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Global Existence of a Solution for a Multiscale
Model Describing Moisture Transport in Concrete
Materials *

K. Kumazaki
Nagasaki University, Nagasaki, Japan, Department of Education

Abstract. In the previous study [5] we proved the existence of a solution locally in time
for a two-scale problem which is given as a mathematical model for moisture transport
arising in a concrete carbonation process. The two-scale model consists of a diffusion
equation of the relative humidity in a macro domain and the free boundary problems
describing a wetting and drying process in infinite micro domains. In this paper, by
improving the diffusion equation of the relative humidity based on the experimental
result [3; 10], we construct a globally-in-time solution of the two scale model. For the
global existence, we obtain uniform estimates and uniform boundedness of the solution
with respect to time and use the method of extending local solutions.

Keywords: two-scale model, free boundary problem, quasilinear parabolic equation,
moisture transport.

1. Introduction

In our recent work [5], we proposed a two-scale model describing mois-
ture transport phenomena arising in a concrete carbonation process, and
showed that our two-scale problem is solvable locally in time. In this paper,
we improve an equation consisted of the two-scale model and prove the
existence of our concept of solution globally in time.

Based on the setting of [5], let us describe our model. Our model consists
of a macro domain €, where Q is a bounded domain in R? which is occupied
by concrete, and a micro domain for each z € . In the macro domain 2

* This work was supported by JSPS KAKENHI Grant Number JP16K17636
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we consider the relative humidity h = h(t,z), where ¢ is a time variable.
On the other hand, we assume that the micro domain is the hole for each
x € Q, and consider the hole as an interval (0, L), where L is the depth of
the hole. This interval (0, L) indicates the water drop region (0, s(¢,z)) and
the air region (s(¢,z), L), and the boundary L denotes the edge of the hole
in contact with h. Here, we regard the degree of saturation s = s(¢,x) and
the size of the water drop region, and assume that the relative humidity v
in one hole acts in the following non-cylindrical domain Q4(7") defined by

Qs(T) :={(t,z,2)|(t,x) € (0,T) x Q,s(t,x) < z < L}.

Our two scale model, which we denote by (P), is as follows: Find a triplet
(h,s,u) = (h(t,x),s(t,z),u(t,x, z)) satisfying the following equations, bo-
undary and initial conditions,

pul — div(g(R)VR) = s(1 — f(h))v in Q(T) = (0,T) x O,
h =hy on S(T) :=(0,T) x 09,

putte — sz = 0 on Qu(T),

u(t,z, L) = h(t,x) for (t,z) € Q(T),

ku,(t,z,s(t,z)) = (pw — pou(t,x, s(t,x)))s:(t, z) for (t,z) € Q(T),
se(t,x) = a(u(t,z, s(t,x)) — p(s(t,z))) for (t,x) € Q(T),

h(0,z) = ho(x) for z € €,

s(0,z) = so(x) for = € Q,

u(0,x, z) = up(x, 2) for (x,z) € Ny,
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where Qg = {(z,2) € Q x R|so(x) < z < L}, py, and p, are the densities
of HoO in water regions and in air regions, respectively, ¢ is a continuous
function on (0,00), f and v are given functions on R and on Q(T), respec-
tively, k and a are positive constants, ¢ is a continuous function on R, hg
is an initial condition on €2, sy is an initial position of the free boundary s
and wg is an initial condition on (sg, L).

From the physical point of view, (1.1) is the diffusion equation of h
which is originally proposed by [7; 8|, ¢ is a diffusion coefficient. Also,
v represents the concentration of COz and s(1 — f(h))v represents the
quantity of water generated by chemical reaction according to the level of
the humidity, where f is a monotone function increasing on [0, 1] such that
f(0) > 0 and f(1) is almost 1. The forcing term is proposed by [3;10] based
on the experimental result that CO45 cannot be dissolved completely in low
humidity, while the water in the pores hinders the diffusion of COs in high
humidity, and 1 — f(h) is the reduction factor depending on h.

The system (1.3)-(1.6) with (1.8) and (1.9) is a free boundary problem
describing a wetting and drying process in the hole for each x € 2 and is
originally proposed by [9]. The equations (1.3) and (1.5) are derived from
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the mass conservation for HoO in the air region and near the free boundary,
respectively. Also, (1.4) means that each hole is exposed to air at the end
of the hole, and (1.6) is the growth rate of the water drop region and ¢
represents the rate of change from water to air in the hole.

The problem (P) is quite close to the two-scale model in [5]. Indeed, the
two-scale setting and the system {(1.3)-(1.6), (1.8), (1.9)} is exactly same.
The difference between (P) and the model in [5] is the diffusion equation
of the relative humidity h: we consider (1.1) in (P), while we studied in [5]
the following diffusion equation of the relative humidity:

poh — div(g(h)Vh) = sv in Q(T), (1.10)

where p,, g, and v are the same constant and functions as in (P). As pointed
out in [5], for the global existence it needs to satisfy that 0 < h < h, on
[0,T], where h, is a positive constant with h, < 1. However, it is difficult
for the solution h satisfying (1.10) to guarantee such boundedness on [0, 7]
for T > 0. To overcome this difficulty we improve (1.10) based on the
experimental result [3;10], and arrive to a more realistic equation (1.1).
Under this improvement, we show the smallness of h satisfying (P) on
[0,T] for T > 0 and establish the existence of a globally-in-time solution of

(P).

2. Notations and Assumptions

In this paper we use the following notations. In general, for a Banach
space X we denote by |-|x its norm. Particularly, we denote by H = L?(Q),
and the norm and the inner product of H are simply denoted by | - |z and
(-,)m, respectively. Also, for @ C R" for n = 1 or n = 3, H'(Q), H}(Q)
and H?(Q) are the usual Sobolev spaces.

Throughout this paper, we assume the following conditions:

(A1) Q is a bounded domain of R? which has the boundary 99 in the
class of C2.

(A2) k, a, ko are positive constants satisfying g < 1.

(A3) G € C3((0,4+00)) is such that g(r) := G'(r) > go for r > 0, where
go is a positive constant and put

Cg= sup |g(M]+ sup |g"(r)]
r€lko,+00) r€[ko,+00)

(Ad) f e CHR)INWL®(R), 0 < f <1onRand f(r) =1 for r > h*,
where h* is a positive constant satisfying h* < 1, and put Cy = ]f’\Loo(R).

(A5) v € L®(Q(T)) and v; € L%(0,T; H'(R)) with v > 0 a.e. on Q(T).

(A6) hy € C%(Q(T)) and hy; € L*(0,T; H?(2)) with
ko < hy < h* on Q(T), (2.1)
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where h* is the same constant as in (A4).

(A7) ho € H?(2) N WH>(Q) with
Ko < hg < h* on €, (2.2)

where h* is the same constant as in (A4), and Ahg is bounded a.e. on €.
Also, hg satisfies that hg = hy(0) a.e. on 9S.

(A8) o € CHRYNWL®(R), ¢ = 0 on (—00,0], o < 1on R, ¢ >0 on
(0, L] and for by > 0 ¢(L) — by > 0. Also, we denote by ¢ the primitive
function of ¢ with ¢(0) = 0 and put C, = [¢'[ oo (x)-

(A9) Two positive constants p,, and p, satisfy

pw > po(Cp+2),  9aLp < kpy.

(A10) sp € H such that 0 < sg < L — g for 69 > 0 a.e. on Q, and
ug € L*(fs,) and the function z — |ug(z)|g1(s,,z) is bounded a.e. on Q
and ug(z, L) = h(z,0) for x € Q and 0 < up < 1 a.e. on Q.

Definition 1. Let h and s be functions on Q(T) and u be a function on
Qs(T), respectively, for T > 0. We say that a triplet (h,s,u) is a solution
of (P) on [0,T] if the conditions (S1)-(S9) hold:

(S1) h € WY2(0,T; H) N L*(0,T; H(2)) N L2(0, T; H*(Q)) with h > 0
a.e. on Q(T).

(92) 5 51 € L%(QT)), 0 < s < L on Q(T), u € L=Qu(T)), u,
u,, € L*(Q4(T)) and (t,7) € Q(T) — |u,(t,z, Nr2(s(t,2),n) 8 bounded.

(S3) pvhe — AG(h) = s(1 — f(h))v a.e. in Q(T).

(S4) h = hy a.e. on S(T).

(55) pous — ku,, =0 on QS(T)

(S6) u(t,z, L) = h(t,z) for a.e. (t,x) € Q(T).

(S7) kuy(t,xz,s(t,x)) = (pw — pou(t,z,s(t,x)))sc(t,z) for a.e. (t,x) €
Q(T).

(S8) si(t,z) = a(u(t,z,s(t,z)) — p(s(t,x))) for a.e. (t,x) € Q(T).

(59) h(0,2) = ho(z), $(0,) = so(x) for & € 9,

w(0,z,2) = up(z, 2) for (x,z) € Q.

Our main result of this paper is concerned with the existence of a
globally-in-time solution for the problem (P).
Theorem 1. Let T > 0. If (A1)-(A10) hold, then (P) has a unique
solution (h,s,u) on [0,T] with kg < h < h* a.e. on Q(T) and 0 <u <1

a.e. on Q4(T).
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3. Mathematical model for moisture transport

For T'> 0 and § € (0, L) we set

X(T,6) :={s e W20, T; H)| 0 < s < L — ¢,
|st] < 2a a.e. on Q(T"),s(0) = spin Q}.

First, for given 5§ € X (T, ), we prove the existence of a solution of
(AP)(3) := (AP)(S, h, ho)
on [0,77]. To do so, we put
Dg(T) = {2 € C(0,T; H)| |2t|r2(0,r;11) + 2] o003 0)) < K},

where K is a positive constant determined later. For given h € Dg(T), we

consider (AP)(8, h) := (AP)(3, h, hy, ho):

puhy — div(g(h)VR) = 5(1 — F(R))v in Q(T),
h = hy on S(T),
h(0,z) = ho(x) for z € €.

By (A4) and (A5) we easily see that 3(1— f(h))v € L2(0,T; H)NL>® (Q(T)).
Hence, by using the result of [1;2] we have a solution h of (AP)(S,h) such
that h € WH2(0,T; H) N L>®(0,T; HY(Q)) N L2(0,T; H?(Q)), h(t) — hy(t) €
H}(Q) for a.e. t € [0.T] and

ko < h < p(t) a.e. on Q for ¢t € [0,T], (3.1)

where P(t) = L|v|pee(q(ryt + h* for t € [0,T]. Next, we note the useful
property of a solution of (AP)(3, h).

Lemma 1. Let T > 0 and h be solutions of (AP)(3,h) on [0,T] for given
5 € X(T,0) and h € Dg(T). Then, there exists an increasing function
M;(T) > 0 (1 < i < 2) with respect to T which is independent of § and o
such that

(@) [hlwrzomm) + 1l Lo (0,001 )y < Ma(T),
(@) |Vh|req(ry) < Ma(T).

‘The estimate (i) is obtained by the standard calculation because [5(1 —
f(R))v] < L|v|peoqry) by 5 € X(T,6), (A4) and (A5). Also, from 3(1 —
f(h)) € L>®°(Q(T)) we can apply the same argument of Lemmas 3.1-3.4
in [1] and get My(T) satisfying (ii). In particular, we note that these
constants are independent of the choice of h.

Next, for fixed 5 € X(T,0) we prove the continuous dependence of a
solution h of (AP)(8,h) for given h € Dy (T).



74 K. KUMAZAKI
Lemma 2. Let hy and hy be solutions of (AP)(3,h1) and (AP)(3, hy) for

gilven iLl, ho € Dk (T), respectively. Then, there exists C(T') depending on
T such that

|hi(t) — ha(t)[% —|—/ |V (hi(T) — ha(7))|%dr

/ |h1 ()4 dr fort € [0,T).

Proof By the subtraction of the equations for h; and ho, it holds that
G () = a0l + [ V(G (0) = Glha0)V(ha(0) — halt)da

- /Q [5@)(1_ Fh(t) — (1 — f(BQ(t)))>v(t)] (hi(t) — ho(t))dz.  (3.2)

Here, by using (ii) of Lemma 1, we can estimate the second term of the left
hand side of (3.2) as follows.

/ V hl (hg))V(hl - hg)dx
- /Q (9(h) ¥ (b — o) + (g(ha) — 9(h))Vha) V(hy — hy)da

>g0|V (k1 — ha)|7; — MZ(T)/ 19(h1) — g(h2)[|V(h1 — h2)|dx

go 2 ( )02 2
ZEW(}H —ha)|y — 27\% hal3r, (3.3)
90

where gg and Cy are the same positive constants as in (A3), and My (T) is
the same constant as in Lemma 1. Also, by (A4) and Hélder inequality, we
observe that

/Q [g(t) <1 — f(ha(t)) — (1 — f(ﬁg(t))))v(t)} (hi(t) — ho(t))dz

<LCy || oo (qeryy 11 () = ha(t) | (t) — ha(D)]ar- (34)
Hence, by substituting (3.3) and (3.4) into (3.2) we obtain

5 dt|h1() ha(t)} + 2 IV(hl() ha (1) |3

L202|’U|Loo ) ~
< 5D (1) ~ ha(D)l
L2C2‘U‘ oo C2
+< ’ QL e 2(9) )Ihl() ha(t)[3 for ae. t € [0,T].
0

Therefore, by Gronwall’s inequality, we see that there exists a positive
constant C(7T") depending on 7" such that Lemma 2 holds. O
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From Lemma 2, for fixed § € X(T,J), we also see that the solution h
of (AP)(5,h) for given h € Dy/(T) is unique. Now, we prove the existence
of a solution of (AP)(3) for given § € X(T,6). By taking K = M;(T), we
define the mapping I' : D (T) — Dg(T) by T'(h) = h, where h is a unique
solution of (AP)(3,h) for given h. Then, by Lemma 2 we see that I is
continuous with respect to C'(0,T; H). Therefore, since D (T') is compact
in C(0,T; H), by Schauder’s fixed point theorem, we can find h € Dg(T)
such that I'(h) = h. This means that (AP)(5) has a unique solution on
[0, T for fixed § € X(T,0).

Next, we prove the following boundedness of a solution h of (AP)(3) for
given 5 € X(T,6).

Lemma 3. Let T > 0, § € (0,L) and h be a solution of (AP)(3) for given
5€ X(T,0). Then, ko < h(t) < h* fort € [0,T] a.e. on Q, where h* is the
same constant as in (A4).

Proof. First, we prove that h > kg for t € [0, 7] a.e. on Q. By (2.1) it holds
that [—hy + ko] = 0 a.e. on Q(T). Then, we have that

v d
o L l=h@) + ol By g0 [ [V1-h(0) + mo]* Pl
Q

§/ —5(t)(1 = f(h(t)))v(t)[=h(t) + ro]Tdz for a.e. t € [0, T].
Q

Here, 5(1 — f(h))v > 0 a.e. on Q(T") so that it follows that

d
p; g [—h(t) + ko] T |% +go/ |V[=h(t) + ro] T |*dz < 0 for a.e. t € [0,T].
Q
Clearly, the second term is positive. Hence, we obtain
d
7 [—h(t) + ko] T|% <0 for ae. t € [0,T).

This result and (2.2) implies that h(t) > ko for t € [0, 7] a.e. on . Next,
we show that h < h* for t € [0,7] a.e. on Q. Since [hy — h*|T =0 a.e. on
Q(T) by (2.1), it holds that

e S lhle) — b +go/rv J* Pz
g/ 3(6)(1 — F(h(t))v(B)[h(t) — B dx for ae. t € [0,T).
Q

We note that the second term is positive and the right hand side is equal
to 0 because f(h) =1 by (A4) if h > h*. Hence, we obtain that

d
pn [h(t) — h*]T|3 <0 for a.e. t €[0,T).

Finally, by integrating over [0,¢] for ¢t € [0,T] and (2.2) we see that h < h*
for t € [0,T] a.e. on Q. Thus, Lemma 3 is proved. O
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At the end of this section, we give some properties of a solution h of

(AP)(3) for given 5§ € X(T,0).

Lemma 4. (i) Let T > 0, § € (0,L) and h be a solution of (AP)(3)
on [0,T] for given § € X(T,8). Then, there exists an increasing function
M;(T) >0 (1 < i < 4) with respect to T which is independent of § such
that

|hlw2 0,10y + Bl Lo 0,701 () < Ma(T),
IVh| Lo ery) < Ma(T),

|ht| Loo 0,111y + [Vt 1200 1,0y < M3(T),
|htl oo (@eryy < Mu(T),

where M1(T) and My(T) are the same as in Lemma 1.
(ii) Let hy and hy be solutions of (AP)(S1) and (AP)(82) for 81, S2 €
X(T,0), respectively. Then, there exists M5(T) > 0, Mg(T) > 0 such that

V(b (0) = Ba()f + [ 1A(n(7) = ha(r)
< M5(T)|31 = 32|72 .11y for t € [0, T, (3.9)
and

|h1e = hat| 207,y < Me(T)|51 — S2|r2(0,7:0) (3.10)

As mentioned in Lemma 1, since [3(1 — f(h))v] < L[v| (7)) (3.5) and
(3.6) are obtained, and these estimates are independent of the choice of 3.
Also, by (A4), (A5) and (3.5), we see that (5(1 — f(h))v); € L*(0,T; H).
On account of this, (3.7) can be obtained by using the same argument
of [1]. Moreover, with the help of (A4), (A5), (A7) and (3.7) it holds that
(3(1 — f(h))v); € LS5(Q(T)) and 3¢(1 — f(ho))v(0) € L>®(2). From this
result, we can have (3.8) by the technique of [6] or the same way of the
proof of Lemma 3.2 in [5]. The continuous dependence estimate (3.9) and
(3.10) are derived from the subtraction of the equations hy and hs by using
(3.6) and the same proof of Lemma 3.3 of [5]. In this paper, we omit the
precise proofs.

4. Free boundary problem

In this section, we note the obtained result for the free boundary problem
with a given h on Q(T') for T > 0. First, we give a definition of a solution
to (FBP)(h, so,ug) satisfying (1.3)-(1.6), (1.8), and (1.9) for each = € .
Throughout this section, we use the notation Qs(x)(T) for the following
domain: For each x € €,

Qs()(T) = {(t, 2)[t € (0,T),s(t,r) <z < L}.
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Definition 2. Let T > 0 and z € Q, s = s(x) = s(-,x) be a function on
[0,7] and v = u(z) = u(-,z,-) be a function on Qs(m (T). We say that a
pair (s,u) is a solution of(FBP)(h,so,uo) := (FBP)(h(-,x), so(z),uo(z,-))
on [0,T) if the following conditions (D1)-(D6) hold:
(D1) s(x) € Wh>(0,T),0 < s(z) < L on [0,T], u(z) € L>(Qy)(T)),
u(x), uzz(z) € L2(Qu(ay(T)), t € [0,T] = Juz(t, @, )| p2(s(t.0),1) i bounded.
(DQ) pvut( ) kuzz(x) =0 on Qs(x) (T)
(D3) u(t,z, L) = h(t) for a.e. t €[0,T].
(D4) ku,(t,x,s(t)) = (pw — poult,z,s(t,z)))si(t,x) for a.e. t €1[0,T).
(D5) si(t,x) = a(u(t,x, s(t,z)) — p(s(t,x))) for a.e. t €[0,T).
(D6) s(0,z) = so(z), u(0,z,2) =uo(x,z) for z € [so(x), L].

To handle (FBP)(h, so,uo), by introducing the following function %
u(t,z,y) = u(t,z, (1 —y)s(t,z) +yL) for (,y) € (0,T) x [0,1],  (4.1)

we transform (FBP)(h, sq,ug), initially posed in a non-cylindrical domain,
to the following problem (E]?PT)(B, S0,Up) in a cylindrical domain:
pie) = (@) = P )
a(t,z,1) = h(t,z) for t € [0,T],

k
L — s(t,x)
se(t, x) = a(u(t,z,0) — p(s(t,z))) for t € [0,T],
s(0,2)=so(z), @0, z,y)=uo(z, (1 — y)so(x) +yL)=: Go(z,y) for y€0,1].

Here, the condition (D1) is equivalent to the following (S):

n (0,7) x (0,1),

Uy (t,x,0) = (pw — pot(t, z,0))s¢(t, z) for t € [0,T],

s(z) € WH*(0,T), 0 < s(z) < L on [0,T),
(S) < di(x) € WE2(0,T; L2(0,1)) N L(0,T5 HY(0,1)) N L¥((0,T) x (0,1))
NL2(0,T; H?(0,1)).

The following result for (I?E/P)(B, S0, ug) is already obtained in [4].

Theorem 2. Let h € WY2(0,T; H) N L*(0,T; H*(Q)), hy € L=(Q(T))
with 0 < h < hy a.e. on Q(T), where hy is a positive constant with h, < 1.
Also, assume that sq € H is such that 0 < sg < L — 6 for 6 > 0 a.e. on
Q, and @ € L>(Q x (0,1)) and the function x — |to(z)|g1(0,1) is bounded
a.e. on Q and tg(z,1) = h(x,0) for a.e. * € Q and 0 < g < 1 a.e. on
Q2 x(0,1). Then, (i) and (ii) hold:

(i) For any T > 0, (FBP)(h(-,z),s0(x),%o(x,")) has a unique solu-
tion (s(-,x),a(-,z,-)) on [0,T] such that & € L>=(Q;W12(0,T; L*(0,1))) N



78 K. KUMAZAKI

1290 1290, T5 H (0, 1)) N L2(; L2(0, T (0, 1)) N (9 L((0, 1)),
s € L®(Q;Wh(0,T)), 0 <@ <1 ae onx(0,1) fort € [0,T] and
Ist| < 2a a.e. on (0,T) x Q. Also, for (s(-,z),u(-,z,-)) with u(-,z,-) =

i (-,x, L:Z((.f?)) on Qg(z)(T), there exists a positive constant Cy such that

p t L k L
—// \uT(T)\zdsz—i——/ . (1) 2d2
2 Jo Jsn 2 Jsw

| ko[t )
<5 [ luwozl"dz 45 [ se(7)|uz (7, s(7))["dr
2 /s, 2 Jo

+C /t(’<9¢(7')!2 + |he (1, 2)2)dr + Cy fort €[0,T] a.e. on Q. (4.2)
0

Moreover, let Cy be a positive constant obtained by (4.2) which satisfies
st(t) lu,(t)|?dz < Oy for t € [0,T), then there exists a positive constant .
depending on k, a, hy, Cy, and L and Cy such that

0<s<L—90 fort€[0,T] a.e. on . (4.3)

(ii) For a.e. x € Q, let (s1(-,z),u1(-,x,-)) and (s2(-, x), U2(-, z,-)) be so-

lutions Of (FBP)(Bl(P%')a 80(.%'),110(.%', )) and (FBP)(BQ(WT)? SO(‘T)7€LO(‘T7 ))
on [0, T, respectively, then it holds that

t
| (t) = @2(8) (7200 (0.1)) +/0 [y (7) = 2y (7) T2 (0 (0.1)) 4T
+ 51— 52|%oo(o,t;H) < Cslhy — B2|%/V172(0,t;H) fort €10,T7, (4.4)

where Cs is a positive constant depending on k, a, hy, Cy, puw, pv, L and
Ox -

5. Local and Global existence

5.1. LOCAL EXISTENCE

In this section, we prove the local existence of a solution of (P). First, for
fixed T'> 0 and ¢’ € (0, L) we define the mapping A : X (7T,¢") — X(T,¢")
for o' € (0, L) as follows: for each § € X(T,d’) we denote by h the unique
solution of (AP)(S) on [0,7]. Then, by Lemmas 3 and 4, h satisfies the
assumption of Theorem 2 with h, = h*. Next, we denote by s the unique
solution (@, s) of (F/‘E/P)(h, s0,up) on [0,7T]. Here, by (i) of Lemma 4 and
Theorem 2 it holds that 0 < s(t) < L — 6, for t € [0,7] a.e. on © and
|st| < 2a a.e. on Q(T), where J, is a positive constant obtained by Theorem
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2. By Lemma 4 the estimate of |h|y12() 1,1(q)) is independent of § so
that we can choose 0, € (0, L) independent of ¢’ in (i) of Theorem 2. Thus,
we take ¢’ = d, and infer that A : X (77,0.) — X(T",0.) forany 0 < 7" < T.
Now, we prove that there exists 77 < T such that A is a contraction
mapping on W12(0,7"; H). Let h; be a solution of (AP)(3;) on [0,7"] and
(U, si) = (u;, A(S;)) be a solution of (P%JP)(hZ, S0, Ug) on [0,T"] for i = 1,2.
We note the result by Sobolev’s embedding theorem in one dimension:

’al(t7 z, O) - ﬁ?(ta z, 0)‘2
<Celu(t, ) — t2(t, x)|r2(0,1)|01 (t, ) — G2(t, @) F1(0,1) (5.1)

where C, is a positive constant by Sobolev’s embedding theorem. Then, by
(4.4) and (5.1) it holds that

.
/0 Ay — A(Go)el3dt
.
- /0 la@n (£, 0) — aa(t, - 0) — (p(A(G1)) — o(A(52)) 3t
T’ T
<24 </0 |1 (L, -, 0) — Ta(t, -, 0)|F;dt + Ci/o |A(51) — A(éz)\?th>

Tl
<2C.a” </0 |41 — 2|2 0,1)) U1y — U2y|L2 (% (0,1))

T T
+ / fia —aQ\;(QX(OJ))dt) +222C2 / IAGL) — A(3s) et
0 0

<2C.a®VT'Cslhy — halfy1(0 v + 2Cea® T’ Cslhy — halfy120 1v.m1)
Tl
+ 2a203/0 |A(51) — A(32)|%dt. (5.2)

By using (3.10) and

AGL(1) = AG2(t) [ < T /OT [AGL(T))r — A(32(7)) [7dr
we can obtain from (5.2) that
IA(31) — AGB2)lfyr2 077
<A WI |G (T A ~ M) 0 v+ Co (T 51— 52 20 o |
where C1(T") and Co(T") are positive constants depending on a, C,, C3 as

in (4.4), Mg(T") as in (3.10) and 7’. Hence, for a small 0 < 7" < T such

that VI'(1 + T")(C(T") + Co(T")) < L, we see that A is a contraction
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mapping on X (7”,0,). Therefore, by Banach’s fixed point theorem there
exists one and only one s € X (7", 6,) such that A(s) = s in X(7”,0,). This

means that (h,u,s) with u(t,z,2) =4 (t,m, z:z%z» for (t,x,2) € Qs(T")

is a unique solution of (P) on [0,7”].
5.2. GLOBAL EXISTENCE

In this section, we establish a globally-in-time solution of (P). Let define
T* :=sup{T’ > 0] (P) has a solution (h,s,u) on [0,7"]}.

By the local existence result, it is clear that 7* > 0. Now, we assume
T* < T. Then, by Lemma 3, (i) of Lemma 4 and Theorem 2 it holds that
for any ¢ < T,

ko < h(t) <h"ae onQ, 0<u(t)<1lae onQx]Is(t-),L], (53)
|hlwi20,m0) + [Pl Loo 0,601 () < Ma(T),
Ist| < 2a, |Vh| < My(T), |h| < My(T) a.e. on Q(T7),

t prL L
/ / luy (7)|?dzdr —i—/ lu(t)|*dz < M7(T) a.e. on €, (5.6)
0 Js(r) s(t)

where M7(T') is a positive constant depending on ug., py, puw, k, a, My(T)
and Cj. Then, by (i) of Theorem 2 and (5.6) we see that there exists a
positive constant 0, depending on M7(T') such that

0<s<L-9,fortel0,T") ae on . (5.7)

Next, by hy — AG(h) = s(1 — f(h))v ae. on Q(T%), |s(1 — f(h))v] <
L|v| 0 (q(ry) and (5.5) we infer that AG(h(t)) is bounded in L*°(12) for a.e.
t € [0,7*). Hence, from this result, (5.3), and go < g we have that

|AL(t)[ oo () < C for ae. t €[0,T7), (5.8)

where C' is a positive constant. Also, by (A6) and (5.4), h(t) — hy(t) is
bounded in H} () for a.e. t € [0,T*). Moreover, by (4.1), (5.6) and (5.7)
it follows that for t € [0,T*),

/t /1 |G ()P dydt = /t /LT) ug () + ux(7) (LL__zi?t()T) 2 e dzdt
< —/ /(T lug (7)|?dzdt + 4La / / lu (7)|?dzdt
< (5—* + %) M:(T) ae. on O, (5.9)
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and

1 ~ ) /L ) 1
[ i OPay = [ - s
L
< L/ lu.(t)|?dz < LM7(T) a.e. on . (5.10)
s(t)
Now, let N be a subset of [0, 7™*) with | N| = 0 such that for ¢ € [0,7%)\ N, it
holds that Vh(t) and Ah(t) are bounded in L>®(2), h(t) — hy(t) is bounded
in H}(Q), and @(t,x,1) = h(t,z) for a.e. z € Q. Since h(t), s(t) and
u(t) also satisty (5.3), (5.4) and (5.7) for ¢t € [0,7*) \ N, we can take a
sequence {t,} C [0,7*)\ N such that ¢, — T as n — oo and for some
h(T*), s(T*) € H, n; € L>®(Q)(1 <4 < 3) and a(T*) € L*(Q x (0,1)) the
following convergences hold:

h(tn,) — h(T*) in H, weakly in H'(Q), (5.11)
O;h(t,) — n; weakly - * in L>(Q), (5.12)
h(tn) — hy(tn) — R(T*) — hy(T*) weakly in Hg(Q), (5.13)
s(tn) — s(T™) weakly in H, (5.14)
(ty) — w(T*) weakly in L*(Q x (0,1)) as n — oo, (5.15)

where 0; is the weak derivative with respect to x;.

Lemma 5. Let h(T*), s(T*) € H and a(T*) € L*(2 x (0,1)) be functions
satisfying (5.11)-(5.15). Then, it holds that

(i) h(T*) € H2(Q) N WH>(Q), ko < h(T*) < h* a.e. on Q, AW(T*) is
bounded a.e. on 2 and h(T*) = hy(T™*) a.e. on 0.

(17) 0 < s(T*) < L — 6, a.e. on Q, where §, is the same as in (5.7).

(i4) 0 < u(T*) < 1 a.e. on Qyp+), the function x — [u(T*, x)| g1 (s(1+),1)
is bounded a.e. on Q and w(T*,x,L) = h(T*,z) for a.e. x € Q.

Proof. (i) By (5.3) and (5.11) it is clear that ko < h(T*) < h* a.e. on Q.
Also, by (5.11) and (5.12), we have that n; = 9;h(T*) € L*°(Q2). Next, we
show that h(T*) € H?(Q) N W1>(Q) and Ah(T*) is bounded a.e. on €.
Let define —AR(T*) in the following distribution sense:
(—AR(T™), ) = / Vh(T*)Vedz for ¢ € C5°().
Q
Then, for ¢ € C§°(Q2) it holds that
(—AR(T™), ) = / —h(T*)Apdzr = lim / —h(t,)Apdx
[¢) n—oo [¢)

= lim [ Vh(t,)Vedx = li_>m —Ah(t,)pdz.
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Hence, by (5.8) it follows that (—=AR(T™), ) < Clp|1(q) for ¢ € CF(Q).
Accordingly, by Hahn-Banach’s theorem, there exists [ € LOO(Q) such that

(L, 0) Lo ()21 (@) = (—ART™), ) for p € CF°(). (5.16)

Consequently, by (5.16) and the regularity result of elliptic problems, we
see that h(T*) € H?(Q), and therefore, | = —AR(T*) € H. Then, by
[ € L>(Q2) we also obtain that Ah(T™) € L*°(2). Thus, from these result
(i) holds.
(ii) Since 0 < s(t,) < L — 4, a.e. on €, [s(t,) — (L — 6.)]7 = 0 and
] s(tn) — (L — d4)), it follows that

Hence, by (5.14), we derive that |[s(T*) — (L — 6,)]"|% = 0 which implies
that s(T*) < L — §, a.e. on €. Similarly, we have that 0 < s(7™) a.e. on
Q.

(iii) By using (4.1) and (5.9), it holds that for the function ,

2 2(4La)*T

[i(tn) — @(tm) 220,y < tn — tul <5— + T) My(T) ae. on Q.

This implies that @(t,) is a Cauchy sequence in L?(2 x (0,1)), namely, by
(5.15) we see that

a(ty) — a(T*) in L*(Q x (0,1)) as n — oo. (5.17)

By (5.3) and (5.17) it is clear that 0 < a(7*) < 1 a.e. on 2 x (0,1). Also,
from (5.11) and (5.17) there exists a subsequence {n;} C {n} and M; C 2
with |M;| = 0 such that

h(tn,,x) — h(T*,x) and @(t,,,z) — a(T*,x) in L*(0,1) (5.18)

as k — oo for x € Q\ M;. Moreover, by (5.10), there exists My C Q with
|Ma| = 0 such that dy(t,) is bounded in L?*(0,1) on Q\ Ms. Then, for
xz € Q\ (M; UDMs), we can take a subsequence {t,, (z)} C {tp,} such that
for some &(x) € L?(0,1),

iy (tn, (), 2) — &(x) weakly in L*(0,1). (5.19)

Therefore, by (5.18) and (5.19), we see that &(z) = 4, (T*,z) in L*(0,1) on
Q\ (M; U M), namely, @(T*) € H*(0,1) a.e. on Q.

Finally, we prove that a(7%,z,1) = h(T*,z) a.e. on . From (5.18) we
see that u(ty, (z), ) — 4(T*,z) in L*(0,1) and h(t,, (z),z) — h(T*, x) as
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k — oo and @(T*,x) € H*(0,1) for z € Q\ (M7 U Ms). Here, by (5.1) it
holds that

’ﬁ(tnk (.%'), T, 1) - ﬂ(T*, Z, 1)‘2
<Celt(tn, (), 2) = a(T", )| r0,1)[W(tny (2), ) = (T, 2)|L2(0,1)-

Hence, by the convergence of i(ty, (z)) in L?*(0,1) and the fact that
@(tn, (7)) is bounded in H'(0,1) for x € Q\ (M; U M) we have that
(tn, (z),z,1) = a(T*,x,1) as k — oo, and therefore a(T™*,z,1) = h(T™,x)

a.e. on (). Thus, we see that u(T*,z,z) = @ (T*,x, %) satisfies

(ii). O

By Lemma 5 we can consider h(T™), s(T%*) and u(T™*) as an initial
data. Finally, by repeating the argument of the local existence, we see
that the solution can be extended beyond T™. This is a contradiction of
the definition of 7%, and therefore, T* must coincide with T'. Thus, we can
show that (P) has a solution globally in time, and Theorem 1 is proved.

6. Conclusion

We studied a two-scale problem as a mathematical model describing
moisture transport phenomena arising in concrete carbonation process.
Under suitable assumptions, we established a globally-in-time solution of
our two-scale model by the method of extending local solutions.
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CyuiecTBoBaHME TJIO0AJIBHOTO peleHus AJisi MHOTOMEpPHO
MO/IeJIA BJIArornepeHoca B OETOHHBIX MaTepuajiax

K. Kymazakn

Vnusepcumem Hazacaxu, Hazacaxu, Anonus

Annoraums. B npenpiaymem unccaegoBanuu [5] MBI I0Ka3an CyIeCTBOBAHUE JIO-
KaJIbHOTO II0 BPEMEHH peIleHus JJIsi JBYMEPHOI 3aJ1adu, KOTOpPas JaeTCs B KadeCcTBe
MaTEMATUIECKON MOJENH BJIAromepeHoca, BOSHUKAIOINIETO B IMporecce KapboHu3anuu Oe-
ToHa. JIByMepHasi MOJIeJib COCTOUT U3 ypaBHEHUs MM DY3UH OTHOCUTEBHON BJIAYKHOCTH
B MaKpO-00/IaCTH U 33/1a9 CO CBODOIHON TPAHUIIEH, ONMUCHIBAIONINX MIPOIECC CMAYNBAHUST
¥ CyIIKU B GECKOHEYHBIX MUKpPO-00/1acTsiX. B 3ol crarbe, yiydinas ypaBHeHue auddy-
3UM OTHOCHTEIHHON BJIAKHOCTH HA OCHOBE 9KCIEPUMEHTAJIBHOrO pesynabrara [3;10], Mbr
CTpouM I100aIbHOE pellleHne JIBYyMepHOM Mojenu. Jljis JoKa3aTeibcTBa CyIeCTBOBAHUS
TI00AJIBHOTO PENTEHUsT MBI [TOJTY YUJIM PABHOMEPHBIE OIEHKN ¥ PABHOMEPHYIO OTPAHUICH-
HOCTB peIlleHHUsI 110 BPEMEHU U UCIIOJIHL30BAJIN METOJ PACIIMPEHUS JIOKAJbHBIX PEIeHU.

KuroueBrble cjioBa: aAByMepHast MOJEb, 3aada CO CBOOOIHON I'paHuIieil, KBa3uiIu-
HeltHOe mapaboIMIecKoe YpaBHEHNe, yPABHEHNE BJIArOMepPeHOCa.
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