd durmentamu 3tux auddepeHnnaabHbIX onepaTopoB. s npemiokeHHbIX
3a/1a49 B paboTe JIOKa3bIBAIOTCSI TEOPEMBI CYIIECTBOBAHNSI U €IMHCTBEHHOCTHU PEryJISPHBIX
pemenuit (pemenwnii, nmeromux Bee o6obmennnie o C. JI. CoboseBy npou3BogHbIE, BXO-
Jsinye B ypaBHeHne). TexHUKa JI0Ka3aTeIbCTB TeOPEM CyIIECTBOBAHMsI OCHOBAHA Ha ClIe-
UAJTLHON PEryJIsipU3aIliy U3y9aeMbIX YPaBHEHUI, AIIPUOPHBIX OIEHKAX W MPEIeTbHOM
rnepexojie.

KuroueBsbie cjioBa: yiabTpanapabondecKre ypaBHEeHNsI, HeOOpaTUMBbIE OlTepaTOPHBIE
KO3 DUIMEHTHI, KPAEBbIe 33Ja4N, PEryJspHbIC DEIleHNs, CYIIeCTBOBAHNE, €IMHCTBEH-
HOCTb.
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